
IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 8, April 2023

Copyright to IJARSCT DOI: 10.48175/568 596

www.ijarsct.co.in

Impact Factor: 7.301

Android Mobile Malware Detection using Machine

Learning Techniques
R. Mariammal1, Bommanaboina Haribabu2, Konka Venkatesh3, Korsipati Rahul Reddy4

Assistant Professor, Dhanalakshmi College of Engineering, Chennai, India1

Students, Dhanalakshmi College of Engineering, Chennai, India2,3,4

Abstract: With the growth of malware and improvements in cyberattacks, malware detection is crucial to

maintaining cyber security. These attacks frequently employ previously undetectable malware that is not the

focus of security firms, and it is inevitable that solutions will be found to learn from unlabelled sample data.

This paper introduces SHERLOCK, a deep learning model for malware detection based on self-monitoring

and the Vision Transformer (ViT) architecture. Using binary representation based on images, SHERLOCK

is a novel malware CA detection technology that learns distinctive traits to separate malware from the

benign programmes they employ. Self-supervised learning can achieve accuracy 97% for binary malware

classification, which is higher than current state-of-the-art algorithms, according to experimental results

employing 1.2 million Android apps hierarchy of 47 categories and 696 families. With macro-F1 scores of

0.497 and 0.491, respectively, the suggested model can also outperform cutting-edge methods for multi-

class malware classification types and families.

Keywords: Supervised Learning, Deep Learning, Malware Detection, Android Security

I. INTRODUCTION

Since its conception, artificial intelligence has been used in several applications, gaining substantial appeal in recent

years. It currently rules the imaging industry, particularly in picture categorization [1]. The accuracy and dependability

of models that employ deep learning architectures have been substantially enhanced by advancements in deep learning

technology. The effectiveness of Deep Neural Networks (DNNs), which benefit from the growth of big data sets as well

as the increase in computer capacity, may be impressive. Although DNNs have achieved state-of-the-art performance,

new research has shown that these models are vulnerable to adversarial attacks, which change the DNN's output and

reduce performance [2]. Due to the nature of deep neural networks, which are extremely sensitive to minor adjustments

that are invisible to the human eye, adversarial perturbation is a well-known problem. Many works have recently

JiafengXie served as the manuscript's assistant editor, overseeing the review process and giving final approval for

publication. have been suggested to provide a varied set of adversarial examples, which have been used as benchmarks

to assess the resilience of deep learning models [3]. Like this, a number of methods are put forth in the literature to

thwart such attacks [4]

Malware detection, which involves identifying dangerous software programmes by separating them from legitimate

applications, offers an increasingly difficult issue in the field of software security [5]. Recent research [6] show that the

prevalence of malicious software is rising alarmingly, and that some or most of it hides inside well-known programmes

utilising obfuscation techniques to avoid being discovered using conventional signature-based detection techniques.

The integrity of Android applications is substantially threatened by Android malware, and identification of this malware

is very important. More than 3.25 million harmful Android apps were discovered in 2016 [7], according to statistics,

meaning that one new malware app is discovered every 10 seconds.

 To stop malware from being released in the world through Android application markets, more focus and study are

needed on Android malware detection. The issue of malware detection can be viewed as a classification problem, where

the algorithm must correctly classify a particular programme into one of the two categories—malware or benign—in

order to identify it. The majority of currently used methods for detecting Android malware focus on extracting

application data and training a machine learning classifier with prior information to differentiate between good and bad

applications. Despite their excellent accuracy, these models are useless since attackers can add characteristics that are

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 8, April 2023

Copyright to IJARSCT DOI: 10.48175/568 597

www.ijarsct.co.in

Impact Factor: 7.301

frequently found in good programmes to avoid being detected. Simple additions of benign features, including pop-up

notifications and logging, can transform malicious apps into benign ones, changing the detection class.

Recent malware programmes are designed with the intention of being extremely similar to innocuous software by

combining characteristics of well-known applications, with only tiny variations that are challenging for humans to

perceive [9]. DNNs are able to spot such subtle changes, and with enough training data, we can identify malicious

application characteristics even when they are mixed in with a lot of good ones. In fact, earlier studies [10] have

demonstrated that malware may be found using image classifiers built using deep learning models. Deep learning

models can be trained to recognise certain traits that can then be used to detect the presence of similar variations in

other applications. Malware variants from the same family demonstrate visual similarities in byte graph images. By

transforming data to pixels, these images are created using visualisation in the spatial domain. In order to identify

malware, the works often transform malware binaries into digital pictures and send them to a neural network. Machine

learning is frequently used to identify Android malware, whether the analysis method is static, dynamic, or hybrid.

Machine-learning based approaches offer higher performance in detecting efficacy and efficiency, in addition to the

capacity to detect, when compared to classic methods, such as signature-based detection. Zero-shot learning, which can

be used to find malware that has not yet been seen.

In order to gain from deep learning without incurring the cost of extensive annotations and learn feature representations

when data supplies the supervision, self-supervised methods are crucial in this situation. We demonstrate that, using

one of the largest data sets comprised of one million Android apps carefully selected from the AndroZ-

oo[11]repository, our proposed technique outperforms state-of-the-art techniques by achieving 97% accuracy in

malware detection and with 87% precision in properly identifying the malware family. The study's primary

contributions include the following:

 The application of a computer vision model based on Transformer that uses self-supervised learning to detect

Android malware. To the best of our knowledge, this is the first study to employ vision transformers and self-

supervised learning for the goal of detecting malware on a sizable data set.

 A thorough analysis of how well malware detection software can be divided into malware type and malware

family categories. Our findings show that, with a macro-F1 score of 0.497 for 47 types and 0.491 for 696

families of malware, respectively, self-supervised learning can successfully categorise malware.

 Advancing knowledge of synthetic images performance of self-supervised computer vision models,

particularly the Vision Transformer architectures.

The remainder of the text is structured as follows: Basic information on malware detection and self-supervised learning

is provided in Section II. The approach is then explained in Section III, and the evaluation and outcomes are covered in

Section IV. With Section VI discussing significant ideas, Section V provides a summary of related work. The article's

conclusion is presented at the end.

II. BACKGROUND

The key background information for self-supervised virus detection utilising byte plot grayscale images is condensed in

this part. First, we'll go over the procedure for creating the image, which involves converting the malware executable

into a byte plot grayscale image. Automatic visual pattern recognition that can be used in static malware analysis can be

performed using these transformed binary executable images. The background information on picture classification

utilising machine learning and self-supervision is then provided.

2.1 BYTEPLOT VISUALIZATION
The binary executable to image transformation was first described by Conti et al [12] to represent binary data objects as

grayscale images, where the pixel value of the image corresponds to a byte in the binary file. Since the byte range is 0-

255, the colour of the pixels is rendered as grayscale, where zero is black and 255 is white, the other values represent

intermediate shades of Gray. This representation provides a visual analysis of binary data to distinguish structurally

different regions of data, thus enabling a wide range of static analysis such as file type identification, primitive data

type inference, fragment classification, and other tasks that required special reverse engineering for binary data. Nataraj

et al proposed to transform malware samples into byte graph images with the observation that there are significant

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 8, April 2023

Copyright to IJARSCT DOI: 10.48175/568 598

www.ijarsct.co.in

Impact Factor: 7.301

visual similarities in malware belonging to the same family [13]. The transformation consists of reading the binary file

as a vector of 8-bit unsigned integers organized into a 2D array, where the width is defined based on empirical

observations and the height varies depending on the size of the file.

Freitas et al. extended this work for Android applications by creating an image representation using a DEX (bytecode)

file obtained from the Android APK [14]. The extracted DEX file was converted to a 1D array (instead of 2D) of 8-bit

unsigned integers. The vector is then used in a 3-phase conversion process of 1) converting the 1D field to a 2D image

representation 2) reducing the image to a standard size and 3) encoding the semantic information into RGB channels.

Similar to the approach presented by Nataraj et al [13], the first step is to convert the data array into a grayscale image

where the width is fixed and the height varies depending on the file size. The transformed image is then scaled down to

256 × 256 using a standard Lanczos filter from the Pillow library. Once the downscaled grayscale image is obtained,

the final step is to encode semantic information that can further aid the discrimination of characteristic texture patterns.

By colouring each byte according to its usage in the malware executable, the image has an added layer of semantic

information on top of the raw bytecode. Gennissen et al present [15] an encoding that assigns each byte to a specific

RGB color channel depending on its position in the DEX file structure. The observation is that the sections in the DEX

file should be distinguished for malware detection because each type of malware uses each section differently and such

patterns can be easily recognized in the image visualization. The encoded image can be decoded back to grayscale by

combining each of the channels.

2.2 IMAGE CLASSIFICATION

Image classification is a paradigm of machine learning involving assigning categories to images. Most image

classification problems are multi-class, single label classification problems involving multiple potential categories for

the images but with only a single label or category being applied to an image. However, it is possible to apply multiple

labels to some imagery. For example, images that contain multiple objects (i.e. a vehicle and a horse) or images that

captures multiple features (i.e. an image of a bird can be labelled based on its physical features). These labels can be

explored as categories either independently (as multiple single-label, multi-class problems) or jointly (a single multi-

label, multi-class problem). A key issue when performing multiple single-label, multi-class classifications on the same

dataset is the computational cost associated with training a different network for each problem. Transfer learning is a

commonly used technique to alleviate some of the computational cost. In transfer learning, a previously trained neural

network is reused to instantiate the weights of a new neural network that is then trained on the new problem. By reusing

the weights of the previous task the ‘‘knowledge’’ from the previous task is transferred over and reused to some extent.

Rezende et al [10] used transfer learning to train a DNN using an ImageNet dataset containing 1.28 million images of

1000 classes (which do not include malware images) and were able to achieve an accuracy of 92.97% on a dataset

containing 10,136 malware bytes. images. This approach was one of the first to show that without feature engineering,

using the raw pixel values of byte images, malware could be classified with high accuracy. The DNN was initially

trained for a different direction on a different data set, yet it was able to outperform then-state-of-the-art models that

used specialized reverse engineering. This line of work relies on learning from already established, annotated datasets

despite the difference between the initial training dataset used for the weights and the malware dataset used for testing.

