
IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 3, Issue 2, April 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-9102 84

www.ijarsct.co.in

Impact Factor: 7.301

Locking Down Big Data: A Comprehensive Survey

of Data Encryption Methods
I. Dwaraka Srihith1

1Alliance University, Bangalore

A. David Donald2, T. Aditya Sai Srinivas2, G. Thippanna2
2Ashoka Women’s Engineering College, Kurnool

D. Anjali3
3G. Pulla Reddy Engineering College, Kurnool

Abstract: With the increasing volume of data being generated every day, the need for data security has

become more crucial than ever. Encryption is one of the most effective techniques for protecting sensitive

data from unauthorized access or theft. This comparative survey aims to provide a comprehensive analysis

of different data encryption methods in the context of big data. The survey covers both traditional

encryption techniques and newer, more advanced methods such as homomorphic encryption and quantum

cryptography. The effectiveness, advantages, and limitations of each technique are examined, and a

comparison of their performance in terms of speed, scalability, and security is presented. The study also

explores the challenges and issues associated with implementing data encryption in big data environments.

The findings of this survey will be useful for organizations seeking to secure their big data assets and for

researchers interested in the latest developments in data encryption techniques.

Keywords: Big data, Data encryption methods

I. INTRODUCTION

The rapid growth of data in recent years has led to an increase in the volume of sensitive information being transmitted

and stored electronically. As a result, the need for data security has become more critical than ever. Encryption is a

widely used technique for securing sensitive data, which involves the transformation of plaintext data into ciphertext

using an encryption algorithm and a secret key. With the advent of big data, the complexity and volume of data have

increased significantly, creating new challenges for data security.

This comparative survey aims to provide a comprehensive analysis of different data encryption methods in the context

of big data. The survey covers both traditional encryption techniques, such as symmetric and asymmetric encryption,

and newer, more advanced methods, such as homomorphic encryption and quantum cryptography. The study explores

the effectiveness, advantages, and limitations of each technique, and provides a comparison of their performance in

terms of speed, scalability, and security.

The survey also examines the challenges and issues associated with implementing data encryption in big data

environments, including the trade-offs between security and performance, the impact of encryption on data processing,

and the complexity of managing encryption keys. The findings of this survey will be useful for organizations seeking to

secure their big data assets and for researchers interested in the latest developments in data encryption techniques.

Overall, this survey provides a comprehensive overview of data encryption methods in the context of big data, with a

focus on their effectiveness, performance, and practical considerations. The following sections will provide an in-depth

analysis of each encryption technique, including its underlying principles, advantages, and limitations.

II. RELATED WORK

In the case of data encryption techniques, there has been a significant amount of research in this area, with numerous

papers and articles published in academic journals, conference proceedings, and other forums. Some key works in this

area include:

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 3, Issue 2, April 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-9102 85

www.ijarsct.co.in

Impact Factor: 7.301

"A Survey of Cryptographic Techniques for Big Data Analytics" by Kaur and Singh, which provides a comprehensive

overview of various encryption techniques for big data analytics and highlights their strengths and weaknesses.

"A Comparative Analysis of Symmetric and Asymmetric Key Cryptography Algorithm" by Islam et al., which

compares and evaluates the performance of various symmetric and asymmetric key cryptography algorithms using

metrics such as encryption speed and memory usage.

"A Survey of Elliptic Curve Cryptography and Its Applications" by Menezes et al., which provides a detailed overview

of elliptic curve cryptography and its applications in various fields.

"The Evolution of Encryption Techniques: A Review" by Liu et al., which provides a historical overview of encryption

techniques and discusses the evolution of encryption algorithms over time.

"Twofish: A 128-Bit Block Cipher" by Schneier et al., which describes the design and implementation of the Twofish

encryption algorithm and compares its performance to other encryption techniques.

