
IJARSCT  ISSN (Online) 2581-9429 

    

 

       International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) 

  

 Volume 3, Issue 2, January 2023 
 

Copyright to IJARSCT               DOI: 10.48175/IJARSCT-8037 768 

www.ijarsct.co.in 

Impact Factor: 7.301 

Review Paper on the uses of Digital Signature in 

MQTT Protocol  
Mr. Pradeep Nayak1, Ashwini M2, Monisha N. S.3, Moollya Gautami4, Bhaskar Sahana5 

Assistant Professor, Department of Information Science and Engineering1 

Students, Department of Information Science and Engineering2,3,4,5 

Alva’s Institute of Engineering and Technology, Mijar, Mangalore, Karnataka, India  

 

Abstract: The Message Queue Telemetry Transport (MQTT) protocol for publish/subscribe middleware is 

proposed in this paper as a way to secure messages. In which the end-to-end method employs the Advanced 

Encryption System (AES) and Secure Hash Algorithm (SHA), and analyses the overhead associated with the 

usage of digital signatures Because there is no encryption method applied to the payload, MQTT has this 

drawback. Which enables one to discover the payload content that results in no data privacy. MQTT also 

has issues with data integrity. This digital signature's function is to confirm the payload's authenticity, that 

it doesn't alter during transmission, and that the payload is secret.The proposed solution can be evaluated 

and tested after which the programme can secure the MQTT payload. The addition of a security mechanism 

to MQTT, such as the encryption and decryption processes and verification outcomes, results in overhead 

in many areas. The overhead employed in this study is used to calculate the payload size, message sending 

time, process of digital signature security mechanism, memory consumption, and CPU utilisation. In an 

overhead analysis, overhead is performed by looking at many AES key types and numerous SHA key types. 

Upon closer inspection, it is seen that the digital signature system has resulted in a size increase for a 

number of the previously listed elements. 

 

Keywords: AES, SHA, digital signature, payload, MQTT, publish, end-to-end, subscription, overhead 
 

I. INTRODUCTION 

The Internet of Things (IoT) is a method of machine-to-machine communication. The idea is that every device may 

communicate via Internet access, to elaborate [1]. Message Queue Telemetry Transport (MQTT) is a communication 

protocol that is commonly used in the Internet of Things [2]. Because it consumes a minimal amount of bandwidth, this 

protocol is frequently used in the Internet of Things .So, it works well for IoT [3]. 

The MQTT protocol has been used extensivelySeveral systems, including the Internet of Things for Health [4], GPS 

Tracking [5], and Automated Home Automation [6], employed MQTT to transmit sensitive and secret data. However, 

the Internet of Things (IoT) is not without flaws. According to the Open Web Application Security Project (OWASP), 

IoT has targeted network service devices when it discovered that the messages lacked load verification and integrity 

checks. IoT devices occasionally seek to deliver confidential communications that can only be seen by trusted devices 

[1]. 

The problem with the MQTT protocol is that it does not have an encryption process on the payload that raises security 

and integrity issues in the payload data, which allows the attacker to know the content of the free charge [1]. Based on 

the above problems to deal with data security and integrity issues a digital signatures can be used to solve this. The 

digital signatures aim to authenticate the payload data and to ensure that information is not updated during transmission 

[8]. Digital signatures will give confidence to the recipient that the data sent is correct from the authorized publisher. 

Digital signatures can also be used to identify whether the sender's message meets the requirements to be received. and 

read by the recipient or not. A digital signatures can be used to secure a sensitive data [9]whether the receiver read it or 

not. Sensitive data can be secured with a digital signature [9]. 

To transfer data securely over the Internet, Digital Signature additionally enables a shared secret key encryption [10]. 

The AES and SHA algorithms are used in the study's digital signature application. Because it is easy to use and 

effective in hardware and software [11] and can also be used for digital signatures [12], AES encryption was chosen for 

this work. Additionally, SHA digest is used to look for unauthorised changes made by unreliable parties [9]. 



 

 

       International Journal of Advanced 

  

Copyright to IJARSCT               

www.ijarsct.co.in 

Impact Factor: 7.301 

Of course, adding security measures will increase the system's computational load [13].The amount of additional 

resources required for the implemented security method is determined using an overhead analysis [14]. Several factors 

that rise with the addition of mechanisms, such as

memory usage, and security procedure [14], can be examined to perform an overhead analysis in MQTT.

We shall examine the cost of employing digital signatures in the MQTT Protocol in this essay.

additional procedures, using this digital signature mechanism involves overhead and has led to advances in a number of 

areas. In order to determine how much overhead is generated in the suggested system, an overhead analysis is carr

out. 

Securing messages between publishers and subscribers during a data exchange must ensure that attacks from 

unauthorised parties are prevented [9]. For different IoT usage, MQTT requires the addition of a scalable and 

lightweight security mechanism [7] since it uses in

resource devices (CPU) [14]. 

Digital signatures are intended to be used generally for payload or data authentication [12].A security mechani

need some more resources when it is implemented. Therefore, the adoption of a flexible and lightweight mechanism is 

necessary to reduce or eliminate the utilisation of resources.

The overhead analysis can document the alterations to extra resources

mechanisms [14]. The overhead analysis in the study [14] was done by assessing a number of extra resource

factors. Memory and CPU use also has the impact of enhancing security measures. According to the ov

research [14], memory and CPU usage have increased, though not significantly.

In the study [13], the authors examined MQTT open source authentication through overhead analysis. The MQTT 

system developed for research purposes [13] achieves t

resource utilisation while still meeting the system's expected overhead.

