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Abstract: The Ch
 generalized birecurrent space and Ch

 special generalized birecurrent space have been 

introduced by Saleem [4]. Now, in this paper, we introduce and discuss two theorems related to the above 

mentioned spaces.  
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I. INTRODUCTION 

The concepts of �� −recurrent space and �� −birecurrent space are introduced by Matsumoto [7] and Pandey and 

Verma [9], respectively. Also, Mishra and Lodhi [5] discussed the properties of �� − recurrent and �� −recurrent 

spaces for second order. Recently, various special forms of the ℎ(ℎ�) −torsion tensor ���� in generalized recurrent and 

birecurrent space have been studied by [2, 3]. 

 Let us consider an � −dimensional Finsler space �� equipped with the line elements (�, �) and the fundamental metric 

function � is positively homogeneous of degree one in �� . The metric tensor ���(�, �) is positivly homogeneous of 

degree zero in ��  and symmetric in its lower indices which is defined by.  

(1.1) ���(�, �) =
�

�
�̇��̇���. 

By differentiating (1.1) partially with respect to ��, we obtain the tensor ���� that is known as (ℎ)ℎ� −torsion tensor 

which defined by [8] 

(1.2) ���� =
�

�
�̇���� =

�

�
�̇��̇��̇���. 

It is positively homogeneous of degree −1 in ��  and symmetric in all its indices. The above tensor ���� satisfies 

(1.3) ���� = ������
� , 

where ���
�  is called associate tensor of the tensor ����.  

Cartanℎ −covariant differentiation with respect to �� is given by [1, 6] 

(1.4) �|�
�  = ���� − ��̇� ���� �

 � + ��Γ��
∗ � . 

The ℎ −covariant derivative of the vector ��  and associate metric tensor ��� are vanish identically, i.e.  

(1.5) a) �|�
�

= 0 and b) ���|� = 0 .  

 Taking the ℎ–covariant derivative of (1.4) in the sense of Cartan, we have 

(1.6) �|�|�
 � = ���� |�

 � � − �� |�
 � � Γ ��

 ∗� + �� |�
 � � Γ ��

 ∗� −  �̇��� |�
 � �Γ �ℓ

 ∗�� ℓ. 

From (1.4) and (1.6), we get the commutation formula for ℎ −covariant derivative of an arbitrary tensor ��
� which is 

given by [1] 

(1.7) ��|�|�
� − ��|�|�

� = ��
�����

� − ��
� ����

� − ��
�|����

�  ,  

where ����
�  is called ℎ −curvature tensor and satisfies  

(1.8) ����
� �� = ���

�  

(1.9) ����
�  ��� =  �����, 

where ����� is associate curvature tensor of ����
�  . 
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II. PRELIMINARIES 

In this section, we introduce some definitions that need it for the purpose of the study. The space which satisfies the 

recurrence property for ����
�  introduced by Verma [10] that is characterized by  

(2.1) ����|�
� = �� ����

�  ,  

where ��is non-zero covariant vector field. Transvecting (2.1) by��, using (1.5) and (1.8), we get 

(2.2) ���|�
� = �����

� .  

 The concept of � −recurrent space in sense of Cartan studied by Matsumoto [7] that is characterized by 

(2.3) ���|�
� = �����

� ,  

where ��is non-zero covariant vector field. Also, the concept of � −birecurrent space in sense of Cartan studied by 

Pandey and Varma [9] that is characterized by 

(2.4) ���|�|�
� = ������

� ,  

where ��� is non-zero covariant tensor field.  

Saleem [4] introduced the �� −generalized birecurrent space and �� −special generalized birecurrent space which are 

characterized by  

(2.5) ���|�|�
� = �����|�

� + ������
�  

and  

(2.6) ���|�|�
� = �����|�

� , respectively.  

 

III. MAIN RESULTS 

In this section, two theorems have been established and proved in �� −generalized birecurrent space and �� −special 

generalized birecurrent space. Differentiating (2.5) covariant with respect to �� in sense of Cartan, we get  

(3.1) ���|�|�|�
� = ��|����|�

� + �����|�|�
� + ���|����

� + ������|�
� .  

Interchanging the indices � and � in (3.1) and by subtracting it from (3.1), using (2.3) and (2.4), we get  

(3.2) ���|�|�|�
� − ���|�|�|�

� = {(����� − �����) + (����|� − ����|�) + (���|� − ���|�) + ��(��� − ���)}���
� . 

Using the symmetric property of the tensor ��� in (3.2), we get  

(3.3) ���|�|�|�
� − ���|�|�|�

� = {(����� − �����) + (����|� − ����|�)}���
� . 

Transvecting (3.3) by��� using (1.3) and (1.5), we get 

(3.4) ����|�|�|� − ����|�|�|� = {(����� − �����) + (����|� − ����|�)}����. 

Thus, we conclude  

 

Theorem 3.1. In �� −generalized birecurrentspace, the third derivative in sense of Cartan for the torsion tensor ���� 

and its associate tensor ���
�  with symmetric property of the tensor ��� satisfy the identities (3.4) and (3.3), respectively.  

By using same technique in above theorem for (2.6), we get the following corollay:  

 

Corollary 3.1. In �� −special generalized birecurrentspace, the third derivative in sense of Cartan for the tensors ���
�  

and ����satisfy the following identities 

���|�|�|�
� − ���|�|�|�

� = {(����� − �����) + (����|� − ����|�)}���
�  

and 

����|�|�|� − ����|�|�|� = {(����� − �����) + (����|� − ����|�)}����, respectively. 

Interchanging the indices � and � in (2.4), using the commutation formula (1.7) and with symmetric property of the 

tensor ���, we get  

(3.5) ���|�|�
� − ���|�|�

� = ���
� ����

� − ���
� ����

� − ���
� ����

� − ���
� |����

� .  

Differentiating (3.5) covariant with respect to �� in the sense of Cartan, we get  

(3.6) ���|�|�|�
� − ���|�|�|�

� = (���
� ����

� − ���
� ����

� − ���
� ����

� − ���
� |����

� )|�.  

Using (3.3) in (3.6), we get  
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(3.7) (���
� ����

� − ���
� ����

� − ���
� ����

� − ���
� |����

� )|� = {(����� − �����) + (����|� − ����|�)}���
� . 

Transvecting (3.7) by��� using (1.3), (1.5) and (1.9), we get 

(3.8) (���
� ����� − ��������

� − ��������
� − ����|����

� )|� = {(����� − �����) + (����|� − ����|�)}����. 

Thus, we conclude  

 

Theorem 3.2. In �� −generalized birecurrentspace, we have the identities (3.7) and (3.8). By using same technique in 

above theorem for (2.6), we get the following corollay:  

Corollary 3.2. In �� −special generalized birecurrentspace, we have the identities 

(���
� ����

� − ���
� ����

� − ���
� ����

� − ���
� |����

� )|� = {(����� − �����) + (����|� − ����|�)}���
�  

and 

(���
� ����� − ��������

� − ��������
� − ����|����

� )|� = {(����� − �����) + (����|� − ����|�)}���
� . 

 

IV. CONCLUSION 

Certain identities belong to �� −generalized birecurrent space and �� −special generalized birecurrent space have been 

obtained. 
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