"A Survey of Encryption Techniques in Cloud Computing" by Kumar and Verma, which provides a comprehensive

review of encryption techniques used in cloud computing, their benefits and limitations, and proposes a framework for

evaluating encryption techniques in cloud computing.

"A Comparative Analysis of Stream Cipher and Block Cipher" by Choudhary et al., which compares the performance

of stream ciphers and block ciphers using metrics such as encryption speed, key size, and memory usage.

"Hardware Implementation of Encryption Algorithms: A Survey" by Dahiya and Jain, which provides an overview of

hardware implementations of encryption algorithms and their benefits compared to software implementations.

"An Overview of Homomorphic Encryption Techniques" by Gentry, which describes the concept of homomorphic

encryption and its potential applications in various fields.

"Post-Quantum Cryptography" by Bernstein et al., which discusses the potential threat to existing encryption techniques

posed by quantum computing and proposes post-quantum cryptography as a solution.

III. CRYPTOGRAPHIC TECHNIQUES

Cryptographic techniques are used to secure information by converting it into a form that is unintelligible to

unauthorized individuals. There are several cryptographic techniques available for protecting sensitive data, including:

 Symmetric Key Encryption: In this technique, a single secret key is used for both encryption and decryption.

The plaintext is encrypted using the key, and the ciphertext is decrypted using the same key. The strength of

this technique depends on the secrecy of the key, and the key needs to be shared between the sender and

receiver before communication can begin.

 Asymmetric Key Encryption: Also known as public-key encryption, this technique uses two different keys

for encryption and decryption. The sender uses the recipient's public key to encrypt the message, and the

recipient uses their private key to decrypt it. The strength of this technique is based on the difficulty of

factoring large prime numbers.

 Hashing: Hashing is a technique used to generate a fixed-length output from an arbitrary-length input. The

output is referred to as a hash or a message digest. Hashing is used to verify the integrity of data, and it is

commonly used to store passwords securely.

 Homomorphic Encryption: This technique allows computations to be performed on ciphertext without first

decrypting it. This makes it possible to perform complex computations on sensitive data while it remains

encrypted.

 Quantum Cryptography: Quantum cryptography is a technique that uses the principles of quantum

mechanics to transmit data securely. The technique is based on the properties of quantum entanglement and

cannot be compromised by an eavesdropper without being detected.

Each of these techniques has its advantages and limitations, and the choice of technique depends on the specific use

case and the level of security required. As the volume of data continues to grow, the need for more advanced

cryptographic techniques is becoming increasingly important.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 3, Issue 2, April 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-9102 86

www.ijarsct.co.in

Impact Factor: 7.301

IV. ASYMMETRIC KEY ENCRYPTION ALGORITHMS

Asymmetric key encryption, also known as public-key encryption, is a type of encryption algorithm that uses two

different keys for encryption and decryption. One key, known as the public key, is used for encrypting the plaintext,

while the other key, known as the private key, is used for decrypting the ciphertext.

The most widely used asymmetric key encryption algorithm is the RSA algorithm. It was developed in 1977 by Ron

Rivest, Adi Shamir, and Leonard Adleman and is named after their initials. The RSA algorithm is based on the

mathematical properties of prime numbers and is considered secure if the keys are large enough.

The RSA Algorithm works as follows:

Key Generation: First, two large prime numbers, p and q, are selected. The product of these two primes, n=pq, is then

calculated. The value of n is used as the modulus for the public and private keys. Next, a number, e, is selected such

that it is coprime with (p-1) * (q-1). The pair (n,e) forms the public key. Finally, the private key, d, is calculated such

that de is congruent to 1 modulo (p-1) * (q-1).

 Encryption: To encrypt a message, the plaintext is converted into a numerical value m, such that 0 < m < n.

The ciphertext is then calculated as c = m^e mod n.

 Decryption: To decrypt the ciphertext, the receiver uses their private key, d. The plaintext message can be

recovered as m = c^d mod n.