Making a huge data set of malware photos with annotations on various labels it can learn from is the difficult part. The

generation of such a massive data set might not be possible, as it was for ImageNet, because the manual annotation of

photos in ImageNet is frequently performed by people with no specialised knowledge and in a short amount of time. To

characterise a malicious binary, however, an expert analyst must spend, on average, about 10 hours [16], [17]. It is not

possible to produce a huge corpus of malware photos with expert annotated data that can be used for many activities,

such as malware family, malware type, malware author categorization, due to the expensive effort. Programme binaries

as a whole change over time due to the evolution of software, which includes new API modifications, novel code

generation techniques, and improved compiler optimisations. Similar to how they develop malicious software,

adversaries create harmful binaries that are undetectable and can adapt to these changes [18]. Maintaining an up-to-date

data collection with expert-labelled data that can be used to train to detect new viruses with new attributes is difficult as

a result. An expert-labelled dataset for malware detection can quickly become out of date because of the way malware

evolves. This idea is known as "conceptual drift."

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT

www.ijarsct.co.in

Impact Factor: 7.301

FIGURE 1. A high-level overview of SHERLOCK: self

classification

2.3 Self-Supervised Learning

Self-supervised learning holds significant promise for improving representational learning when labeled

A paradigm of representation learning known as "self

unlabelled imagery for a pretext task. Pretext tasks are a class of tasks that can be automatically constructed from

imagery in this context without human involvement. Self

meaningful image representations through pretext tasks that don't call for any manual annotations. Jigsaw puzzle

solving [19] for reconstructing an image after randomly permuting grid sections, relative position prediction [20] for

determining the relative position and orientation of image patches with respect to one another, or image colorization

[21] for removing and adding colour to an image are ex

the pretext task, the neural network needs to learn a generic representation of the dataset. A model that has been trained

to handle these pretext tasks learns representations that may be used t

classification.

On a particular downstream objective, purely self

as good as those produced by fully supervised techniques. Despite re

supervision alone is insufficient for practical usage. Self

job fine-tuning to ease this. This is comparable to how learning works in humans. Every n

innate representation of the environment. The tagged imagery in the downstream task acts as a supervisory signal in the

context of self-supervised learning, typically via propagating an error function like cross entropy, which

supervised representation's ability to adapt to the downstream task. By converting a self

partially supervised learning model, Zhai et al. [22

Additionally, self-supervision can enhance the robustness of a

corruptions, and typical input corruptions. Self

demonstrated by Hendrycks et al. [23], raising the question of whether or

the age of self-supervised learning. However, in this study, we explicitly look into the advantages of using self

supervised learning in conjunction with a sizable labelled data set for malware detection an

the efficient processes that label-independent learning can offer for carrying out numerous single

on the same dataset.

Although self-supervised computer vision has drawn a lot of attention, the majority

natural imagery, or images taken from cameras of natural scenes. Humans absorb a lot of imagery, yet it often takes on

a more abstract shape. Images are used to graphically express a variety of concepts. The underlying dynami

imagery may be very dissimilar from that of images of natural scenes. For instance, based on the size of the topic, an

image of a natural scene carries semantic clues as to the proximity of an object to the sensor. More abstract imagery,

however, clearly lacks or differs from such semantics. When compared to natural imagery domains, the transferability

of knowledge representations between abstract imagery domains would also be further reduced for this reason, which

indicates an increased benefit in creating methods like self

great deal of academic interest in knowing more about how self

IJARSCT

International Journal of Advanced Research in Science, Communication and

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 8, April 2023

 DOI: 10.48175/568

level overview of SHERLOCK: self-supervised learning can be used to bootstrap di

supervised learning holds significant promise for improving representational learning when labeled

A paradigm of representation learning known as "self-supervision" entails training a model under observation using

unlabelled imagery for a pretext task. Pretext tasks are a class of tasks that can be automatically constructed from

in this context without human involvement. Self-supervised learning from photos aims to build semantically

meaningful image representations through pretext tasks that don't call for any manual annotations. Jigsaw puzzle

image after randomly permuting grid sections, relative position prediction [20] for

determining the relative position and orientation of image patches with respect to one another, or image colorization

[21] for removing and adding colour to an image are examples of pretext tasks. To complete these tasks and complete

the pretext task, the neural network needs to learn a generic representation of the dataset. A model that has been trained

to handle these pretext tasks learns representations that may be used to other interesting downstream tasks, such picture

On a particular downstream objective, purely self-supervised algorithms may not produce visual representations that are

as good as those produced by fully supervised techniques. Despite recent research showing positive outcomes, self

supervision alone is insufficient for practical usage. Self-supervision is combined with transfer learning or downstream

tuning to ease this. This is comparable to how learning works in humans. Every new skill we learn involves an

innate representation of the environment. The tagged imagery in the downstream task acts as a supervisory signal in the

supervised learning, typically via propagating an error function like cross entropy, which

supervised representation's ability to adapt to the downstream task. By converting a self-supervised learning model to a

partially supervised learning model, Zhai et al. [22]

supervision can enhance the robustness of a model in terms of its resistance to hostile examples, label

corruptions, and typical input corruptions. Self-supervised learning can even outperform fully supervised techniques, as

demonstrated by Hendrycks et al. [23], raising the question of whether or not big labelled data sets are still necessary in

supervised learning. However, in this study, we explicitly look into the advantages of using self

supervised learning in conjunction with a sizable labelled data set for malware detection and classification. We focus on

independent learning can offer for carrying out numerous single

supervised computer vision has drawn a lot of attention, the majority of recent research has been on

natural imagery, or images taken from cameras of natural scenes. Humans absorb a lot of imagery, yet it often takes on

a more abstract shape. Images are used to graphically express a variety of concepts. The underlying dynami

imagery may be very dissimilar from that of images of natural scenes. For instance, based on the size of the topic, an

image of a natural scene carries semantic clues as to the proximity of an object to the sensor. More abstract imagery,

, clearly lacks or differs from such semantics. When compared to natural imagery domains, the transferability

of knowledge representations between abstract imagery domains would also be further reduced for this reason, which

in creating methods like self-supervised learning for such domains. Therefore, there is a

great deal of academic interest in knowing more about how self-supervised learning functions on such imagery. Prior

 ISSN (Online) 2581-9429

, Communication and Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 599

supervised learning can be used to bootstrap different

supervised learning holds significant promise for improving representational learning when labeled data is scarce.

supervision" entails training a model under observation using

unlabelled imagery for a pretext task. Pretext tasks are a class of tasks that can be automatically constructed from

supervised learning from photos aims to build semantically

meaningful image representations through pretext tasks that don't call for any manual annotations. Jigsaw puzzle

image after randomly permuting grid sections, relative position prediction [20] for

determining the relative position and orientation of image patches with respect to one another, or image colorization

amples of pretext tasks. To complete these tasks and complete

the pretext task, the neural network needs to learn a generic representation of the dataset. A model that has been trained

o other interesting downstream tasks, such picture

supervised algorithms may not produce visual representations that are

cent research showing positive outcomes, self-

supervision is combined with transfer learning or downstream

ew skill we learn involves an

innate representation of the environment. The tagged imagery in the downstream task acts as a supervisory signal in the

supervised learning, typically via propagating an error function like cross entropy, which aids in the self-

supervised learning model to a

model in terms of its resistance to hostile examples, label

supervised learning can even outperform fully supervised techniques, as

not big labelled data sets are still necessary in

supervised learning. However, in this study, we explicitly look into the advantages of using self-

d classification. We focus on

independent learning can offer for carrying out numerous single-label classifications

of recent research has been on

natural imagery, or images taken from cameras of natural scenes. Humans absorb a lot of imagery, yet it often takes on

a more abstract shape. Images are used to graphically express a variety of concepts. The underlying dynamics of such

imagery may be very dissimilar from that of images of natural scenes. For instance, based on the size of the topic, an

image of a natural scene carries semantic clues as to the proximity of an object to the sensor. More abstract imagery,

, clearly lacks or differs from such semantics. When compared to natural imagery domains, the transferability

of knowledge representations between abstract imagery domains would also be further reduced for this reason, which

supervised learning for such domains. Therefore, there is a

supervised learning functions on such imagery. Prior

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 8, April 2023

Copyright to IJARSCT DOI: 10.48175/568 600

www.ijarsct.co.in

Impact Factor: 7.301

research in this area has focused on sketch-based abstractions of images in certain cases [24, 25], while in other cases

[26, 27] it has worked with map images or digital elevation outputs. To the best of our knowledge, no previous work

has carried out self-supervised learning on images depicting binaries of programmes, which belong to this category of

imagery since they are an abstract representation of the underlying software artefact.

III. METHODOLOGY

This section gives a general description of our model's architecture as well as our suggested approach for employing

self-supervised learning to identify and categorise malware. Next, we discuss self-supervised learning to create malware

images using a novel computer vision architecture. Finally, we describe how we improve the model for the problem of

multi-class labelling in the context of malware classification by reusing the learned representation from the synthesis

job.

3.1 OVERVIEW

We suggest formalising the Ove technique for ware identification by combining self-supervised learning with the vision

transformer architecture. We interpret a malware image as a sequence of patches and analyse it using a conventional

Transformer encoder as used in natural language processing, in contrast to existing systems that use image

classification for malware detection. This interpretation, along with pre-training on substantial amounts of data, enables

us to efficiently reuse a trained model for three separate classification tasks with little additional computational

expense. An overview of our suggested technique, SHERLOCK, is shown in Figure 1. SHERLOCK's main goal is to

create fully-supervised training samples for the underlying learning problem, which classification models can utilise to

transfer learning bootstrap the training. Building virus images from a small number of features that capture malware

semantics is a learning task. This contrasts with earlier malware detection research, which solely relies on supervised

learning.

SHERLOCK is made up of two primary components that can effectively synthesise malware images using an optimised

representation of the malware image and a classification component that can use the optimised representation in order

to determine the proper label for a certain classification issue. A virus image is first divided into patches (tiny portions

of the image) of size 16 16 pixels by SHERLOCK. This 1-dimensional vector is used to create a lower-dimensional

linear embedding representation of the patches, which are then flattened or concatenated to create another 1-

dimensional vector. Positional embedding is employed to retain the 2-dimensional positional relationship of the picture

patches while transformers are used to model sequences. This improved embedding is utilised to fine-tune several

classification models on malware picture data (such as malware detection, type-classification, and family-classification)

and bootstrap the classifier component as a basic knowledge that captures the semantic encoding of a malware. As the

largest publicly available cybersecurity image library (1.2 million photos) with different labels for each image

corresponding to malware/dangerous (2 categories), malware type (47 categories), and malware family (696

categories), we use the MalNet dataset [14] in our research.

