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I. INTRODUCTION 

Numbers have fascinated man from a very early period of human civilization. Pythagoreans studied many properties of 

natural numbers 1, 2, 3 .... The famous theorem of Pythagoras (6th century B.C) through geometrical has a pronounced 

number theoretic content. The early Babylonians had noted many Pythagorean triads e.g. 3, 4, 5; 5, 12, 13 which are 

natural numbers a, b, c satisfying the equation. 

   a2 + b2 = c2       (1) 

In about 250 A.D. Diophantus of Alexandria wrote a treatise on polynomial equations which studied solutions in 

fractions. Particular cases of these equations with natural numbers have been called Diophantine equations to this day. 

The study of algebra developed over centuries. The Hindu mathematicians deals with and introduced the notations of 

negative numbers and zero. 

In the 16th century and owned negative and imaginary numbers were used with increasing confidence and flexibility. 

Meanwhile, the study of the theory of natural numbers went on side by side. It was known that all the Pythagorean 

triads i.e., the solution of (1) in natural numbersa, b, c is given by the formula a = m2 – n2, b = 2mn, c = m2 + n2 

Where m and n are relatively prime positive integers of opposite quantity with m > n. The remarkable French 

Mathematician P. Fermat (1601 – 1665) asserted (without proof) in strong contradiction to the case of Pythagorean 

triplets, that the equation. 

   x2 + y2 = z2          (2) 

In natural numbers if n is an integer 3. This is called the Fermat’s theorem. A complete proof of it was given in 1994 

by Andrew wiles (Princeton University) although it was attempted by Euler, Legendre Gauss, Abel, Dirichlet, Cauchy, 

kummer, etc, in the intervening period of over 350 years that Fermat has enunciated this theorem in about 1847 the 

German mathematician kummer tried to device his own proof of the Fermat’s last theorem. As a result there grace the 

subject called algebraic number theory which is today a flourishing and important branch of mathematics. 

 

II. ALGEBRAIC NUMBER THEORY 

We give a brief resume of the algebraic number theory: (on detail see [1]). 

An algebraic number a is any root of an algebraic equation 

��x
� + ��x

���+. . . +�� = 0
 

Where a’s are rational (i.e., ordinary) integers, not all zero. 

If a satisfies an algebraic equation of degree n, but none of lower degree, we say that a is of degree n, if in 

particular
�� = 1

, we say that a is an algebraic integer. 

An algebraic field is the aggregate of all numbers,  
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Where  is a given algebraic number, P() and Q() are polynomial in a with rational coefficients and Q()  0. We 

denote this field by k(). 

If n = 1, then  is rational and k() is the aggregate of all rationals. Hence for every rational a, k() denotes same 

aggregate which is called the field of rationals and is denoted by k(1). This field is subfield of every field. 

If n = 2 we say that a is quadratic. Then a is a root of a quadratic equation a0x
2 + a1x + a2 = 0 and so 

or  for some rational integers a, b, c, m. Without loss of generality, 

we may suppose that m is square free. It is then easily verified that k() is the same aggregate as k( ). Hence it is 

enough to consider the quadratic field k( ) for every square free rational integer m, positive or negative, but not 1. 

The two simplest classes of algebraic integers are thus 

(a) The rational (ordinary) integers..., –5, –4, –3, –2, –1, 0, 1, 2, 3, 4, 5, ......... of the field of all rational K(1). The 

unities of K(1) are  = 1, i.e., the divisors of 1. The two numbers  m are called associates, the prime in K(1) and the 

fundamental theorem of K(1), as defined in rational theory, are well known and I do not repeat here. 

(b) The complete or Gaussian integers are the numbers  = a + ib, where a and b are rational integers. Since  

a2 – 2a + a2 + b2 = 0 

a Gaussian integer is a quadratic integer. We call the Gaussian integers an integer of K(i). Where . In 

particular, any rational integer a is a Gaussian integer (since  = a + 1.0). It is easily verified that the product of two 

Gaussian integers is a Gaussian integer. 

 

III. PROPERTIES OF THE GAUSSIAN INTEGERS 

From now onward, the word integer will mean Gaussian integer or integer of the set K(i). We designate the element of 

the set by Greek letters. I state some properties of Gaussian integer which are remarkably similar to that already 

developed for rational theory. 

(1) Divisibility and divisor: These terms is K(i) are defined in the same way as in K(i), i.e., a Gaussian integer a is said 

to divide a Gaussian integer 13 if there exists a Gaussian integer  such that  = . We write this  /. Since 1, –1, i, –i 

are all integer of K(i), any  of K(i) has the eight trivial divisor, namely 1, , –1, –, i, ia, –ia. 

(2) Unity: The integer  is said to be a unity of K(i) if / ( divides ) for every a of K(i). Since  /  and 1/ , 

implies /, we may also define a unity as any integer which is a divisor of 1. 

(3) Norm: The norm of any integer  of  is defined by 

    

If  = a – ib is the conjugate of , then 

 
It is easily seen that the norm of a unity is 1 and any integers whose norm is 1 is a unity. 