The security of the RSA algorithm is based on the difficulty of factoring large prime numbers. If an attacker can factor

the value of n, they can recover the private key and decrypt the ciphertext. Therefore, the strength of the RSA algorithm

depends on the size of the keys used. As computing power continues to increase, the key sizes required for secure

encryption also need to increase.

Elliptic Curve Cryptography (ECC) Algorithm

Elliptic Curve Cryptography (ECC) is an asymmetric key encryption algorithm that is based on the mathematics of

elliptic curves. ECC is widely used in applications that require high security and resource-constrained environments,

such as mobile devices and IoT devices.ECC uses a pair of keys, a private key and a public key, for encryption and

decryption. The private key is kept secret and is used to generate the public key, which is shared with others. The public

key is a point on an elliptic curve, calculated by multiplying a fixed point on the curve by the private key.

The security of ECC is based on the difficulty of solving the elliptic curve discrete logarithm problem, which involves

finding the private key from the public key. The elliptic curve used in ECC has a set of mathematical properties that

make it resistant to attacks, even with smaller key sizes compared to other asymmetric key encryption algorithms.One

of the advantages of ECC over other asymmetric key encryption algorithms, such as RSA, is that it requires smaller key

sizes to achieve the same level of security. For example, a 256-bit ECC key is equivalent in strength to a 3072-bit RSA

key. This makes ECC more suitable for use in resource-constrained environments, where power and memory are

limited.

ECC is used in various applications, including digital signatures, key exchange, and secure communications. It is also

used in blockchain technology, where it is used to generate and verify digital signatures for transactions.Despite its

advantages, ECC is not immune to attacks, and there have been some concerns about its security in recent years.

However, with proper key management and implementation, ECC remains a secure and efficient encryption algorithm.

The following are the general steps involved in implementing ECC encryption:

 Choose an elliptic curve: The first step in implementing ECC is to choose an appropriate elliptic curve. The

curve should have the required security level and should be standardized and widely used.

 Generate keys: A private key is generated randomly, and the corresponding public key is calculated by

multiplying a point on the curve with the private key.

 Encryption: To encrypt a message, the sender uses the recipient's public key to generate a shared secret. The

message is then encrypted using the shared secret and a symmetric key encryption algorithm, such as AES.

 Decryption: To decrypt the message, the recipient uses their private key to calculate the shared secret, which

is then used to decrypt the message.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 3, Issue 2, April 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-9102 87

www.ijarsct.co.in

Impact Factor: 7.301

 Key management: Key management is critical in ECC implementation. The private key must be kept secure

and should only be accessible to authorized users. The public key can be shared freely and is used to encrypt

messages sent to the recipient.

 Testing and validation: The implementation should be tested and validated to ensure that it is secure and

functions correctly.

The specific steps involved in implementing ECC may vary depending on the application and the environment in which

it is being used. However, the general steps outlined above provide a basic framework for implementing ECC

encryption.

V. SYMMETRIC KEY ENCRYPTION ALGORITHMS

Symmetric key encryption algorithms, also known as shared secret encryption algorithms, use the same key for both

encryption and decryption. This type of encryption is often used to protect the confidentiality and integrity of data, such

as passwords, credit card numbers, and other sensitive information.

The following are some common symmetric key encryption algorithms:

Advanced Encryption Standard (AES): AES is a widely used symmetric key encryption algorithm that was

standardized by the National Institute of Standards and Technology (NIST) in 2001. It uses a block cipher with a

variable block size of 128, 192, or 256 bits.

Triple DES (3DES): 3DES is a symmetric key encryption algorithm that uses three 56-bit keys for encryption and

decryption. It is often used in legacy systems but has been largely replaced by AES.

Blowfish: Blowfish is a symmetric key encryption algorithm that was designed to replace the aging Data Encryption

Standard (DES). It uses a variable-length key from 32 to 448 bits and operates on 64-bit blocks.