3.2 MASKED AUTO ENCODER

Vision Transformers (ViTs), which have recently become available, offer an alternative architecture for image

processing that is both straightforward and scalable. A vision transformer starts with an image

divided into patches (such as 8 8 or 16 16 pixel-sized ones). As seen in Figure 2, these patches are then converted into

an embedding using common transformer encoders. The model encodes a representation from an input image, which it

then decodes to recreate the input image. As a result, an image serves as the model's input, and its output is a

reconstruction of that same image using a smaller feature space. A totally accurate output is an identical replica of the

input image. This idea can be used to other types of data modalities, such as Natural Language Processing (NLP),

where masked language modelling as a self-supervising task has produced cutting-edge outcomes in the past [29].

As our pre-text task, masked auto encoding is used. In general, masked auto encoding involves deleting a portion of the

data and predicting the removed section using the data that is still present. As a result, before self-supervised training,

some of the image's pixels are hidden, and the neural network has to learn how to retrieve the hidden pixels using the

visible pixels. Recent research [30] has demonstrated that masking a significant number of the pixels in natural images

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 8, April 2023

Copyright to IJARSCT DOI: 10.48175/568 601

www.ijarsct.co.in

Impact Factor: 7.301

(like ImageNet) results in a difficult self-supervisory task that can produce helpful representations for subsequent tasks.

Since there is not any prior research using masked autoencoding for abstract or synthetic imagery, we experiment with

a high percentage of masked pixels (75% of the image), forcing the model to try to recover the image using only the

25% of the image that isn't masked [30].

FIGURE 2. Illustration of a transformer encoder [28] that takes a sequence of patches as input and transforms into an

encoding.

High percentages of masked pixels have been shown to work well for natural imagery. The outcomes of the picture

synthesis for two different malware strains are shown in Figure 3. We employ Vision Transformers [28] in our analysis,

which is significant as they can efficiently combine 2-Dpositional embeddings to pinpoint a patch's location inside an

image. In convolutional neural networks, such incorporation is not straightforward.

FIGURE 3. Illustration of the image synthesis using images of two malware types. Using an masked image which

masks 75% of the image our learning model is able to synthesise images almost identical to the original image.

Figure 4 provides a high-level overview of the SHERLOCK auto-encoder, which employs self-supervised learning to

provide an optimised embedding for more accurate reconstruction of masked pictures. By evenly selecting 25% of the

image to keep, a mask is created. The created mask is then applied to the original image to create the masked input

image. To create embedding for each patch, the input picture is flattened after being masked. Each patch is 16 16,

resulting in a total of 14 14 = 196 patches. Each embedding is a vector of dimension 3 16 16 = 768. After shuffling the

embeddings, only unmasked patches are passed through the encoder architecture to distinguish masked from unmasked

patches. In order to create an embedding of size 768 for each patch, the unmasked embeddings are passed through 12

architecturally similar blocks of varying weights.The flattened masked patches, which are represented by a typical,

learnable mask token signalling the presence of a masked patch, are coupled with the unmasked decoder embeddings.

This tells the model to anticipate similar patches during the decoding phase. The decoder, which consists of 4

architecturally identical blocks with various weights, decodes the embeddings and mask tokens. To produce a final

embedding (size 384) for each patch. A linear projection is used to translate this embedding to the number of output

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 8, April 2023

Copyright to IJARSCT DOI: 10.48175/568 602

www.ijarsct.co.in

Impact Factor: 7.301

pixels in a patch (31616 = 768). The original image and the synthesised image are compared at this point, and a pixel-

wise loss is computed between them. This loss is then propagated back through the network.

The decoder is only utilised during self-supervised pre-training, allowing for decoder design freedom. Particularly,

since less information and parameters would need to be stored within the decoder, simpler decoders compel a better

representation in the other components of the architecture. In addition, the embedding dimension for the encoder is 768

pixels while that for the decoder is 384 pixels. The encoder contains 12 blocks while the decoder only has 4. Each pixel

in a patch is first normalised by removing the patch's mean from it and dividing the result by the patch's standard

deviation in order to calculate the reconstruction error. After normalization, the mean standard error over the pixels in

the masked fields is calculated to determine the reconstruction loss.

3.3 CLASSIFICATION MODELS

The ability to reuse the same self-supervised representation for all 3 downstream tasks—malware classification

(binary), malware type classification (47 categories), and malware family classification (696 categories)—while

requiring little additional training is one of the main benefits of using self-supervised learning in this way. Simple

supervised models, on the other hand, need to train independently from scratch, which would need a significant increase

in computational processing. In this sense, self-supervised algorithms get more effective as more tasks are developed on

the same dataset.

Algorithm 1 Malware Detection Algorithm

Execution:

Input: Binary Image, IrawOutput: Boolean value true/false

I = resize(Iraw)

Lpatches= (I)

encoding = encode(Lpatches)

P = Compute Probability(encoding)

if p > 50% then

Algorithm 1 depicts the entire process of our proposed method for identifying/classifying an image as malware. The

first step is to resize the image to 224224 pixels. When we offer our pre-trained models the feature encoding, they

compute the probability P for the encoding that may contain detrimental features. If the P is substantial (i.e., p > 50%),

the method returns Malware; otherwise, it returns Benign. The number of categories distinguishes malware detection

workflows (which use binary classification) from type and family inference workflows (which use multi-class

classification).

FIGURE 4. Overview of a masked autoencoder that takes masked images as input and learns to reconstruct the original

image using supervised learning. Layer A is a linearization of the fields, which is then shuffled in Layer B to separate

return ‘‘Malicious’’
else

return ‘‘Benign’’
end

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT

www.ijarsct.co.in

Impact Factor: 7.301

the masked and unmasked pixels. Layer C shows the embedding of masked and unmasked pixels. Layer D represents

the combination coding, which is the input layer that the decoder learns. Layer E

FIGURE 5. Overview of the classification models in SHERLOCK, which reuse the optimized embedding generated

via self-supervised learning to bootstrap 3 different classification tasks.

ViT-Base architecture with patch size 16 (ViT

step is used for each of the three subsequent classifications (as shown in Figure 5). As a result, the self

model's features and weights are re-used to initialise the bulk of the supervised neural network, which is then trained to

learn improved task-specific features. A linear layer is generated for each research that translates the encoder

embedding (768 in size) to the number of o

from beginning to end (backpropagating gradients and updating weights of every neural network parameter), allowing

the network to learn more specialised features suitable for c

building on the features learned during the self

malware family have a one-to-one relationship with the binary class.

FIGURE 6. Using finer granularity tasks to predict coarse granularity tasks.

In Figure 6, we use the training from the finer

However, because there is a many-to

malware-family to malware-type cannot be drawn in this data

In this section, we test the performance of our proposed malware detection system SHERLOCK against the largest

opensource dataset of Android malware [14]. First, we detail the experiment's structure, data set utilisation, and

evaluation criteria. Following that, we compare the performance to state

the malware classification confusion matri

4.1 EXPERIMENTAL SETUP

SHERLOCK, our proposed self-supervised learning technique, is tested on three tasks using the largest open

Android malware dataset [14]. First, we evaluate the pre

images. Second, we evaluate the classification task's ability to correctly identify the malware label. Third, we compare

our classification performance to that of existing cutting

the synthesis process to overall classific

architectures we consider; ResNet, DensNet and MobileNetV2 with different configurations.

carried out on a single Spartan Cluster [31] node with 24 cores (Intel

GPUs with 12GB of GPU RAM.

IJARSCT

International Journal of Advanced Research in Science, Communication and

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 8, April 2023

 DOI: 10.48175/568

the masked and unmasked pixels. Layer C shows the embedding of masked and unmasked pixels. Layer D represents

the combination coding, which is the input layer that the decoder learns. Layer E is the final input for the reconstruction

of the original image.

Overview of the classification models in SHERLOCK, which reuse the optimized embedding generated

supervised learning to bootstrap 3 different classification tasks.

Base architecture with patch size 16 (ViT-B/16) is used. The self-supervised encoder from the supervised learning

step is used for each of the three subsequent classifications (as shown in Figure 5). As a result, the self

used to initialise the bulk of the supervised neural network, which is then trained to

specific features. A linear layer is generated for each research that translates the encoder

embedding (768 in size) to the number of output classes (2, 47, or 696, respectively). The resulting network is finetuned

from beginning to end (backpropagating gradients and updating weights of every neural network parameter), allowing

the network to learn more specialised features suitable for classifying imagery based on task

building on the features learned during the self-supervised task of filling in masked patches. The malware class and

one relationship with the binary class.

Using finer granularity tasks to predict coarse granularity tasks.

In Figure 6, we use the training from the finer-grained classification challenge to derive a coarse

to-many relationship between these two categories, a similar inference from

type cannot be drawn in this data-set.

IV. EVALUATION

In this section, we test the performance of our proposed malware detection system SHERLOCK against the largest

Android malware [14]. First, we detail the experiment's structure, data set utilisation, and

evaluation criteria. Following that, we compare the performance to state-of-the-art machine learning algorithms, display

the malware classification confusion matrix, and examine the results.

supervised learning technique, is tested on three tasks using the largest open

Android malware dataset [14]. First, we evaluate the pre-training assignment's performance in creating malware

classification task's ability to correctly identify the malware label. Third, we compare

our classification performance to that of existing cutting-edge technologies, and fourth, we investigate the sensitivity of

the synthesis process to overall classification performance. For comparison with state

architectures we consider; ResNet, DensNet and MobileNetV2 with different configurations.

carried out on a single Spartan Cluster [31] node with 24 cores (Intel Xeon CPU E5-2650 v4 @ 2.20GHz) and 4 P100

 ISSN (Online) 2581-9429

, Communication and Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 603

the masked and unmasked pixels. Layer C shows the embedding of masked and unmasked pixels. Layer D represents

is the final input for the reconstruction

Overview of the classification models in SHERLOCK, which reuse the optimized embedding generated

supervised learning to bootstrap 3 different classification tasks.

supervised encoder from the supervised learning

step is used for each of the three subsequent classifications (as shown in Figure 5). As a result, the self-supervised

used to initialise the bulk of the supervised neural network, which is then trained to

specific features. A linear layer is generated for each research that translates the encoder

utput classes (2, 47, or 696, respectively). The resulting network is finetuned

from beginning to end (backpropagating gradients and updating weights of every neural network parameter), allowing

lassifying imagery based on task-specific categories while

supervised task of filling in masked patches. The malware class and

Using finer granularity tasks to predict coarse granularity tasks.

grained classification challenge to derive a coarse-grained classifier.

two categories, a similar inference from

In this section, we test the performance of our proposed malware detection system SHERLOCK against the largest

Android malware [14]. First, we detail the experiment's structure, data set utilisation, and

art machine learning algorithms, display

supervised learning technique, is tested on three tasks using the largest open-source

training assignment's performance in creating malware

classification task's ability to correctly identify the malware label. Third, we compare

edge technologies, and fourth, we investigate the sensitivity of

ation performance. For comparison with state-of-the-art deep learning

architectures we consider; ResNet, DensNet and MobileNetV2 with different configurations. All our experiments were

2650 v4 @ 2.20GHz) and 4 P100

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 8, April 2023

Copyright to IJARSCT DOI: 10.48175/568 604

www.ijarsct.co.in

Impact Factor: 7.301

For our experiments we use MalNet dataset [14] which: contains 1,262,024 malware pictures collected from real-world

Android apps in AndroZoo [11] contains the largest diverse open-source dataset comprising of 47 malware types and

696 malware families including benign applications

Table 1 details the number of pictures and families found in each malware kind. Notably, the class distribution is

significantly lopsided across image type and family, which is a common feature of many real-world datasets in which a

few classes include most of the samples. We give Accuracy, macro-Precision, macro-Recall, and macro F1 scores for

all tasks and compare them to past work using the identical train/test splits from this dataset.

