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Abstract: Plant disease diagnosis is very important for agriculture because of its importance in     

increasing crop production. Nowadays the advances in image processing gives a new way. One of    the 

newest way to solve this issue via visual plant disease analysis. In this paper, we discuss the problem of 

plant disease recognition. Here we tackle plant disease recognition via reweighting both visual regions and 

loss to emphasize diseased parts. We first compute the weights of all the divided patches from each image 

based on the cluster distribution of these patches to indicate the discriminative level of each patch. Then we 

allocate the weight to each loss for each patch-label pair during weakly supervised training to enable 

discriminative disease part learning. We finally extract patch features from the network trained with loss 

reweighting, and utilize the LSTM network to encode the weighed patch feature sequence into a 

comprehensive feature representation. Extensive evaluations on this dataset and another public dataset 

demonstrate the advantage of the proposed method. We expect this research will further the agenda of plant 

disease recognition in the community of image processing. 
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I. INTRODUCTION 

Plant diseases cause threats to food security by reducing crop production. 20%-40% of all crop losses globally are due 

to plant diseases .Therefore, plant disease diagnosis is critical to the prevention of spread of plant diseases and 

reduction of economic losses in agriculture. Nowadays image-based technologies are being widely applied. The recent 

advances in machine learning, especially deep learning we assert that plant image analysis and recognition can also 

provide a  new way for plant disease diagnosis[1]. The applications in visual plant disease diagnosis conversely 

promote the development of image processing technologies. There are mainly three different  characteristics for plant 

disease images taken. The first one is Randomly distributed lesions where the foliar lesions probably randomly occur in 

the plant leaves. The cherry fungal shot hole disease is distributed in many different parts of the leaf, including the top, 

left and right positions. Because deep convolutional neural networks trained with image level labels only tend to focus 

on the most discriminative parts while missing other object parts. The second one is Diverse symptoms here even for 

the same plant disease, there are probably various visual symptoms on the plant leaves at different time periods. The 

appearances vary considerably in different infected stages, leading to large intra-class variations. The third one is 

Complex backgrounds. There usually exist various background clutters in real-world scenarios. There are dense leaves 

and any other irrelevant objects in the background. The disease symptoms are not salient, making plant disease 

recognition more difficult. Taking the characteristics of the plant disease image into consideration, we tackle visual 

plant disease recognition via reweighting both visual regions and loss. Particularly, considering randomly distributed 

lesions, we explore the multi-scale strategy by dividing the plant disease images into non-overlapping patches, and 

compute the weights of thesepatches according to the cluster distribution of these patches in order to indicate the 

discriminative level of each patch. By setting different weights to different patches, we enhance the influence of patches 

with diseased symptoms and reduce the interference of irrelevant patches. We further allocate the weight to each loss 

for each patch-label pair during weakly-supervised training for diseased parts learning. Finally, we extract patch 

features from the network trained with loss reweighting and adopt a LSTM network to encode the weighted patch 

feature sequence into a comprehensive feature representation Long short-term memory is an artificial neural network 

used in the fields of artificial intelligence and deep learning. LSTMs are predominantly used to learn, process, and 
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classify sequential data because these networks can learn long-term dependencies between time steps of data. Common 

LSTM applications include sentiment analysis, language modeling, speech recognition, and video analysis. 

 
Fig 1. Randomly distributed lesions. 

 
Fig 2. Diverse symptoms 

 
Fig 3. Complex backgrounds 

 

II. RELATED WORKS 

Plant disease diagnosis is critical to the prevention of spread of crop diseases and reduction of economic losses in 

agriculture [1]. Most of traditional methods rely on the molecular technologies [2], [3] that are complicated, time-

consuming and constrained to centralized laboratories. Therefore, some works adopt traditional computer vision 

methods for plant disease recognition, such as hyperspectral image analysis [4], artificial bee colony algorithm [5], and 

image segmentation [6]. Recently, there have been more attempts to utilize deep learning in plant disease recognition 
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for its powerful capability of discriminative feature learning [7]–[10]. For example, Wang et al. [10] finetuned the 

VGG, ResNet50, and GoogleNet directly on the leaf disease set and Ferentinos et al. [9] finetuned the AlexNet and 

GoogleNet directly to identify 14 crop species and 26 diseases. However, most of them directly extract deep features 

without considering the characteristics of the plant disease image. Besides, most of the works conduct their evaluations 

on small-scale datasets. Table I summarizes the most common plant disease and crop pest datasets. We can see that 