RC4: RC4 is a symmetric key encryption algorithm that is commonly used in wireless networks and secure

communications. It uses a variable-length key and operates on byte-sized blocks.

ChaCha20: ChaCha20 is a stream cipher that is often used for secure communications. It uses a 256-bit key and

operates on 64-byte blocks.

Symmetric key encryption algorithms are generally faster and more efficient than asymmetric key encryption

algorithms. However, they are vulnerable to attacks, such as brute-force attacks and side-channel attacks, which can

compromise the security of the system. It is important to use strong and secure encryption algorithms, maintain key

secrecy, and implement proper key management practices to mitigate these risks.

5.1 Advanced Encryption Standard (AES)

The following are the general steps involved in implementing the Advanced Encryption Standard (AES):

 Key generation: AES uses a symmetric key, which is generated randomly or through a key derivation

function.

 Substitution: AES uses a substitution step, called the "SubBytes" step, in which each byte of the input data is

replaced with a corresponding byte from a fixed substitution table.

 Shift rows: In the "ShiftRows" step, the rows of the input data are shifted cyclically by a certain number of

bytes.

 Mix columns: The "MixColumns" step applies a mathematical transformation to each column of the input

data.

 Add round key: In the "AddRoundKey" step, a round key is XORed with the input data. The round key is

derived from the symmetric key using a key schedule.

 Repeat: The above steps are repeated a certain number of times, depending on the key length and block size.

 Final round: In the final round, the "MixColumns" step is skipped, and the other steps are performed as usual.

 Decryption: To decrypt the data, the inverse operations are applied in reverse order, using the same symmetric

key.

The specific steps involved in implementing AES may vary depending on the implementation and the mode of

operation. However, the general steps outlined above provide a basic framework for implementing AES encryption. It

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 3, Issue 2, April 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-9102 88

www.ijarsct.co.in

Impact Factor: 7.301

is important to use secure and properly implemented encryption algorithms and to maintain key secrecy to ensure the

security of the system.

5.2 Triple DES (3DES)

The following are the general steps involved in implementing Triple DES (3DES) encryption:

 Key generation: Three 56-bit keys are generated, or a single 168-bit key is generated from a passphrase using

a key derivation function.

 Key expansion: The 56-bit keys are expanded to 64 bits to be compatible with the block cipher.

 Encryption: The message is divided into 64-bit blocks and encrypted using the first 56-bit key. The resulting

ciphertext is then decrypted using the second 56-bit key, and the resulting plaintext is encrypted again using

the third 56-bit key.

 Decryption: To decrypt the ciphertext, the process is reversed. The ciphertext is first decrypted using the third

56-bit key, and the resulting plaintext is then decrypted using the second 56-bit key. The final plaintext is

obtained by encrypting the result with the first 56-bit key.

 Testing and validation: The implementation should be tested and validated to ensure that it is secure and

functions correctly.

Triple DES provides a higher level of security than standard DES by applying the DES algorithm three times using

different keys. However, 3DES is slower than AES and other modern encryption algorithms, and its use is declining in

favor of newer, more efficient algorithms.

5.3 Blowfish

The following are the general steps involved in implementing the Blowfish symmetric key encryption algorithm:

 Key generation: The first step in implementing Blowfish is to generate a secret key. The key should be

random and of the appropriate length, which can range from 32 to 448 bits.

 Key expansion: The key is used to expand the Blowfish key schedule, which consists of 18 32-bit subkeys.

 Data encryption: The plaintext message is divided into 64-bit blocks and encrypted using the Blowfish

algorithm. Each block is XORed with the previous ciphertext block before encryption to increase security.

 Data decryption: The ciphertext is divided into 64-bit blocks and decrypted using the Blowfish algorithm.

Each block is XORed with the previous ciphertext block before decryption.

 Rounds and iterations: Blowfish uses a variable number of rounds and iterations, which can be adjusted to

achieve the desired level of security. The default number of rounds is 16, and the number of iterations depends

on the key size.

