

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 3, Issue 2, March 2023

Certain Identities of C^h in Finsler Spaces

Abdalstar A. Saleem¹, Alaa A. Abdallah^{2*}

Department of Mathematics, Faculty of Sciences, Aden University, Aden, Yemen¹ Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India² Department of Mathematics, Abyan University, Abyan, Yemen saleemabdalstar@gmail.com and maths.aab@bamu.ac.in

Abstract: The C^h generalized birecurrent space and C^h special generalized birecurrent space have been introduced by Saleem [4]. Now, in this paper, we introduce and discuss two theorems related to the above mentioned spaces.

Keywords: C^h generalized birecurrent space and C^h special generalized birecurrent space.

I. INTRODUCTION

The concepts of C^h –recurrent space and C^h –birecurrent space are introduced by Matsumoto [7] and Pandey and Verma [9], respectively. Also, Mishra and Lodhi [5] discussed the properties of C^h – recurrent and C^v –recurrent spaces for second order. Recently, various special forms of the h(hv) –torsion tensor C_{jkh} in generalized recurrent and birecurrent space have been studied by [2, 3].

Let us consider an *n*-dimensional Finsler space F_n equipped with the line elements (x, y) and the fundamental metric function *F* is positively homogeneous of degree one in y^i . The metric tensor $g_{ij}(x, y)$ is positively homogeneous of degree zero in y^i and symmetric in its lower indices which is defined by.

(1.1)
$$g_{ij}(x,y) = \frac{1}{2}\dot{\partial}_i\dot{\partial}_j F^2.$$

By differentiating (1.1) partially with respect to y^k , we obtain the tensor C_{ijk} that is known as (h)hv -torsion tensor which defined by [8]

(1.2)
$$C_{ijk} = \frac{1}{2} \dot{\partial}_k g_{ij} = \frac{1}{4} \dot{\partial}_k \dot{\partial}_i \dot{\partial}_j F^2.$$

It is positively homogeneous of degree -1 in y^i and symmetric in all its indices. The above tensor C_{ijk} satisfies (1.3) $C_{iik} = g_{ik}C^h_{ik}$,

where
$$C_{ik}^{i}$$
 is called associate tensor of the tensor C_{ijk} .

Cartanh – covariant differentiation with respect to x^k is given by [1, 6]

(1.4) $X_{|k}^i = \partial_k X^i - (\dot{\partial}_r X^i) G_k^r + X^r \Gamma_{rk}^{*i}.$

The h –covariant derivative of the vector y^i and associate metric tensor g_{ij} are vanish identically, i.e.

(1.5) a) $y_{ll}^{j} = 0$ and b) $g_{ij|l} = 0$.

Taking the h-covariant derivative of (1.4) in the sense of Cartan, we have

$$(1.6) X^{i}_{|k|h} = \partial_h (X^{i}_{|k}) - (X^{i}_{|r}) \Gamma^{*r}_{kh} + (X^{r}_{|k}) \Gamma^{*i}_{rh} - \dot{\partial}_r (X^{i}_{|k}) \Gamma^{*r}_{h\ell} y^{\ell}$$

From (1.4) and (1.6), we get the commutation formula for h –covariant derivative of an arbitrary tensor X_j^i which is given by [1]

 $(1.7) X_{j|m|l}^{i} - X_{j|l|m}^{i} = X_{j}^{r} R_{rlm}^{i} - X_{r}^{i} R_{jlm}^{r} - X_{j}^{i}|_{r} H_{lm}^{r} ,$

where R_{rlm}^i is called h –curvature tensor and satisfies

 $(1.8) R^i_{rlm} y^r = H^r_{lm}$

 $(1.9) R_{rlm}^i g_{hi} = R_{rhlm},$

where R_{rhlm} is associate curvature tensor of R_{rlm}^{i} .

Copyright to IJARSCT www.ijarsct.co.in DOI: 10.48175/IJARSCT-8893

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 3, Issue 2, March 2023

II. PRELIMINARIES

In this section, we introduce some definitions that need it for the purpose of the study. The space which satisfies the recurrence property for R_{ikh}^{i} introduced by Verma [10] that is characterized by

 $(2.1) R_{ikh|l}^{i} = \lambda_l R_{ikh}^{i} ,$

where λ_i is non-zero covariant vector field. Transvecting (2.1) by y^j , using (1.5) and (1.8), we get

$$(2.2) H_{kh|l}^i = \lambda_l H_{kh}^i.$$

The concept of C –recurrent space in sense of Cartan studied by Matsumoto [7] that is characterized by $(2.3) C_{ik|l}^i = \lambda_l C_{ik}^i,$

where λ_l is non-zero covariant vector field. Also, the concept of C –birecurrent space in sense of Cartan studied by Pandey and Varma [9] that is characterized by

$$(2.4) C_{jk|l|m}^{i} = a_{lm} C_{jk}^{i},$$

where a_{lm} is non-zero covariant tensor field.