PlantVillage Dataset [11] is the largest plant disease dataset, but only contains 38 plant disease categories. In addition, 

the images from this dataset are taken on the table, and not in the real-world scenarios. We show some samples of these 

leaf datasets in Fig. 4. Different from these works, we systematically analyze the problem of plant disease recognition 

and propose a multi scale method to reweight visual regions and the loss to emphasize discriminative diseased parts for 

plant disease recognition based on the characteristics of the plant disease image. Furthermore, we collect a large-scale 

plant disease dataset PDD271, which not only has the advantage in data volume and category coverage, but also is 

collected in real-world scenarios with complex background Inparticular, there is another agricultural dataset IP102 [12], 

which is relevant to crop pest. This dataset contains morethan 75,000 images belonging to 102 categories for insect pest 

recognition.Fine-grained image recognition aims to distinguish sub ordinate categories, such as birds and food. In the 

early stage, researchers [13], [14] based on deep learning first used strong supervised mechanisms with part bounding 

box annotations to learn to attend on discriminative parts. Recent researches [15], [16], [17]–[22] focused on weakly-

supervised recognition methods without high-cost object part locations or attribute annotations. For example, Yang et 

al. [22] initialized many anchors randomly and extracted their features as their informativeness using the RPN method, 

and finally chose the informative region to improve the classification performance. There are also several attention-

based methods proposed for Fine-Grained Visual Classification. For example, Hu et al. [23] used attention maps to 

guide the data augmentation, Peng et al. [24] proposed the object-part attention model to select discriminative regions 

subjecting to the object-part spatial constraint, and SeNet154 [25] enhance the recognition performance with spatial-

channel attention. However, attention-based methods probably focus on the most discriminative parts while missing 

other parts for the whole image.recognition method via reweighting both visual regions and the loss to emphasize the 

diseased parts for the plant disease recognition. Our method is heuristic with many possibilities to improve. For 

example, our method and attention-based methods can work together in one framework to further enhance the 

recognition performance, such as gate-attention deep networks [26]. We can also conveniently combine our framework 

with the spatial context through discriminative spatio-appearance kernels [27] to promote the performance. 

 

III. SYSTEM STUDY 

 
Fig 4. The proposed plant disease recognition framework 

There are mainly three different stages which include Cluster Based Region Reweighting, Training with Loss 

Reweighting and Weighted Feature Integration . We introduce the proposed framework which explores a multi-scale 
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strategy and reweights both visual regions and the loss during the weakly-supervised learning to emphasize 

discriminative diseased parts for the purpose of the plant disease recognition. CRR takes all the divided patches from 

plant disease images as input and sets the weight of each patch according to the cluster distribution of the visual 

features of these patches. For each patch-label pair, TLR allocates the corresponding weight to each loss during weakly 

supervised training in order to enable the discriminative disease part learning. Based on extracted patch features from 

TLR and corresponding weights from CRR, WFI utilizes the LSTM network to encode the weighed patch feature 

sequence into a comprehensive feature representation.  

 

IV. METHODS 

4.1 Cluster-Based Region Reweighting  

Many diseases present small and scattered lesions. The deep convolutional neural networks trained with image level 

labels often overlook these lesions while focusing on more salient parts. Considering these situations, we explore a 

multi-scale strategy by dividing the images into non-overlapping patches and enlarging every patch to avoid missing 

diseased patches. However, the disease-independent patches, such as the complex backgrounds and the healthy parts, 

are enhanced even more in the above process, which could lead to severe unbalance between the diseased patches and 

the irrelevant ones. To address this problem, we attempt to use the visual similarity among the same disease to cluster 

the patches of the same disease. Afterwards, we reweight the patches based on the clustering result and indicate the 

discriminative level of each patch. Formally, all patches from all the original training images form a new training set. 

Let X ∈ R m×N denotes the visual features of these patches, where m is the dimension of the visual feature and N is the 

number of training patches. We then have these patches clustered into k cluster classes c with their centroids being {μ 1 

, μ 2 , . . . , μ k } ∈ R m . To compute the weight w x , x ∈ X, the weights of the clusters w c and the probability 

distribution p x of x belonging to over all clusters are computed.  

Then, w x is computed as: 

                                                               w x = p x · w c                                         (1) 

where w c = [w c 1 , . . . , w c i , . . . , w c k ] and w c i denotes the weight of the cluster c i . Normally, the patches containing 

similar visual symptoms are likely to be assigned to the same clusters. In case of small distance among clusters, the 

visual phenotypes of different diseases are similar and hard to distinguish by the deep model. Therefore, these clusters 

are given higher weights to enhance their influence in follow-up feature learning and integration. The size of cluster is 

also an important indicator. There is a highly skewed distribution of different disease patches. For example, the number 

of non-diseased patches containing complex backgrounds and foliar healthy parts is very large, but the number of 

patches containing cotton eye spot disease is small due to the concentrated symptom of this disease leading to the poor 