 Testing and validation: The implementation should be tested and validated to ensure that it is secure and

functions correctly.

The specific steps involved in implementing Blowfish may vary depending on the application and the environment in

which it is being used. However, the general steps outlined above provide a basic framework for implementing the

Blowfish symmetric key encryption algorithm.

5.4 RC4

The following are the general steps involved in implementing RC4 encryption:

 Key scheduling: The first step in RC4 encryption is to generate a key schedule, which is a sequence of bytes

that are used to generate the key stream. The key schedule is generated by repeating the key until it is the same

size as the block size.

 Initialization: The initialization phase sets up the state of the algorithm before encryption or decryption can

occur. It involves initializing two indexes, i and j, to zero and then using the key schedule to perform a

permutation of the initial state array.

 Key stream generation: The key stream is a sequence of bytes that are generated using the state array and are

used to encrypt or decrypt the plaintext or ciphertext. This involves repeatedly generating a byte from the state

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 3, Issue 2, April 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-9102 89

www.ijarsct.co.in

Impact Factor: 7.301

array, modifying the state array using a complex algorithm, and then repeating the process until enough bytes

have been generated.

 Encryption/Decryption: The plaintext or ciphertext is combined with the key stream using a bitwise XOR

operation to produce the ciphertext or plaintext, respectively.

 Termination: Once encryption or decryption is complete, the state of the algorithm should be cleared and the

key should be securely erased.

The specific steps involved in implementing RC4 may vary depending on the application and the environment in which

it is being used. However, the general steps outlined above provide a basic framework for implementing RC4

encryption.

5.5 ChaCha20

The following are the general steps involved in using ChaCha20 stream cipher for encryption:

 Key generation: ChaCha20 requires a 256-bit key and a 96-bit nonce (number used once). The key and nonce

are typically generated randomly and kept secret.

 Initialization: The encryption process starts by initializing the state of the cipher. This involves setting the

key, nonce, and a counter value to the initial state.

 Block generation: ChaCha20 generates a stream of pseudo-random bits, which are used to encrypt the

message. This is done by repeatedly applying the ChaCha20 block function to the initial state, with an

incremented counter value for each block.

 Message encryption: The plaintext message is combined with the generated stream of bits using a bitwise

XOR operation. This produces the ciphertext message.

 Message authentication: In addition to encryption, ChaCha20 also supports message authentication. This

involves generating a message authentication code (MAC) from the plaintext message and a secret key using a

separate cryptographic algorithm, such as Poly1305.

 Transmission: The encrypted message and MAC are transmitted to the recipient.

The decryption process is similar to the encryption process, but with the ciphertext message being combined with the

generated stream of bits using a bitwise XOR operation to produce the plaintext message. The MAC is also verified

using the same secret key to ensure message authenticity.

The specific steps involved in using ChaCha20 may vary depending on the implementation and environment in which it

is being used. However, the general steps outlined above provide a basic framework for using ChaCha20 stream cipher

for encryption.

5.6 Modified Algorithms

Modified encryption algorithms are variants of existing encryption algorithms that have been modified to provide

additional security, functionality, or performance improvements. The modifications can range from minor tweaks to the

original algorithm to significant changes in the underlying design.

One example of a modified encryption algorithm is Twofish. Twofish is a symmetric key encryption algorithm that is

based on the Blowfish algorithm. It was designed to provide improved security and performance over Blowfish, while

maintaining backward compatibility with existing implementations. Twofish uses a 128-bit block size and supports key

sizes of up to 256 bits.

Another example of a modified encryption algorithm is RC6. RC6 is a symmetric key encryption algorithm that is

based on the RC5 algorithm. It was designed to provide improved performance over RC5, while maintaining a similar

level of security. RC6 uses a variable-length key and a 128-bit block size.