(4) The unities of K(i) are the solution of N(a + ib) = a2 + b2 = 1; namely, a = 1, b = a, a = 0, b = 1, so that the 

unities of K(i) are 1, i. It  is any unity then  is said to be an associate of  and so all the associates of  are , i, 

–, –i. In particular the associate of I are the unities. 

(5) G.C.D: If  and  are Gaussian integers, not both zero then there exists a Gaussian integer  such that /, / and 

if  is any integer such that \, \ and \ then is called a G.C.D a and  and write (, ) = . If  = 1, we say that  

and  are relatively prime. 

(6) Prime: A prime  is K(i) is an integer, not zero or a unity, divisible only by numbers associated with itself or with 

1. Thus a prime n has no divisors except the following eight trivial ones, namely 1, , –1, –, i, i, –i, –i. The 

associates of a prime are clearly primes. 
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(7) The fundamental theorem for K(i): The expression of an integer with norm > 1, as a brodieas of prime is unique, 

except for the order of the prime and the presence of unities. 

Simple field: A field in which the fundamental theorem is true is called a simplefield. 

 

IV. EUCLIDEAN FIELD 

A quadratic field K( ) is said to be Euclidean if its ring of integers R has the property that for any elements ,  of 

R such that  =  +  with  

For such field there exists a Euclidean algorithm analogous to that in the rational field. It is known [2] that there are 

precisely 21 Euclidean fields  K( ) given by m = –11, –7, –3, –2, –1, 2, 3, 5, 6, 7, 11, 19, 21, 29, 33, 37, 41, 57, 73.  

A Euclidean field has unique factorization property. Between –7  m 7, only in two non. 

Euclidean fields, namely, K( ) and K( ) the integer do not have unique factorization property since 21 = 

3.7 =  

Where all the four factors are prime in K  and 6 = 2.3 =  

Where all four factors are prime in K . 

The field K  has no unique factorization property since 6 = 2.3 =  where the four 

factors are all primes in K( ). 

 

V. SOME APPLICATIONS IN K(I) 

(i) Integer solution of the equation 

  ................................(1) 

Here (x + iy)(x – iy) = zn 

If d = (x + iy, x – iy), then d / (2x, 2y) and since (x, y) = 1, so d / 2. Thus d = 1, 1 + I, 2. If d = 2, then 4 / (x + iy)(x – iy) 

i.e., 4 / (x2 + y2), which is impossible, since (x, y) = 1. If d = 1 + i, then 

(x + iy) /1 + i – (x + iy)(1 – i) / (1 + i)(1 – 0) = x + y + i(–x + y) / 2 

is an integer in Z(i), i.e., a Gaussian integer. Hence x  y (mod 2) and since (x, y) = 1, we must have x, y both odd and 

then zn 2 (mod 4) which is impossible, hence d = 1 and so (x + iy) = (a + ib)n 

Where a, b are rational integer and r = 0, 1, 2, 3. 

x – iy = (–i) r (a – ib)n  x – iy = (–1)(a – ib)n 

Then (x + iy)(x – iy) = (–1)r . i2r (a2b2)n = zn, we have z = a2 + b2. 

As a special case we obtain solution of x2 + y2 = z2. 

Thus when n = 2. We have, since (x, y) = a, x and y are of opposite parity, z odd. Hence  

x + iy = (a + ib)2 or 1(a + ib)2 

Equating the real and imaginary parts and taking x odd, y even and a > b as a, b of opposite parity (a, b) = 1 , we get 

positive integral solution as x = a2 – b2, y = 2ab, z = m2 + n2. 

 

(ii) There is no Pythagorean triangle whose area is a square. 

Proof: Supposed that x2 + y2 = z2 is a Pythagorean triangle whose area is a square. We may suppose that in the given 

triangle (x, y) = 1, x > o. Then from the solution of the triangle with x odd, y even 

X = m2 – n2, y = 2mn, z = m2 + n2 

m
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Where m, n are relatively prime positive integers of opposite parity with m > n. We may suppose that m is odd and n is 

even. now the area of the triangles is  

½ xy = mn (m2 – n2) 

Suppose that mn (m2 – n2) = t2 

Then since m, n, m2 – n2 are prime to each other, so m = a2, n = b2, m2 – n2 = c2 and 

so a4 – b4 = c2         ...(1) 

Where a is odd and b even, (a, b) = 1, and so c is odd. 

Now a4 = c2 + b4 = (c + ib2)(c – ib2) 

Since unique factorization holds in K(i), c + ib is associated with a fourth power. 

Hence 

Case 1. Either (c + ib2) = i(d + ie)4       ...(1a) 

Case 2. (c + ib2) = i(d + ie)4 

In case 1, b2 = 4de(d2 – e2), c = d4 – 6d2e2 + e4 

It suffices to consider the upper sign in the expression for b2, since d, e, d2e2 are prime to each other, so each of them is 

a perfect square. 
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