FIGURE 7. Quality of the self-supervised image synthesis process where the reconstruction error is aggregated across

malware type.

TP Precision = TP +FP/ TP (1)

Recall = TP + FN 2 × Precision × Recall (2)

F1 = Precision + Recall (3)

True Positive (TP) denotes the number of samples from class c that are correctly identified as class c. False Positive

(FP) is the number of samples that do not belong to class c but are incorrectly classified as such. For the classifications

of malware, type and family, we report the

Macro-Precision (MP), Macro-Recall (MR) and Macro-F1 score.
Pc Precisionc

Macro − Precision = (4)

Macro − Recall =(5)

C2 × MP × MR

Macro − F1 = (6)

MP + MR

The macro criteria are calculated by taking a class-wise average of the metrics, as shown in Equations 4, 5, and 6. C

denotes the number of classes in each multi-class classification task in this scenario. Visualisations will also be utilised

to better understand the performance of our models.

 1 − 0.999

Wc= 1 − 0.999nc (7)

For the training procedure, we used simple cross entropy loss with class re-balancing. Classes in the dataset with fewer

training instances are weighted more heavily in the loss function. As shown in Equation 7, the weights provided in [14]

are utilised, where nc is the number of photographs in classc. These weights cause a significantly higher loss to be

attributed to mis categorizations in samples originating from under-represented groups. As a result, the neural network

will prefer learning a representation that can more successfully identify such underrepresented classes over a typical

(unweighted) cross-entropy loss.

4.2 ACCURACY OF MALWARE IMAGE SYNTHESIS

Because this is a direct evaluation of the self-supervision job, it can be interpreted as a preliminary assessment of the

representation's and decoder's ability to capture the semantic features associated with the binary of the considered

categories.

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT

www.ijarsct.co.in

Impact Factor: 7.301

We run each image through for each malware

generating 10 masked input images with only 25% of the original image's pixels. For each masked input image, we

construct an image that is comparable to the original image using the trained self

absolute error for each pixel in comparison to the original image for each synthesised image.

TABLE 1. The number of images and families in each type of malware in MalNet [14]

The fault over all 10 randomly produced masked input photos. Finally, for each class, the error is

such photos. Figure 7 depicts the pooled reconstruction error across malware types.

When the reconstruction error is averaged among malware categories, it ranges from 0.27% to 1.45%, with a global

average of 0.68%. The scale of the pixe

IJARSCT

International Journal of Advanced Research in Science, Communication and

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 8, April 2023

 DOI: 10.48175/568

We run each image through for each malware-type class, generating 10 random masks for 75% of the image

generating 10 masked input images with only 25% of the original image's pixels. For each masked input image, we

construct an image that is comparable to the original image using the trained self-supervised model. We average the

pixel in comparison to the original image for each synthesised image.

The number of images and families in each type of malware in MalNet [14]

The fault over all 10 randomly produced masked input photos. Finally, for each class, the error is

such photos. Figure 7 depicts the pooled reconstruction error across malware types.

When the reconstruction error is averaged among malware categories, it ranges from 0.27% to 1.45%, with a global

average of 0.68%. The scale of the pixel values in the image (ranging between [0, 255] or [0.0, 1.0] per channel, as we

 ISSN (Online) 2581-9429

, Communication and Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 605

type class, generating 10 random masks for 75% of the image and

generating 10 masked input images with only 25% of the original image's pixels. For each masked input image, we

supervised model. We average the

The number of images and families in each type of malware in MalNet [14]

The fault over all 10 randomly produced masked input photos. Finally, for each class, the error is averaged across all

When the reconstruction error is averaged among malware categories, it ranges from 0.27% to 1.45%, with a global

l values in the image (ranging between [0, 255] or [0.0, 1.0] per channel, as we

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT

www.ijarsct.co.in

Impact Factor: 7.301

use in this work) and the percentage of masked pixels in the image

extent of the inaccuracy. The same average was used for all

are comparable across categories since the masked pixel percentage is fixed for each image (and they differ from other

comparable evaluations by only a scalar component). The absolute inaccurac

pixels and the synthesised image would be needed, though, if the masked percentage varied between photos.

4.3 MALWARE CLASSIFICATION

We put our proposed self-supervised model SHERLOCK to the test in three different d

identify the label for each malware image. For each category, we train a different classifier to which the semantic

learning from the supervised-learning is transferred, as shown in Figure 5.

Malware kinds and families were successfully categorised by SHERLOCK spanning 47 and 696 classes, respectively.

Modern deep learning models could not

with an accuracy of 83.7% for malware

macro-F1 score, macro-precision, and macro

supervised learning model over current supervised learning

and SHERLOCK and the learning transfer resource. Although it performs significantly worse than the trained model,

earlier work [14] used ImageNet [32] transfer learning to pretrain a model and then fine tune to the training data.

because the semantics of the various ImageNet images differ, from scratch and MalNet images.

For the binary classification problem, our model reports the best performance in precision but the worst performance in

recall, resulting in inferior overall performan

across all 3 tasks shows that the semantics improve the precision of the findings.

TABLE 2. Results on malware classification on 3 classes against 3 popular architectures ResNet, DenseNet

MobileNetV2—on macro-F1, macro-precision, and macro

from MalNet dataset [14].

TABLE 3. Efficacy of malware detection against 3 popular architectures ResNet, DenseNet and MobileNetV2

accuracy, macro-F1, macro-precision, and macro

learned by self-supervised learning, and memory can be enhanced with further amplification. The

diffused over numerous classes and improves overall recollection when more classes are added to the tasks for

classifying malware-type and malware

IJARSCT

International Journal of Advanced Research in Science, Communication and

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 8, April 2023

 DOI: 10.48175/568

use in this work) and the percentage of masked pixels in the image—as indicated in the issue footnote

extent of the inaccuracy. The same average was used for all categories a strategy is used the final averages we provide

comparable across categories since the masked pixel percentage is fixed for each image (and they differ from other

comparable evaluations by only a scalar component). The absolute inaccuracy between the original image's masked

pixels and the synthesised image would be needed, though, if the masked percentage varied between photos.

MALWARE CLASSIFICATION

supervised model SHERLOCK to the test in three different domains to see how well it can

identify the label for each malware image. For each category, we train a different classifier to which the semantic

learning is transferred, as shown in Figure 5.

successfully categorised by SHERLOCK spanning 47 and 696 classes, respectively.

could not compare to our model's performance, which correctly classified both classes

with an accuracy of 83.7% for malware-type and 80.2% for malware-family. Additionally, SHERLOCK had the highest

precision, and macro-recall in both categories, demonstrating the benefits of using a

learning model over current supervised learning model. One of the contrasts betwee

and SHERLOCK and the learning transfer resource. Although it performs significantly worse than the trained model,

earlier work [14] used ImageNet [32] transfer learning to pretrain a model and then fine tune to the training data.

use the semantics of the various ImageNet images differ, from scratch and MalNet images.

For the binary classification problem, our model reports the best performance in precision but the worst performance in

recall, resulting in inferior overall performance in macro-F1 score. Cross-comparison of our model's performance

across all 3 tasks shows that the semantics improve the precision of the findings.

Results on malware classification on 3 classes against 3 popular architectures ResNet, DenseNet

precision, and macro-recall. Results for compared architectures are referenced

Efficacy of malware detection against 3 popular architectures ResNet, DenseNet and MobileNetV2

precision, and macro-recall.

supervised learning, and memory can be enhanced with further amplification. The

diffused over numerous classes and improves overall recollection when more classes are added to the tasks for

type and malware-family. This suggests that the pre-training task, which teaches semantic

 ISSN (Online) 2581-9429

, Communication and Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 606

as indicated in the issue footnote—determine the

categories a strategy is used the final averages we provide

comparable across categories since the masked pixel percentage is fixed for each image (and they differ from other

y between the original image's masked

pixels and the synthesised image would be needed, though, if the masked percentage varied between photos.

omains to see how well it can

identify the label for each malware image. For each category, we train a different classifier to which the semantic

successfully categorised by SHERLOCK spanning 47 and 696 classes, respectively.

compare to our model's performance, which correctly classified both classes

family. Additionally, SHERLOCK had the highest

recall in both categories, demonstrating the benefits of using a self-

. One of the contrasts between the compared models

and SHERLOCK and the learning transfer resource. Although it performs significantly worse than the trained model,

earlier work [14] used ImageNet [32] transfer learning to pretrain a model and then fine tune to the training data.

use the semantics of the various ImageNet images differ, from scratch and MalNet images.

For the binary classification problem, our model reports the best performance in precision but the worst performance in

comparison of our model's performance

Results on malware classification on 3 classes against 3 popular architectures ResNet, DenseNet and

recall. Results for compared architectures are referenced

Efficacy of malware detection against 3 popular architectures ResNet, DenseNet and MobileNetV2—on its

supervised learning, and memory can be enhanced with further amplification. The imbalance effect is

diffused over numerous classes and improves overall recollection when more classes are added to the tasks for

training task, which teaches semantic

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT

www.ijarsct.co.in

Impact Factor: 7.301

information for the subsequent categorization test, had a significant impact. Our model learns the necessary semantic

features necessary for the synthesis because the pre

the semantic learning is biased towards images of malware as a result of the class imbalance issue in our dataset,

leading to a higher rate of misclassifications as malware.