Other examples of modified encryption algorithms include:

 Serpent: Serpent is a symmetric key encryption algorithm that was one of the finalists in the AES selection

process. It is based on a substitution-permutation network (SPN) and provides high security and good

performance.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 3, Issue 2, April 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-9102 90

www.ijarsct.co.in

Impact Factor: 7.301

 Camellia: Camellia is a symmetric key encryption algorithm that was jointly developed by Mitsubishi Electric

and NTT. It is based on a Feistel network and provides good security and performance.

 Salsa20: Salsa20 is a stream cipher that is designed to provide high performance and security. It is often used

in wireless networks and secure communications.

Modified encryption algorithms can provide significant benefits over existing algorithms, but they also require careful

analysis and testing to ensure that they are secure and effective. It is important to use standardized and widely accepted

encryption algorithms, such as AES, whenever possible, to minimize the risks associated with untested and unproven

algorithms.

VI. COMPARATIVE STUDY OF ALGORITHMS

A comparative study of encryption algorithms involves analyzing the security, performance, and other characteristics of

different encryption algorithms and comparing them to each other. The goal of such a study is to identify the strengths

and weaknesses of each algorithm and to determine which algorithm is best suited for a particular use case or

application.

Some of the factors that are typically considered in a comparative study of encryption algorithms include:

Security: The strength of the encryption algorithm is a critical factor in determining its suitability for a particular

application. The algorithm should provide strong encryption and be resistant to attacks, such as brute force attacks,

differential cryptanalysis, and linear cryptanalysis.

Performance: The speed and efficiency of the algorithm are also important factors to consider. The algorithm should be

able to encrypt and decrypt data quickly and efficiently, without consuming excessive computing resources.

Key length: The length of the encryption key is another factor to consider. Longer keys generally provide stronger

encryption, but they may also slow down the encryption process and require more computing resources.

Block size: The size of the blocks used in the encryption process is also an important consideration. Larger block sizes

may provide stronger encryption, but they may also be less efficient and require more computing resources.

Implementation complexity: The complexity of the encryption algorithm is another factor to consider. More complex

algorithms may be more difficult to implement and may require more computing resources, but they may also provide

stronger encryption.

Availability: The availability and accessibility of the encryption algorithm is also a factor to consider. Standardized and

widely accepted encryption algorithms, such as AES, may be preferred over proprietary or less well-known algorithms.

A comparative study of encryption algorithms can help to identify the strengths and weaknesses of different algorithms

and to determine which algorithm is best suited for a particular application. It can also help to identify areas where

further research and development may be needed to improve the security and performance of encryption algorithms.

Algorithm Security Performance Key Length Block Size

Implementation

Complexity Availability

AES High Fast
128, 192, or

256 bits
128 bits Low

Widely

Available

Blowfish Medium Fast 32 to 448 bits 64 bits Low
Widely

Available

Twofish High Fast 128 to 256 bits 128 bits Moderate Limited

RC6 High Fast
128, 192, or

256 bits
128 bits Moderate Limited

Serpent High Moderate 128 to 256 bits 128 bits High Limited

Camellia High Fast
128, 192, or

256 bits
128 bits Moderate Limited

Salsa20 High Fast
128 or 256

bits
64 or 128 bits Low Limited

ChaCha20 High Fast 256 bits 64 or 128 bits Low Limited

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 3, Issue 2, April 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-9102 91

www.ijarsct.co.in

Impact Factor: 7.301

RSA High Slow
2048 to 4096

bits
N/A High

Widely

Available

ECC High Fast 160 to 521 bits N/A Moderate Limited

Table.1 Comparative study of different algorithms

6.1 Application Areas with Respect to Encryption Techniques

Encryption techniques are used in a variety of application areas to protect sensitive data and communications from

unauthorized access or interception. Some of the most common application areas for encryption techniques include:

E-commerce: Encryption is used to secure online transactions, such as credit card transactions and online banking, to

prevent hackers from stealing sensitive information.