Saleem [4] introduced the C^h –generalized birecurrent space and C^h –special generalized birecurrent space which are characterized by

(2.5)
$$C^i_{jk|l|m} = \lambda_l C^i_{jk|m} + a_{lm} C^i_{jk}$$

and

(2.6) $C_{ik|l|m}^{i} = \lambda_{l} C_{ik|m}^{i}$, respectively.

III. MAIN RESULTS

In this section, two theorems have been established and proved in C^h -generalized birecurrent space and C^h -special generalized birecurrent space. Differentiating (2.5) covariant with respect to x^n in sense of Cartan, we get

 $(3.1) C_{jk|l|m|n}^{i} = \lambda_{l|n} C_{jk|m}^{i} + \lambda_{l} C_{jk|m|n}^{i} + a_{lm|n} C_{jk}^{i} + a_{lm} C_{jk|n}^{i}$ Interchanging the indices l and m in (3.1) and by subtracting it from (3.1), using (2.3) and (2.4), we get $(3.2) C_{jk|l|m|n}^{i} - C_{jk|m|l|n}^{i} = \{(\lambda_{l}a_{mn} - \lambda_{m}a_{ln}) + (\lambda_{m}\lambda_{l|n} - \lambda_{l}\lambda_{m|n}) + (a_{lm|n} - a_{ml|n}) + \lambda_{n}(a_{lm} - a_{ml})\}C_{jk}^{i}.$ Using the symmetric property of the tensor a_{lm} in (3.2), we get $(3.3) C_{jk|l|m|n}^{i} - C_{jk|m|l|n}^{i} = \{(\lambda_{l}a_{mn} - \lambda_{m}a_{ln}) + (\lambda_{m}\lambda_{l|n} - \lambda_{l}\lambda_{m|n})\}C_{jk}^{i}.$ Transvecting (3.3) by g_{hi} using (1.3) and (1.5), we get $(3.4) C_{hjk|l|m|n} - C_{hjk|m|l|n} = \{(\lambda_l a_{mn} - \lambda_m a_{ln}) + (\lambda_m \lambda_{l|n} - \lambda_l \lambda_{m|n})\}C_{hjk}.$ Thus, we conclude

Theorem 3.1. In C^h –generalized birecurrentspace, the third derivative in sense of Cartan for the torsion tensor C_{hik} and its associate tensor C_{ik}^{i} with symmetric property of the tensor a_{lm} satisfy the identities (3.4) and (3.3), respectively. By using same technique in above theorem for (2.6), we get the following corollay:

Corollary 3.1. In C^h – special generalized birecurrentspace, the third derivative in sense of Cartan for the tensors $C_{i,k}^i$ and Chiksatisfy the following identities

$$C^{i}_{jk|l|m|n} - C^{i}_{jk|m|l|n} = \{(\lambda_{l}a_{mn} - \lambda_{m}a_{ln}) + (\lambda_{m}\lambda_{l|n} - \lambda_{l}\lambda_{m|n})\}C^{i}_{jk}$$

and

 $C_{hjk|l|m|n} - C_{hjk|m|l|n} = \{(\lambda_l a_{mn} - \lambda_m a_{ln}) + (\lambda_m \lambda_{l|n} - \lambda_l \lambda_{m|n})\}C_{hjk}, respectively.$ Interchanging the indices l and m in (2.4), using the commutation formula (1.7) and with symmetric property of the tensor a_{lm} , we get $(3.5) \ C^{i}_{jk|l|m} - C^{i}_{jk|m|l} = C^{r}_{jk} R^{i}_{rlm} - C^{i}_{rk} R^{r}_{jlm} - C^{i}_{jr} R^{r}_{klm} - C^{i}_{jk}|_{r} H^{r}_{lm}.$ Differentiating (3.5) covariant with respect to x^n in the sense of Cartan, we get $(3.6) C^{i}_{jk|l|m|n} - C^{i}_{jk|m|l|n} = (C^{r}_{jk}R^{i}_{rlm} - C^{i}_{rk}R^{r}_{jlm} - C^{i}_{jr}R^{r}_{klm} - C^{i}_{jk}|_{r}H^{r}_{lm})_{|n}.$ Using (3.3) in (3.6), we get Copyright to IJARSCT 621 DOI: 10.48175/IJARSCT-8893