4.4 MALWARE DETECTION

We assess SHERLOCK's overall performance to correctly identify a malicious application

categorization label it produces, as shown in Figure 6. A single 4 GPU node with 24 cores (Intel Xeon CPU E5

@2.20GHz) and 4 P100 GPU with 12GB of GPU RAM each on Spartan takes an average of 0.479 seconds to generate

an image from the corresponding binary, while Sherlock takes an average of 0.003 seconds to infer a label [31]. In

Table 3, where the findings for state-of

with the most advanced deep learning models is shown. A pre

characteristics to discriminate an image between the benign class and malware class, as evidenced by the fact that

inference utilising malware-family classifier h

We present the results of our inference models in Figure 9 for a more thorough study. A model pre

supervised learning can provide state-of

crucial. The final model is trained on a coarse

improved more by using the same pre

recognising the malware type/malware-

classes in the final model increases, recall improves. Additionally, with contrasting variances in their precis

recall values, malware-type-based inference and malware

F1-scores. Malware-type based inference has a higher F1

which means it will struggle with varying thresholds. However, malware

AUC score as well as for the macro F1-

FIGURE 8. Confusion Matrix for malware type classification, which visualize the performance in correctly ident

the actual class label. The darker the shade the stronger the classifier performance and lighter

performance. Our model results depict more darker shades for the diagonal entries while lighter

IJARSCT

International Journal of Advanced Research in Science, Communication and

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 8, April 2023

 DOI: 10.48175/568

the subsequent categorization test, had a significant impact. Our model learns the necessary semantic

features necessary for the synthesis because the pre-training job is designed to optimise picture synthesis. Additionally,

towards images of malware as a result of the class imbalance issue in our dataset,

leading to a higher rate of misclassifications as malware.

We assess SHERLOCK's overall performance to correctly identify a malicious application using inference based on the

categorization label it produces, as shown in Figure 6. A single 4 GPU node with 24 cores (Intel Xeon CPU E5

@2.20GHz) and 4 P100 GPU with 12GB of GPU RAM each on Spartan takes an average of 0.479 seconds to generate

image from the corresponding binary, while Sherlock takes an average of 0.003 seconds to infer a label [31]. In

of-the-art are taken from previous work [14], a comparison of our inference result

deep learning models is shown. A pre-trained model with finer granularity can learn distinct

characteristics to discriminate an image between the benign class and malware class, as evidenced by the fact that

family classifier has the overall greatest performance with a macro F1

We present the results of our inference models in Figure 9 for a more thorough study. A model pre

of-the-art performance for applications like malware detection where accuracy is

crucial. The final model is trained on a coarse-grained task like two-class labelling. The recall and total F1

improved more by using the same pre-trained model with the final model trained on a finer

-family (N classes). We note that while the precision decreases as the number of

classes in the final model increases, recall improves. Additionally, with contrasting variances in their precis

based inference and malware-family-based inference are both able to obtain similar macro

type based inference has a higher F1-score, but it also has a lower Area Under Curve (AUC),

struggle with varying thresholds. However, malware-family based inference model has the highest

-score.

Confusion Matrix for malware type classification, which visualize the performance in correctly ident

the actual class label. The darker the shade the stronger the classifier performance and lighter

performance. Our model results depict more darker shades for the diagonal entries while lighter

 ISSN (Online) 2581-9429

, Communication and Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 607

the subsequent categorization test, had a significant impact. Our model learns the necessary semantic

training job is designed to optimise picture synthesis. Additionally,

towards images of malware as a result of the class imbalance issue in our dataset,

using inference based on the

categorization label it produces, as shown in Figure 6. A single 4 GPU node with 24 cores (Intel Xeon CPU E5-2650 v4

@2.20GHz) and 4 P100 GPU with 12GB of GPU RAM each on Spartan takes an average of 0.479 seconds to generate

image from the corresponding binary, while Sherlock takes an average of 0.003 seconds to infer a label [31]. In

art are taken from previous work [14], a comparison of our inference result

trained model with finer granularity can learn distinct

characteristics to discriminate an image between the benign class and malware class, as evidenced by the fact that

as the overall greatest performance with a macro F1-score of 0.878.

We present the results of our inference models in Figure 9 for a more thorough study. A model pre-trained with self-

tions like malware detection where accuracy is

class labelling. The recall and total F1-score will be

finer-grained task, such as

family (N classes). We note that while the precision decreases as the number of

classes in the final model increases, recall improves. Additionally, with contrasting variances in their precision and

based inference are both able to obtain similar macro

score, but it also has a lower Area Under Curve (AUC),

family based inference model has the highest

Confusion Matrix for malware type classification, which visualize the performance in correctly identifying

the actual class label. The darker the shade the stronger the classifier performance and lighter-shade indicates poor

performance. Our model results depict more darker shades for the diagonal entries while lighter-shade for non-diagonal

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT

www.ijarsct.co.in

Impact Factor: 7.301

entries indicating good performance.

FIGURE 9. In-depth analysis of performance metrics SHERLOCK with 3 binary classification models trained at

5.1 MALWARE DETECTION AND CLASSIFICATION

Due to the growing complexity of malware and the widespread use of computing systems, the identification and

categorization of malware has become a critical issue. Figure 11 illustrates how Abusitta et al.'s [33] classification of

malware detection and classification techniques is dependent on the features and methods employed.

While dynamic feature extraction methods use a sandbox environment to execute the programme and gather the

memory image or the behaviours of the programme execution to extract featur

extract features from executable files [34]. Printable strings [35, 36, 37], byte code [38, 39, 40, 41], assembly code [42,

43, 44], API/DLL system calls [44, 45, 46], control flow charts [47, 48, 49] and feature

examples of characteristics reported in the literature. The two main types of algorithms used for detection and

classification are those based on signatures and those based on artificial intelligence. Current antivirus companies

facto use signature-based methods [51]. These signatures were made by humans, and malware detectors compare

programmes with signatures to find or categorise malware.

FIGURE 10: Receiver operating characteristic (ROC) curve for malware detection with 3

malware is [52, 53]. One could argue that this technology is reliant on manual signature generation and can only detect

known malware. AI-based malware detection and classification technique

be broadly divided into supervised [54, [55], unsupervised [56, [57], and [58] and semi

methods. Unsupervised methods identify patterns from unlabelled data, whereas supervised method

learn characteristics from a labelled dataset to detect malware.While conventional techniques like Naive Bayes,

Decision Trees, K-Nearest Neighbours, and SVM have long been in use. A comparison of these traditional techniques

IJARSCT

International Journal of Advanced Research in Science, Communication and

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 8, April 2023

 DOI: 10.48175/568

depth analysis of performance metrics SHERLOCK with 3 binary classification models trained at

different granularities.

V. RELATED WORK

MALWARE DETECTION AND CLASSIFICATION

Due to the growing complexity of malware and the widespread use of computing systems, the identification and

categorization of malware has become a critical issue. Figure 11 illustrates how Abusitta et al.'s [33] classification of

ssification techniques is dependent on the features and methods employed.

While dynamic feature extraction methods use a sandbox environment to execute the programme and gather the

memory image or the behaviours of the programme execution to extract features, static feature extraction methods

extract features from executable files [34]. Printable strings [35, 36, 37], byte code [38, 39, 40, 41], assembly code [42,

43, 44], API/DLL system calls [44, 45, 46], control flow charts [47, 48, 49] and feature-level

examples of characteristics reported in the literature. The two main types of algorithms used for detection and

classification are those based on signatures and those based on artificial intelligence. Current antivirus companies

based methods [51]. These signatures were made by humans, and malware detectors compare

programmes with signatures to find or categorise malware.

Receiver operating characteristic (ROC) curve for malware detection with 3 binary classification models

trained at different granularities.

malware is [52, 53]. One could argue that this technology is reliant on manual signature generation and can only detect

based malware detection and classification techniques are increasingly being used, and they may

be broadly divided into supervised [54, [55], unsupervised [56, [57], and [58] and semi-supervised [59, 60, and [61]

methods. Unsupervised methods identify patterns from unlabelled data, whereas supervised method

learn characteristics from a labelled dataset to detect malware.While conventional techniques like Naive Bayes,

Nearest Neighbours, and SVM have long been in use. A comparison of these traditional techniques

 ISSN (Online) 2581-9429

, Communication and Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 608

depth analysis of performance metrics SHERLOCK with 3 binary classification models trained at

Due to the growing complexity of malware and the widespread use of computing systems, the identification and

categorization of malware has become a critical issue. Figure 11 illustrates how Abusitta et al.'s [33] classification of

ssification techniques is dependent on the features and methods employed.

While dynamic feature extraction methods use a sandbox environment to execute the programme and gather the

es, static feature extraction methods

extract features from executable files [34]. Printable strings [35, 36, 37], byte code [38, 39, 40, 41], assembly code [42,

level functions [50] are several

examples of characteristics reported in the literature. The two main types of algorithms used for detection and

classification are those based on signatures and those based on artificial intelligence. Current antivirus companies de

based methods [51]. These signatures were made by humans, and malware detectors compare

binary classification models

malware is [52, 53]. One could argue that this technology is reliant on manual signature generation and can only detect

s are increasingly being used, and they may

supervised [59, 60, and [61]

methods. Unsupervised methods identify patterns from unlabelled data, whereas supervised methods use a model to

learn characteristics from a labelled dataset to detect malware.While conventional techniques like Naive Bayes,

Nearest Neighbours, and SVM have long been in use. A comparison of these traditional techniques

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 8, April 2023

Copyright to IJARSCT DOI: 10.48175/568 609

www.ijarsct.co.in

Impact Factor: 7.301

revealed that SVM was effective at detecting malware [62]. Liu et al. examine at the existing ML approaches utilised

for malware detection in their survey on android-specific malware detection [63]. Recently, approaches based on ReLU,

LSTM, and CNN have drawn greater interest. Yadav et al. [64] studied a deep learning-based detection approach that

utilises picture data. These machine learning-based malware detection techniques are increasingly being studied

because of their increased performance over conventional methods and their capacity to identify previously

undiscovered malware [65].

Our strategy can be categorised as a self-supervised learning-based technique that makes advantage of the application's

static properties. This is the first self supervised based learning approach that has been investigated using the largest

openly-available dataset for Android malware, in contrast to previous work.