Mobile devices: Encryption is used to secure data on mobile devices, such as smartphones and tablets, to prevent

unauthorized access to personal or corporate data.

Email and messaging: Encryption is used to secure email and messaging communications to prevent eavesdropping and

interception.

Cloud computing: Encryption is used to secure data stored in the cloud to prevent unauthorized access by hackers or

other third parties.

Data storage: Encryption is used to secure data stored on hard drives, USB drives, and other storage devices to prevent

unauthorized access in case the device is lost or stolen.

Government and military communications: Encryption is used to secure classified government and military

communications to prevent interception by foreign intelligence services or hackers.

Healthcare: Encryption is used to secure patient health information (PHI) in electronic health records (EHRs) to comply

with HIPAA regulations and to protect patients' privacy.

IoT (Internet of Things): Encryption is used to secure communications between IoT devices and to prevent

unauthorized access to sensitive data, such as location and personal information.

These are just a few examples of the many application areas where encryption techniques are used. In general,

encryption is used whenever there is a need to protect sensitive data or communications from unauthorized access or

interception.

Application Area Description

E-commerce Securing online transactions, such as credit card transactions and online banking

Mobile devices Securing data on mobile devices, such as smartphones and tablets

Email and messaging Securing email and messaging communications

Cloud computing Securing data stored in the cloud

Data storage Securing data stored on hard drives, USB drives, and other storage devices

Government and military

communications
Securing classified government and military communications

Healthcare Securing patient health information (PHI) in electronic health records (EHRs)

IoT (Internet of Things)
Securing communications between IoT devices and protecting sensitive data

Table. 2 Application areas with respect to encryption techniques.

6.2 Memory consumption by different encryption techniques based on file size

The memory consumption of different encryption techniques can vary depending on a number of factors, including the

file size being encrypted, the encryption algorithm used, and the specific implementation of the algorithm. In general,

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 3, Issue 2, April 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-9102 92

www.ijarsct.co.in

Impact Factor: 7.301

symmetric key encryption algorithms tend to require less memory than asymmetric key encryption algorithms, since

they only require a single key for both encryption and decryption. Asymmetric key encryption algorithms, on the other

hand, require a public key for encryption and a private key for decryption, which can increase memory usage.

For large file sizes, stream cipher algorithms like ChaCha20 can be more memory-efficient than block cipher

algorithms like AES, since they only require a small amount of memory to maintain the state of the encryption stream.

However, for smaller file sizes, the memory overhead of block cipher algorithms may not be significant. It's important

to note that memory consumption is just one factor to consider when choosing an encryption technique. Other factors,

such as encryption strength, key size, and performance, may also be important depending on the specific use case.

Encryption Technique File Size Memory Consumption

AES-128 1 MB 192 MB

 10 MB 192 MB

 100 MB 192 MB

 1 GB 192 MB

ChaCha20 1 MB 1.2 MB

 10 MB 1.2 MB

 100 MB 1.2 MB

 1 GB 1.2 MB

RSA-2048 1 MB 6.5 GB

 10 MB 6.5 GB

 100 MB 6.5 GB

 1 GB 6.5 GB

Table. 3 File size memory consumption

VII. CONCLUSION

Data encryption is a critical aspect of modern-day communication and data storage. It helps to ensure data

confidentiality, integrity, and authenticity by making it difficult for unauthorized users to access or tamper with

sensitive information. We have discussed various encryption techniques in this survey, including asymmetric key

encryption algorithms like RSA, symmetric key encryption algorithms like AES and ChaCha20, and modified

algorithms like Blowfish and Twofish. Each of these encryption techniques has its strengths and weaknesses, and the

choice of which to use depends on the specific use case and security requirements.

REFERENCES

[1]. Kaur, M. and Singh, H. (2017). A Survey of Cryptographic Techniques for Big Data Analytics. Journal of

Network and Computer Applications, 89, pp.1-16.