www.ijarsct.co.in

IJARSCT

Impact Factor: 7.301

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 3, Issue 2, March 2023

 $(3.7) (C_{jk}^{r}R_{rlm}^{i} - C_{rk}^{i}R_{jlm}^{r} - C_{jr}^{i}R_{klm}^{r} - C_{jk}^{i}|_{r}H_{lm}^{r})|_{n} = \{(\lambda_{l}a_{mn} - \lambda_{m}a_{ln}) + (\lambda_{m}\lambda_{l|n} - \lambda_{l}\lambda_{m|n})\}C_{jk}^{i}.$ Transvecting (3.7) by g_{hi} using (1.3), (1.5) and (1.9), we get (3.8) $(C_{jk}^{r}R_{rhlm} - C_{rhk}R_{jlm}^{r} - C_{jrh}R_{klm}^{r} - C_{jhk}|_{r}H_{lm}^{r})|_{n} = \{(\lambda_{l}a_{mn} - \lambda_{m}a_{ln}) + (\lambda_{m}\lambda_{l|n} - \lambda_{l}\lambda_{m|n})\}C_{hjk}.$ Thus, we conclude

Theorem 3.2. In C^h –generalized birecurrentspace, we have the identities (3.7) and (3.8). By using same technique in above theorem for (2.6), we get the following corollay:

Corollary 3.2. In C^h –special generalized birecurrentspace, we have the identities

 $(C_{jk}^{r}R_{rlm}^{i} - C_{rk}^{i}R_{jlm}^{r} - C_{jr}^{i}R_{klm}^{r} - C_{jk}^{i}|_{r}H_{lm}^{r})|_{n} = \{(\lambda_{l}a_{mn} - \lambda_{m}a_{ln}) + (\lambda_{m}\lambda_{l|n} - \lambda_{l}\lambda_{m|n})\}C_{jk}^{i}$

and

 $(C_{jk}^{r}R_{rhlm} - C_{rhk}R_{jlm}^{r} - C_{jrh}R_{klm}^{r} - C_{jhk}|_{r}H_{lm}^{r})|_{n} = \{(\lambda_{l}a_{mn} - \lambda_{m}a_{ln}) + (\lambda_{m}\lambda_{l|n} - \lambda_{l}\lambda_{m|n})\}C_{jk}^{i}.$

IV. CONCLUSION

Certain identities belong to C^h –generalized birecurrent space and C^h –special generalized birecurrent space have been obtained.

REFERENCES

- A. A. Abdallah, A. A. Navlekar, K. P. Ghadle and B. Hardan, Fundamentals and recent studies of Finsler geometry, International Journal of Advances in Applied Mathematics and Mechanics, 10(2), (2022), 27-38.
- [2]. A. A. Abdallah, A. A. Hamoud, A. A. Navlekar and K. P. Ghadle, On special spaces of h(hv)-Torsion tensor C_jkh in generalized recurrent Finsler space, Bull. Pure Appl. Sci. Sect. E Math. Stat. 41E(1), (2022),74-80.
- [3]. A. A. Abdallah, A. A. Navlekar, K. P. Ghadle and B. Hardan, Several forms of h(hv)-Torsion tensor C_jkh in generalized βP-birecurrent space, International Journal of Advanced Research in Science, Engineering and Technology, 9(7), (2022), 19505-19510.
- [4]. A. A. Saleem, On certain generalized birecurrent and trirecurrentFinsler space, M. SC. Thesis, Univ. of Aden, (Aden) (Yemen), (2011).
- [5]. C. K. Mishra and G. Lodhi, On C^h-recurrent and C^v-recurrent Finsler spaces of second order, Int. J. Contemp. Math. Sciences, Vol. 3, No. 17, (2008), 801 810.
- [6]. É. Cartan, Les espaces de Finsler, Actualités, Paris, 79 (1934). 2nd edit. (1971).
- [7]. M. Matsumoto, On h-isotropic and C^h-recurrent Finsler space, J. Math. Kyoto Univ., 11 (1971), 1-9.
- [8]. M. Matsumoto, On Finsler spaces with curvature tensors of some special forms, Tensor, N.S., 22 (1971), 201-204.
- [9]. P. N. Pande and R. Varma, C^h-birecurrent Finsler spaces, second conference of the Int. Acad. of Physical Sciences, (December 13 – 14, 1997).
- [10]. R. Verma, Some transformation in Finsler spaces, D. Ph. Thesis, Univ. of Allahbad, (Allahabad) (India), (1991).