5.2 IMAGE CLASSIFICATION

The term "synthetic imagery" refers to imagery that is produced to depict code or programme binaries in general. Such

imagery is different from natural imagery, which includes photographs of actual real-world scenes taken with a camera

and is the common sort of data used in computer vision datasets like ImageNet [32]. Compared to natural photography,

the performance of self-supervised algorithms on complicated synthetic images is still being studied. The learning of

representations from sketches has been investigated in some past research in this field [24],

[25], aerial photographs [27], photographs of artificial scenes [66], and images from Google maps [26]. The

performance of self-supervised algorithms on synthetic imagery, which has various visual properties from natural

imagery, can be better understood by analysis in such domains.

VI. PERSPECTIVES

The capacity to initialise a single generic representation in a task-independent way is one of the fundamental benefits of

adopting self-supervision in this imaging domain (malware imagery). Then, this representation can be tailored to carry

out certain analysis (including malware detection, malware type categorization, malware family categorization, and

perhaps other functions as well). In essence, the representation may be readily customised for any unique set of labels

connected to the imagery. For instance, future research could look at labels connected to malware authors and try to

find distinctive ''signatures'' related to authors from the imagery.

Interestingly, the classification of malware images into benign and harmful has performed better when coarser labels

are used. Lookups can be used to transform malware family and type predictions into predictions for malware detection.

When all models were trained with the same number of images and the same analytical parameters, we discovered that

the models for family and type prediction performed better than the malware detection prediction once they were

converted into the corresponding malware detection category (''malicious'' or ''benign''). We can infer that the coarser

labels have resulted in a better characterisation of the images for the malware detection task since the sole distinction

between the studies was the granularity of the labels (696 for family, 47 for type, and 2 for malware detection). While

both models, when trained on more specific labels, significantly outperform the malware detection model in terms of F1

score, their performance is comparable to one another. This implies that the improvement brought about by more

precise labelling has diminishing benefits, which may be an intriguing area for future research.

The cause of this improvement can be inferred with more thought. The model is compelled to develop numerous

decision boundaries to distinguish cases from various categories from one another on a given dataset with fine-grained

labels. As each category may be next to every other in the feature space, the number of probable needed borders will

increase quadratically as the number of categories (n*(n-1)/2) increases. Because the total number of photos is fixed

across all analyses, this results in a more fine-grained clustering of images with a greater number of clusters having

fewer images in the feature space. Additionally, this offers more justification for the little gain (in terms of malware

detection outcomes) brought about by going from 47 to 696 categories. In contrast to type prediction, which has 1081

potential borders (47*46/2), and family prediction, which has 676*675/2 = 228150, the malware detection task just has

one decision boundary (benign vs malicious). According to the observed results, the extra granularity of the family

labels does not further improve outcomes since the amount of detail required for the binary classification required in

malware detection is captured by type labels with adequate granularity. The effect of label granularity is also visible in

the ROC curves for malware detection, with the more finely labelled family prediction model outperforming the other

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT

www.ijarsct.co.in

Impact Factor: 7.301

more coarsely labelled models in terms of performance. Future research could investigate this aspect further by

examining the additional effects of using a baseline task that is more

are unable to investigate this further at this time since the type and family designations do not map one to one.

Convolutional neural networks have previously been used to examine the effects of label granularity on classification

[67]. The results of our research further generalise these conclusions to the architecture of the Vision Transformer.

FIGURE 11. Categorization of malware detection and

In this research, we introduce SHERLOCK, a computer vision model based on transformers that makes use of self

supervised learning to identify Android malware. SHERLOCK is a system based on self

malware classification. A massive data collection of 1.2 million Android apps, including 47 different malware kinds

and 696 malware families, is used to analyse SHERLOCK. With a macro

malware family, SHERLOCK was also capable of classifying malware correctly. In particular, the Vision Transformer

architectures are used in this work to show the effectiveness of self

malware categorization. Through this work, we im

which we believe can be further improved by integrating additional features derived from dynamic analysis. We have

open-sourced our model to the community through GitHub so that the resea

duplicate and recreate the findings in our studies and to continue the work further:

https://github.com/sachith500/Sherlock.

[1]. A. M. Al-Saffar, H. Tao, and M. A. Talab, ‘‘Review of deep convolution neural net

classification,’’ in Proc. Int. Conf. Radar, Antenna, Microw., Electron., Telecommun. (ICRAMET), Oct.

2017, pp. 26–31.

IJARSCT

International Journal of Advanced Research in Science, Communication and

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 8, April 2023

 DOI: 10.48175/568

more coarsely labelled models in terms of performance. Future research could investigate this aspect further by

additional effects of using a baseline task that is more complicated (with more than two categories). We

are unable to investigate this further at this time since the type and family designations do not map one to one.

reviously been used to examine the effects of label granularity on classification

[67]. The results of our research further generalise these conclusions to the architecture of the Vision Transformer.

Categorization of malware detection and classification [33].

VII. RESULT

VIII. CONCLUSION

In this research, we introduce SHERLOCK, a computer vision model based on transformers that makes use of self

supervised learning to identify Android malware. SHERLOCK is a system based on self

malware classification. A massive data collection of 1.2 million Android apps, including 47 different malware kinds

and 696 malware families, is used to analyse SHERLOCK. With a macro-F1 score of.497 for malware kind and.491 for

as also capable of classifying malware correctly. In particular, the Vision Transformer

architectures are used in this work to show the effectiveness of self-supervised computer vision models in the usage of

malware categorization. Through this work, we improve malware detection and classification based on static analysis,

which we believe can be further improved by integrating additional features derived from dynamic analysis. We have

sourced our model to the community through GitHub so that the research community can more effectively

duplicate and recreate the findings in our studies and to continue the work further:

https://github.com/sachith500/Sherlock.

REFERENCES

Saffar, H. Tao, and M. A. Talab, ‘‘Review of deep convolution neural net

classification,’’ in Proc. Int. Conf. Radar, Antenna, Microw., Electron., Telecommun. (ICRAMET), Oct.

 ISSN (Online) 2581-9429

, Communication and Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 610

more coarsely labelled models in terms of performance. Future research could investigate this aspect further by

complicated (with more than two categories). We

are unable to investigate this further at this time since the type and family designations do not map one to one.

reviously been used to examine the effects of label granularity on classification

[67]. The results of our research further generalise these conclusions to the architecture of the Vision Transformer.

classification [33].

In this research, we introduce SHERLOCK, a computer vision model based on transformers that makes use of self-

supervised learning to identify Android malware. SHERLOCK is a system based on self-supervised learning for

malware classification. A massive data collection of 1.2 million Android apps, including 47 different malware kinds

F1 score of.497 for malware kind and.491 for

as also capable of classifying malware correctly. In particular, the Vision Transformer

supervised computer vision models in the usage of

prove malware detection and classification based on static analysis,

which we believe can be further improved by integrating additional features derived from dynamic analysis. We have

rch community can more effectively

duplicate and recreate the findings in our studies and to continue the work further:

Saffar, H. Tao, and M. A. Talab, ‘‘Review of deep convolution neural network in image

classification,’’ in Proc. Int. Conf. Radar, Antenna, Microw., Electron., Telecommun. (ICRAMET), Oct.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 8, April 2023

Copyright to IJARSCT DOI: 10.48175/568 611

www.ijarsct.co.in

Impact Factor: 7.301

[2]. Subramanya, V. Pillai, and H. Pirsiavash, ‘‘Fooling network interpretation in image classification,’’ in Proc.

IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 2020–2029.

[3]. Y. Dong, Q.-A. Fu, X. Yang, T. Pang, H. Su, Z. Xiao, and J. Zhu, ‘‘Benchmarking adversarial robustness on

image classification,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp.

321–331.

[4]. S. Qiu, Q. Liu, S. Zhou, and C. Wu, ‘‘Review of artificial intelligence adversarial attack and defense

technologies,’’ Appl. Sci., vol. 9, no. 5, p. 909, 2019.

[5]. Z. Zhu and T. Dumitraş, ‘‘FeatureSmith: Automatically engineering features for malware detection by

mining the security literature,’’ in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2016, pp.

767–778.

[6]. S.-J. Lee, H.-Y. Shim, Y.-R. Lee, T.-R. Park, S.-H. Park, and I.-G. Lee, ‘‘Study on systematic ransomware

detection techniques,’’ in Proc. 23rd Int. Conf. Adv. Commun. Technol. (ICACT), Feb. 2021, pp. 297–301.

[7]. M. A. Omer, S. R. M. Zeebaree, M. A. M. Sadeeq, B. W. Salim, S. X. Mohsin, Z. N. Rashid, and L. M. Haji,

‘‘Efficiency of malware detection in Android system: A survey,’’ Asian J. Res. Comput. Sci., vol. 7, no. 4,

pp. 59–69, Apr. 2021.

[8]. X. Deng and J. Mirkovic, ‘‘Polymorphic malware behavior through network trace analysis,’’ in Proc. 14th

Int. Conf. Commun. Syst. Netw. (COMSNETS), Jan. 2022, pp. 138–146.

[9]. P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti, and M. Rajarajan, ‘‘Android security:

A survey of issues, malware penetration, and defenses,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 2, pp.

998–1022, 2nd Quart., 2015.

[10]. E.Rezende,G.Ruppert,T.Carvalho,F.Ramos,andP.deGeus,‘‘Malicious software classification using transfer

learning of ResNet-50 deep neural network,’’ in Proc. 16th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA),

Dec. 2017, pp. 1011–1014.

[11]. K. Allix, T. F. Bissyandé, J. Klein, and Y. L. Traon, ‘‘Androzoo: Collecting millions of Android apps for the

research community,’’ in Proc. IEEE/ACM 13th Work. Conf. Mining Softw. Repositories (MSR), May

2016, pp. 468–471.

[12]. G. Conti, E. Dean, M. Sinda, and B. Sangster, ‘‘Visual reverse engineering of binary and data files,’’ in Proc.

Int. Workshop Vis. Comput. Secur. Berlin, Germany: Springer-Verlag, 2008, pp. 1–17.

[13]. L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, ‘‘Malware images: Visualization and automatic

classification,’’ in Proc. 8th Int. Symp. Vis. Cyber Secur. (VizSec). New York, NY, USA: Association for

Computing Machinery, 2011, pp. 1–7, doi: 10.1145/2016904.2016908.

[14]. S. Freitas, R. Duggal, and D. H. Chau, ‘‘MalNet: A large-scale cybersecurity image database of malicious

software,’’ CoRR, vol. abs/2102.01072, pp. 1–7, Jan. 2021.