classification performance. Meanwhile, the distance between two clusters indicates their visual difference. If one cluster 

is far from the other clusters, we can easily obtain discriminative features for this cluster, thus assign a small weight to 

it. Hence we assign these clusters suitable weights to make their influences as balanced as possible. Given all these, we 

assign the cluster weights according to the following rule: the larger size the cluster and the farther away from the 

others, the smaller its weight. We use a monotone decreasing function F = e x/(x−1) to model this change. According to 

the size of the cluster and the distance distribution among the cluster centroids, we compute the weights of the cluster c i 

as follows, 

 
where N c i is the number of patches in cluster c i and d(μ i , μ j ) is the distance between the centroid μ i and μ j .To 

compute the probability distribution px , we use a soft assignment strategy based on the distances between a patch and 

the cluster centroids. The assignment probability distribution px is computed as following, 

                                             p x = F(d(x, μ i )), i ∈ 1, . . . , k.                             (3) 

The weight wx is then computed using Equation 1. For the patches from validation and testing datasets, we compute the 

probability distributions p x based on the distance to the centroids learned from the training patches. The cluster weights 
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have been computed and the patch weights are computed via Equation 1. The patches and their corresponding weights 

are used for the model training with loss reweighting. 

 

4.2 Training with Loss Reweighting  

To extract more discriminative regional features for the given patches, we train the network with a reweighted loss 

function. An observed input patch x shares the sam  label l with the original image. The model computes an obsevation 

o for this patch. The score can be interpreted as a estimation of a class posterior probability p θ (o|x), where θ is the 

model parameters. Given labeled training dat{(x n , l n ) : n = 0, . . . , N − 1}, the original cross entropy loss is defined 

as: 

 
y is one binary indicator defined as: 

 
However, this loss treats every patch equally. As a result, patches irrelevant to the disease symptoms distract the 

optimization of network. To solve this, we propose a new reweighted loss to enhance the influence of patches with 

discriminative diseased symptoms and to reduce the interference of irrelevant patches. For the observed input patch x, 

we define the reweighted loss function as: 

 
We allocate the weight to each loss for each patch-label pair. This loss forces the model to focus on the patches with 

discriminative diseased parts and to ignore the irrelevant patches as much as possible. This trained model can be used to 

extract visual features from all the patches. The patch features from the same image form a sequence as the input for the 

following weighted feature integration. For clarity, x̂ denotes patch feature from the same image. 

 

4.3 Weighted Feature Integration  

The combination of diseased and healthy patches in plant images constitutes the complex and diverse visual patterns. 

We try to model the semantic correlation from the combination of local patches. Specifically, we propose a feature 

integration model with reweighting patch features as the  inputs to induce the BiLSTM network to model the semantic 

correlativity among patches by end-to end training. Given a feature sequence S = [ x̂ 1 , . . . , x̂ t ] extracted from the 

network with TLR and its corresponding weight sequence W = [ ŵ 1 , . . . , ŵ t ] obtained from CRR, where t denotes 

the number of patches for one image, we combine the feature sequence with the weight via a following function A(S, W 

), 

                     A(S, W ) = [ f ( x̂ 1 , ŵ 1 ), . . . , f ( x̂ t , ŵ t )]                                       (7) 

There is common two-layer stacked LSTM is adopted to fuse weighted patch feature sequences into the final 

representation. The hidden state of the first LSTM is fed into the second LSTM layer which follows the reversed order 

of the first one. The dimension of hidden states from both layers is 4,096.  

The output o’= L( A(S, W ); θ’), where θ # is the model parameters. We use  softmax to generate the class probability 

vector for each image Si’ , denoted as φ(L( A(S i’, W i’ ); θ’ )) ∈ R M×1 . The final loss function is defined as: 
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By optimizing this loss function, we obtain a weighted encoded  patch feature sequence into a comprehensive feature 

representation for plant disease recognition. 

 
Fig 5. Proposed system result 

 

V. CONCLUSION 

Plant disease recognition is an interesting and practical topic. However, this problem has not been sufficiently explored 

due to the lack of systematical investigation and large-scale dataset. The most challenging step in constructing such a 

dataset is providing a reasonable structure from both the agriculture and image processing perspective. In this paper, we 

systematically investigate the problem of plant disease recognition in the community of image processing. With the 

help of agriculture experts, we construct the first large-scale plant disease dataset with 271 plant disease categories and 

220,592 images. Furthermore, we present a plant disease oriented framework for plant disease recognition based on 

their distinctive characteristics. We design a strategy to compute patch weights based on the cluster distribution of patch 

features and then use learned weights to reweight both patch features to highlight diseased patches and the loss to guide 

the model optimization. 
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