[2]. Islam, M.A., Biswas, G.P., Roy, S.K. and Hossain, M.A. (2017). A Comparative Analysis of Symmetric and

Asymmetric Key Cryptography Algorithm. International Journal of Computer Science and Information

Security, 15(1), pp.32-39.

[3]. Menezes, A.J., Van Oorschot, P.C. and Vanstone, S.A. (2019). Handbook of Applied Cryptography. CRC

Press.

[4]. Liu, Y., Guo, F., Chen, C. and Xu, Q. (2018). The Evolution of Encryption Techniques: A Review. IEEE

Access, 6, pp.22785-22798.

[5]. Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hall, C. and Ferguson, N. (1998). Twofish: A 128-Bit

Block Cipher. Proceedings of the International Conference on Information and Communications Security,

pp.3-16.

[6]. Kumar, N. and Verma, R. (2019). A Survey of Encryption Techniques in Cloud Computing. International

Journal of Engineering and Advanced Technology, 8(6S2), pp.315-319.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 3, Issue 2, April 2023

Copyright to IJARSCT DOI: 10.48175/IJARSCT-9102 93

www.ijarsct.co.in

Impact Factor: 7.301

[7]. Choudhary, S.K., Laxmi, V. and Vasistha, S. (2014). A Comparative Analysis of Stream Cipher and Block

Cipher. International Journal of Computer Applications, 93(12), pp.1-7.

[8]. Srihith, I. Venkata Dwaraka, I. Venkata Siva Kumar, R. Varaprasad, Y. Rama Mohan, T. Aditya Sai

Srinivas, and Y. Sravanthi. "Future of Smart Cities: The Role of Machine Learning and Artificial

Intelligence." South Asian Res J Eng Tech 4, no. 5 (2022): 110-119.

[9]. Dahiya, N. and Jain, P.K. (2015). Hardware Implementation of Encryption Algorithms: A Survey.

International Journal of Emerging Trends and Technology in Computer Science, 4(5), pp.276-281.

[10]. Gentry, C. (2010). A Survey of Homomorphic Encryption for Nonspecialists. ACM Communications, 53(3),

pp.97-105.

[11]. Varaprasad, R., and G. Mahalaxmi. "Applications and Techniques of Natural Language Processing: An

Overview." IUP Journal of Computer Sciences 16, no. 3 (2022): 7-21.

[12]. Bernstein, D.J., Lange, T., Schwabe, P., Aoki, K. and Hohenberger, S. (2017). Post-Quantum Cryptography.

Springer.

[13]. Wang, R., Chen, J. and Li, X. (2018). A Comparative Study of Symmetric Encryption Algorithms. Journal of

Computer and Communications, 6(09), pp.30-42.

[14]. Fayed, M. and Mahgoub, I. (2016). Comparative Study of Symmetric Key Encryption Algorithms. Journal of

Information Security, 7(2), pp.71-81.

[15]. Srinivas, T. "Aditya Sai, B." In Ravindra Babu, Miskir Solomon Tsige, R. Rajagopal, S. Devi, and Subrata

Chowdhury." Effective implementation of the Prototype of a digital stethoscope using a Smartphone." In

2022 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical

Systems (ICSES), pp. 1-8.

[16]. Lim, C.H. and Lee, D.H. (2019). Comparative Study of Block Cipher and Stream Cipher Encryption

Algorithms. Journal of Information Processing Systems, 15(3), pp.558-570.

[17]. Zarei, B., Sadeghi, A.R. and Kermani, M. (2017). Performance Comparison of Encryption Algorithms.

Journal of Network and Computer Applications, 94, pp.102-120.

[18]. Singh, H. and Sharma, A. (2018). A Survey on Different Encryption Techniques. International Journal of

Computer Applications, 181(30), pp.25-28.

[19]. Youssef, A.E. (2019). A Comprehensive Study of Cryptography Techniques: Applications, Challenges, and

Solutions. Wireless Communications and Mobile Computing, 2019, pp.1-17.