[15]. J. Gennissen, L. Cavallaro, V. Moonsamy, and L. Batina, ‘‘Gamut: Sifting through images to detect Android

malware,’’ Bachelor thesis, Inst. Comput. Inf. Sci., Roy. Holloway Univ., London, U.K., 2017.

[16]. A. Mohaisen, A. G. West, A. Mankin, and O. Alrawi, ‘‘Chatter: Classifying malware families using system

event ordering,’’ in Proc. IEEE Conf. Commun. Netw. Secur., Oct. 2014, pp. 283–291.

[17]. D. Votipka, S. Rabin, K. Micinski, J. S. Foster, and M. L. Mazurek, ‘‘An observational investigation of

reverse engineers’ processes,’’ in Proc. 29th USENIX Secur. Symp. (USENIX Security), 2020, pp. 1875–

1892.

[18]. A. Kantchelian, M. C. Tschantz, S. Afroz, B. Miller, V. Shankar, R. Bachwani, A. D. Joseph, and J. D.

Tygar, ‘‘Better malware ground truth: Techniques for weighting anti-virus vendor labels,’’ in Proc. 8th ACM

Workshop Artif. Intell. Secur., Oct. 2015, pp. 45–56.

[19]. M. Noroozi and P. Favaro, ‘‘Unsupervised learning of visual representations by solving jigsaw puzzles,’’ in

Computer Vision—ECCV 2016, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds. Amsterdam, The

Netherlands: Springer, 2016, pp. 69–84.

[20]. Doersch, A. Gupta, and A. A. Efros, ‘‘Unsupervised visual representation learning by context prediction,’’ in

Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Santiago, Chile, Dec. 2015, pp. 1422–1430.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 8, April 2023

Copyright to IJARSCT DOI: 10.48175/568 612

www.ijarsct.co.in

Impact Factor: 7.301

[21]. R. Zhang, P. Isola, and A. A. Efros, ‘‘Colorful image colorization,’’ in Computer Vision—ECCV 2016, B.

Leibe, J. Matas, N. Sebe, and M. Welling, Eds. Cham, Switzerland: Springer, 2016, pp. 649–666.

[22]. X. Zhai, A. Oliver, A. Kolesnikov, and L. Beyer, ‘‘S4L: Self-supervised semi-supervised learning,’’ in Proc.

IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 1476–1485.

[23]. Hendrycks, M. Mazeika, S. Kadavath, and D. Song, ‘‘Using selfsupervised learning can improve model

robustness and uncertainty,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019, pp. 1–12.

[24]. Q. Xie, Z. Dai, E. Hovy, M.-T. Luong, and Q. V. Le, ‘‘Unsupervised data augmentation for consistency

training,’’ 2019, arXiv:1904.12848.

[25]. A. K. Bhunia, P. N. Chowdhury, Y. Yang, T. M. Hospedales, T. Xiang, and Y.-Z. Song, ‘‘Vectorization and

rasterization: Self-supervised learning for sketch and handwriting,’’ in Proc. IEEE/CVF Conf. Comput. Vis.

Pattern Recognit. (CVPR), Jun. 2021, pp. 5672–5681.

[26]. S.Seneviratne,K.A.Nice,J.S.Wijnands,M.Stevenson,andJ. Thompson, ‘‘Self-supervision. Remote sensing and

abstraction: Representation learning across 3 million locations,’’ in Proc. Digit. Image Comput., Techn.

Appl. (DICTA), Nov. 2021, pp. 01–08.

[27]. S. Seneviratne, ‘‘Contrastive representation learning for natural world imagery: Habitat prediction for 30,000

species,’’ in Proc. CLEF Work. Notes, 2021, pp. 1639–1648.

[28]. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M.

Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, ‘‘An image is worth 16 × 16 words:

Transformers for image recognition at scale,’’ 2020, arXiv:2010.11929.

[29]. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘BERT: Pre-training of deep bidirectional transformers

for language understanding,’’ in Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang.

Technol., vol. 1. Minneapolis, MN, USA: Association for Computational Linguistics, Jun. 2019, Jun. 2019,

pp. 4171–4186. [Online]. Available: https://aclanthology.org/N19-1423

[30]. K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, ‘‘Masked autoencoders are scalable vision

learners,’’ 2021, arXiv:2111.06377.

[31]. G. Lev Lafayette, L. Vu, and B. Meade, ‘‘Spartan performance and flexibility: An HPC-cloud chimera,’’ in

Proc. OpenStack Summit, vol. 10, Barcelona, Spain, 2016, p. 49.

[32]. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet: A large-scale hierarchical image

database,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2009, pp. 248–255.

[33]. A. Abusitta, M. Q. Li, and B. C. M. Fung, ‘‘Malware classification and composition analysis: A survey of

recent developments,’’ J. Inf. Secur. Appl., vol. 59, Jun. 2021, Art. no. 102828.

[34]. Damodaran, F. D. Troia, C. A. Visaggio, T. H. Austin, and M. Stamp, ‘‘A comparison of static, dynamic,

and hybrid analysis for malware detection,’’ J. Comput. Virol. Hacking Techn., vol. 13, no. 1, pp. 1–12,

2017.

[35]. W. Huang and J. W. Stokes, ‘‘MtNet: A multi-task neural network for dynamic malware classification,’’ in

Proc. Int. Conf. Detection Intrusions Malware, Vulnerability Assessment. Berlin, Germany: Springer-Verlag,

2016, pp. 399–418.

[36]. G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu, ‘‘Large-scale malware classification using random projections

and neural networks,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., May 2013, pp. 3422–3426.

[37]. Y.-T. Lee, T. Ban, T.-L. Wan, S.-M. Cheng, R. Isawa, T. Takahashi, and D. Inoue, ‘‘Cross platform IoT-

malware family classification based on printable strings,’’ in Proc. IEEE 19th Int. Conf. Trust, Secur.

Privacy Comput. Commun. (TrustCom), Dec. 2020, pp. 775–784.

[38]. Anderson, C. Storlie, and T. Lane, ‘‘Improving malware classification: Bridging the static/dynamic gap,’’ in

Proc. 5th ACM Workshop Secur. Artif. Intell., 2012, pp. 3–14.

[39]. J. Saxe and K. Berlin, ‘‘Deep neural network based malware detection using two dimensional binary

program features,’’ in Proc. 10th Int. Conf. Malicious Unwanted Softw. (MALWARE), Oct. 2015, pp. 11–

20.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 8, April 2023

Copyright to IJARSCT DOI: 10.48175/568 613

www.ijarsct.co.in

Impact Factor: 7.301

[40]. M. Amin, T. A. Tanveer, M. Tehseen, M. Khan, F. A. Khan, and S. Anwar, ‘‘Static malware detection and

attribution in Android byte-code through an end-to-end deep system,’’ Future Gener. Comput. Syst., vol.

102, pp. 112–126, Jan. 2020.

[41]. N. Daoudi, J. Samhi, A. K. Kabore, K. Allix, T. F. Bissyandé, and J. Klein, ‘‘DEXRAY: A simple, yet

effective deep learning approach to Android malware detection based on image representation of bytecode,’’

in Proc. Int. Workshop Deployable Mach. Learn. Secur. Defense. Cham, Switzerland: Springer, 2021, pp.

81–106.

[42]. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane, ‘‘Graph-based malware detection using dynamic

analysis,’’ J. Comput. Virol., vol. 7, no. 4, pp. 247–258, 2011.

[43]. J. Dai, R. K. Guha, and J. Lee, ‘‘Efficient virus detection using dynamic instruction sequences,’’ J. Comput.,

vol. 4, no. 5, pp. 405–414, 2009.

[44]. M. K. Shankarapani, S. Ramamoorthy, R. S. Movva, and S. Mukkamala, ‘‘Malware detection using

assembly and API call sequences,’’ J. Comput. Virol., vol. 7, no. 2, pp. 107–119, 2011.

[45]. A. Sami, B. Yadegari, N. Peiravian, S. Hashemi, and A. Hamze, ‘‘Malware detection based on mining API

calls,’’ in Proc. ACM Symp. Appl. Comput., 2010, pp. 1020–1025.

[46]. Z. Salehi, A. Sami, and M. Ghiasi, ‘‘Using feature generation from API calls for malware detection,’’

Comput. Fraud Secur., vol. 2014, no. 9, pp. 9–18, 2014.

[47]. Z. Ma, H. Ge, Y. Liu, M. Zhao, and J. Ma, ‘‘A combination method for Android malware detection based on

control flow graphs and machine learning algorithms,’’ IEEE Access, vol. 7, pp. 21235–21245, 2019.

[48]. J. Yan, G. Yan, and D. Jin, ‘‘Classifying malware represented as control flow graphs using deep graph

convolutional neural network,’’ in Proc. 49th Annu. IEEE/IFIP Int. Conf. Dependable Syst. Netw. (DSN),

Jun. 2019, pp. 52–63.

[49]. Bruschi, L. Martignoni, and M. Monga, ‘‘Detecting self-mutating malware using control-flow graph

matching,’’ in Proc. Int. Conf. Detection Intrusions Malware, Vulnerability Assessment. Berlin, Germany:

SpringerVerlag, 2006, pp. 129–143.

[50]. M. Cai, Y. Jiang, C. Gao, H. Li, and W. Yuan, ‘‘Learning features from enhanced function call graphs for

Android malware detection,’’ Neurocomputing, vol. 423, pp. 301–307, Jan. 2021.

[51]. M. Al-Asli and T. A. Ghaleb, ‘‘Review of signature-based techniques in antivirus products,’’ in Proc. Int.

Conf. Comput. Inf. Sci. (ICCIS), Apr. 2019, pp. 1–6.

[52]. M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo, ‘‘Data mining methods for detection of new malicious

executables,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2001, pp. 38–49.

[53]. M. Christodorescu and S. Jha, ‘‘Static analysis of executables to detect malicious patterns,’’ in Proc. 12th

USENIX Secur. Symp. (USENIX Security), 2003, pp. 169–186.

[54]. J. Singh and J. Singh, ‘‘Assessment of supervised machine learning algorithms using dynamic API calls for

malware detection,’’ Int. J. Comput. Appl., vol. 44, no. 3, pp. 270–277, Mar. 2022.

[55]. Y. Ki, E. Kim, and H. K. Kim, ‘‘A novel approach to detect malware based on API call sequence analysis,’’

Int. J. Distrib. Sensor Netw., vol. 11, no. 6, Jun. 2015, Art. no. 659101.

[56]. A. Tang, S. Sethumadhavan, and S. J. Stolfo, ‘‘Unsupervised anomalybased malware detection using

hardware features,’’ in Proc. Int. Workshop Recent Adv. Intrusion Detection. Cham, Switzerland: Springer,

2014, pp. 109–129.

[57]. Z. Liu, R. Wang, N. Japkowicz, D. Tang, W. Zhang, and J. Zhao, ‘‘Research on unsupervised feature

learning for Android malware detection based on restricted Boltzmann machines,’’ Future Gener. Comput.

Syst., vol. 120, pp. 91–108, Jul. 2021.

[58]. M. Fan, X. Luo, J. Liu, M. Wang, C. Nong, Q. Zheng, and T. Liu, ‘‘Graph embedding based familial

analysis of Android malware using unsupervised learning,’’ in Proc. IEEE/ACM 41st Int. Conf. Softw. Eng.

(ICSE), May 2019, pp. 771–782.

[59]. Santos, J. Nieves, and P. G. Bringas, ‘‘Semi-supervised learning for unknown malware detection,’’ in Proc.

Int. Symp. Distrib. Comput. Artif. Intell. Springer, 2011, pp. 415–422.

 International Journal of Advanced

 International Open-Access, Double

Copyright to IJARSCT

www.ijarsct.co.in

Impact Factor: 7.301

[60]. A. Mahindru and A. Sangal, ‘‘Feature

Automated Software Engineering: A Deep Learning

[61]. X.Gao,C.Hu,C.Shan,B.Liu,Z.Niu,andH.Xie,‘‘Malwareclassificat

transfer learning,’’ J. Inf. Secur. Appl., vol. 55, Dec. 2020, Art. no. 102661.

[62]. A. Souri and R. Hosseini, ‘‘A state

techniques,’’ Hum.-Centric Comput.

[63]. K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, ‘‘A review of Android malware detection approaches

based on machine learning,’’ IEEE Access, vol. 8, pp. 124579

[64]. P. Yadav, N. Menon, V. Ravi, S

image-based Android malware detection and variant classification,’’ Comput. Intell., May 2022.

[65]. M. T. Ahvanooey, Q. Li, M. Rabbani, and A. R. Rajput, ‘‘A survey on smartphones security

vulnerabilities, malware, and attacks,’’ 2020, arXiv:2001.09406.

[66]. Z. Ren and Y. J. Lee, ‘‘Cross

in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 7

[67]. Z. Chen, R. Ding, T.-W. Chin, and D. Marculescu, ‘‘Understanding the impact of label granularity on CNN

based image classification,’’ in Proc. IEEE Int. Conf. Data Mining Workshops (ICDMW), Nov. 2018, pp.

895–904.

SACHITH SENEVIRATNE received

University of Moratuwa, Sri Lanka, and the Ph.D. degree in machine learning from Monash University,

Australia. He is currently working as a Research Fellow with the University of Melbourne. His

interests include deep learning, with a focus on contrastive representation learning and applications. He is

broadly interested in self

computer vision, NLP, and reinforcement

RIDWAN SHARIFFDEEN,

Engineering Department, University of Moratuwa, Sri Lanka. He is currently pursuing the Ph.D. degree

with the Department of Computer Science, School of Com

research interests include automated program repair, software security, and software engineering

automation. From 2016 to 2018, he worked in the industry as a Senior Software Engineer for System

Security and Automation Technology. His research has been recognized by the National Research

Foundation Singapore with an invitation to the 10th Global Young Scientist Summit (GYSS’22). He was

also awarded the Research Achievement Award by the School of Computing, Natio

Singapore, in 2021, and also the CINTEC Award for the Best Computer Science and Engineering

gradians for Research by the University of Moratuwa, in 2016.

SANKA RASNAYAKA

the Engineering Faculty, University of Moratuwa, Sri Lanka, in 2016, and the Ph.D. degree in computer

science from the School of Computing, National University of Singapore, for his work on continuous

authentication for mobile devices, in 2021. H

National University ofSingapore. His research interests include applications of AI and computer vision.

He mainly works in the fields of biometrics and authentication.

NURAN KASTHURIARACHCHI rece

Engineering Department, University of Moratuwa, Sri Lanka, in 2016. He is an Artificial Intelligence

Engineer at the Singapore Press Holdings. He has multiple years of experience in the industry wo

the fields of artificial intelligence and machine learning.

IJARSCT

International Journal of Advanced Research in Science, Communication and

Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

 Volume 3, Issue 8, April 2023

 DOI: 10.48175/568

Mahindru and A. Sangal, ‘‘Feature-based semi-supervised learning to detect malware from Android,’’ in

Automated Software Engineering: A Deep Learning-Based Approach. Springer, 2020, pp. 93

X.Gao,C.Hu,C.Shan,B.Liu,Z.Niu,andH.Xie,‘‘Malwareclassification for the cloud via semi

transfer learning,’’ J. Inf. Secur. Appl., vol. 55, Dec. 2020, Art. no. 102661.

Souri and R. Hosseini, ‘‘A state-of-the-art survey of malware detection approaches using data mining

Centric Comput. Inf. Sci., vol. 8, no. 1, pp. 1–22, Dec. 2018.

K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, ‘‘A review of Android malware detection approaches

based on machine learning,’’ IEEE Access, vol. 8, pp. 124579–124607, 2020.

P. Yadav, N. Menon, V. Ravi, S. Vishvanathan, and T. D. Pham, ‘‘A twostage deep learning framework for

based Android malware detection and variant classification,’’ Comput. Intell., May 2022.

M. T. Ahvanooey, Q. Li, M. Rabbani, and A. R. Rajput, ‘‘A survey on smartphones security

vulnerabilities, malware, and attacks,’’ 2020, arXiv:2001.09406.

Z. Ren and Y. J. Lee, ‘‘Cross-domain self-supervised multi-task feature learning using synthetic imagery,’’

in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 762–771.

W. Chin, and D. Marculescu, ‘‘Understanding the impact of label granularity on CNN

based image classification,’’ in Proc. IEEE Int. Conf. Data Mining Workshops (ICDMW), Nov. 2018, pp.

BIOGRAPHY

SACHITH SENEVIRATNE received the B.Sc. degree in computer science and engineering from the

University of Moratuwa, Sri Lanka, and the Ph.D. degree in machine learning from Monash University,

Australia. He is currently working as a Research Fellow with the University of Melbourne. His

interests include deep learning, with a focus on contrastive representation learning and applications. He is

broadly interested in self-supervised deep-learning approaches across various disciplines such as

computer vision, NLP, and reinforcement learning.

RIDWAN SHARIFFDEEN, He received the B.Sc. degree (Hons.) from the Computer Science and

Engineering Department, University of Moratuwa, Sri Lanka. He is currently pursuing the Ph.D. degree

with the Department of Computer Science, School of Computing, National University of Singapore. His

research interests include automated program repair, software security, and software engineering

automation. From 2016 to 2018, he worked in the industry as a Senior Software Engineer for System

tomation Technology. His research has been recognized by the National Research

Foundation Singapore with an invitation to the 10th Global Young Scientist Summit (GYSS’22). He was

also awarded the Research Achievement Award by the School of Computing, Natio

Singapore, in 2021, and also the CINTEC Award for the Best Computer Science and Engineering

gradians for Research by the University of Moratuwa, in 2016.

 he received the B.Sc. degree (Hons.) in computer science and enginee

the Engineering Faculty, University of Moratuwa, Sri Lanka, in 2016, and the Ph.D. degree in computer

science from the School of Computing, National University of Singapore, for his work on continuous

authentication for mobile devices, in 2021. He is currently a Lecturer with the School of Computing,

National University ofSingapore. His research interests include applications of AI and computer vision.

He mainly works in the fields of biometrics and authentication.

NURAN KASTHURIARACHCHI received the B.Sc. degree (Hons.) from the Computer Science and

Engineering Department, University of Moratuwa, Sri Lanka, in 2016. He is an Artificial Intelligence

Engineer at the Singapore Press Holdings. He has multiple years of experience in the industry wo

the fields of artificial intelligence and machine learning.

 ISSN (Online) 2581-9429

, Communication and Technology (IJARSCT)

Reviewed, Refereed, Multidisciplinary Online Journal

 614

supervised learning to detect malware from Android,’’ in

Based Approach. Springer, 2020, pp. 93–118.

ion for the cloud via semi-supervised

art survey of malware detection approaches using data mining

K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, ‘‘A review of Android malware detection approaches

. Vishvanathan, and T. D. Pham, ‘‘A twostage deep learning framework for

based Android malware detection and variant classification,’’ Comput. Intell., May 2022.

M. T. Ahvanooey, Q. Li, M. Rabbani, and A. R. Rajput, ‘‘A survey on smartphones security: Software

task feature learning using synthetic imagery,’’

771.

W. Chin, and D. Marculescu, ‘‘Understanding the impact of label granularity on CNN-

based image classification,’’ in Proc. IEEE Int. Conf. Data Mining Workshops (ICDMW), Nov. 2018, pp.

the B.Sc. degree in computer science and engineering from the

University of Moratuwa, Sri Lanka, and the Ph.D. degree in machine learning from Monash University,

Australia. He is currently working as a Research Fellow with the University of Melbourne. His research

interests include deep learning, with a focus on contrastive representation learning and applications. He is

across various disciplines such as

He received the B.Sc. degree (Hons.) from the Computer Science and

Engineering Department, University of Moratuwa, Sri Lanka. He is currently pursuing the Ph.D. degree

puting, National University of Singapore. His

research interests include automated program repair, software security, and software engineering

automation. From 2016 to 2018, he worked in the industry as a Senior Software Engineer for System

tomation Technology. His research has been recognized by the National Research

Foundation Singapore with an invitation to the 10th Global Young Scientist Summit (GYSS’22). He was

also awarded the Research Achievement Award by the School of Computing, National University of

Singapore, in 2021, and also the CINTEC Award for the Best Computer Science and Engineering

he received the B.Sc. degree (Hons.) in computer science and engineering from

the Engineering Faculty, University of Moratuwa, Sri Lanka, in 2016, and the Ph.D. degree in computer

science from the School of Computing, National University of Singapore, for his work on continuous

e is currently a Lecturer with the School of Computing,

National University ofSingapore. His research interests include applications of AI and computer vision.

B.Sc. degree (Hons.) from the Computer Science and

Engineering Department, University of Moratuwa, Sri Lanka, in 2016. He is an Artificial Intelligence

Engineer at the Singapore Press Holdings. He has multiple years of experience in the industry working in