IJARSCT  
   

International Journal of Advanced Research in Science, Communication and

 Volume 3, Issue 2, January 2023 
 

              DOI: 10.48175/IJARSCT-8037 

ty measures will increase the system's computational load [13].The amount of additional 

resources required for the implemented security method is determined using an overhead analysis [14]. Several factors 

that rise with the addition of mechanisms, such as the encryption process, delivery latency time, CPU load [13], 

memory usage, and security procedure [14], can be examined to perform an overhead analysis in MQTT.

We shall examine the cost of employing digital signatures in the MQTT Protocol in this essay.

additional procedures, using this digital signature mechanism involves overhead and has led to advances in a number of 

areas. In order to determine how much overhead is generated in the suggested system, an overhead analysis is carr

 

II. ASSOCIATED WORK 

Securing messages between publishers and subscribers during a data exchange must ensure that attacks from 

unauthorised parties are prevented [9]. For different IoT usage, MQTT requires the addition of a scalable and 

lightweight security mechanism [7] since it uses in memory computing and the Central Processing Unit, which are low 

Digital signatures are intended to be used generally for payload or data authentication [12].A security mechani

need some more resources when it is implemented. Therefore, the adoption of a flexible and lightweight mechanism is 

necessary to reduce or eliminate the utilisation of resources. 

The overhead analysis can document the alterations to extra resources brought on by the inclusion of security 

mechanisms [14]. The overhead analysis in the study [14] was done by assessing a number of extra resource

Memory and CPU use also has the impact of enhancing security measures. According to the ov

research [14], memory and CPU usage have increased, though not significantly. 

In the study [13], the authors examined MQTT open source authentication through overhead analysis. The MQTT 

system developed for research purposes [13] achieves the lowest feasible overhead to minimise the least amount of 

resource utilisation while still meeting the system's expected overhead. 

 

III. SYSTEM PROPOSED 

 
Fig. 1. Publisher FSM 

 ISSN (Online) 2581-9429 

  

, Communication and Technology (IJARSCT) 

 769 

ty measures will increase the system's computational load [13].The amount of additional 

resources required for the implemented security method is determined using an overhead analysis [14]. Several factors 

the encryption process, delivery latency time, CPU load [13], 

memory usage, and security procedure [14], can be examined to perform an overhead analysis in MQTT. 

We shall examine the cost of employing digital signatures in the MQTT Protocol in this essay. Due to the addition of 

additional procedures, using this digital signature mechanism involves overhead and has led to advances in a number of 

areas. In order to determine how much overhead is generated in the suggested system, an overhead analysis is carried 

Securing messages between publishers and subscribers during a data exchange must ensure that attacks from 

unauthorised parties are prevented [9]. For different IoT usage, MQTT requires the addition of a scalable and 

memory computing and the Central Processing Unit, which are low 

Digital signatures are intended to be used generally for payload or data authentication [12].A security mechanism will 

need some more resources when it is implemented. Therefore, the adoption of a flexible and lightweight mechanism is 

brought on by the inclusion of security 

mechanisms [14]. The overhead analysis in the study [14] was done by assessing a number of extra resource-demanding 

Memory and CPU use also has the impact of enhancing security measures. According to the overhead study in 

In the study [13], the authors examined MQTT open source authentication through overhead analysis. The MQTT 

he lowest feasible overhead to minimise the least amount of 



 

 

       International Journal of Advanced 

  

Copyright to IJARSCT               

www.ijarsct.co.in 

Impact Factor: 7.301 

AES and SHA are used as the plaintext hashing algorithms in this digital sign

employed for this purpose because hardware can utilise it effectively [3]. The methods that can be used to provide a 

secret key to the authorities include providing the key physically, using a reliable third party, or us

Helman method for the key agreement [12]. The hash algorithm used is SHA

this system uses an end-to-end mechanism, where the publisher initiates the encryption process and the subscriber 

performs the decoding 

The publisher's definition of a finite state machine (FSM) is shown in Fig. 1. If the condition does not hold, the 

programme will terminate, but if it does, it will enter the state of connecting to the MQTT server and begin fetching 

messages to retrieve the message that the connected user has inputted. The first process in terms of the publisher is to 

receive input from the connected user, and then the programme will connect to the MQTT server.

After receiving the message, the publisher will perform t

Then, after creating a digest of the message, a process of combining digest with messages is used to ensure that the 

message is not altered during the process of transmission over the network. Fi

key in the configuration file, and if the key is present, the signing process will begin.

The publisher can move on to the sending message state after the signing process is complete by sending the ciphertext 

to MQTT Brokers. Brokers will continue to receive messages from the publisher.

A FSM diagram in terms of subscribers is shown in Figure 2. The subscriber will connect to the MQTT server in the 

first state, and if that connection is succes

subscriber will receive raw payload in the form of ciphertext that has not yet been displayed on the terminal. After that, 

the programme will check the AES key in the configuration 

can be decrypted. 

After the decryption process has entered the state splitting plaintext, which successfully separates the message from the 

digest, the digest will be temporarily saved. The plai

IJARSCT  
   

International Journal of Advanced Research in Science, Communication and

 Volume 3, Issue 2, January 2023 
 

              DOI: 10.48175/IJARSCT-8037 

AES and SHA are used as the plaintext hashing algorithms in this digital signature scheme. This AES technique is 

employed for this purpose because hardware can utilise it effectively [3]. The methods that can be used to provide a 

secret key to the authorities include providing the key physically, using a reliable third party, or us

agreement [12]. The hash algorithm used is SHA-224,256,384,512. The scenario used by 

end mechanism, where the publisher initiates the encryption process and the subscriber 

The publisher's definition of a finite state machine (FSM) is shown in Fig. 1. If the condition does not hold, the 

programme will terminate, but if it does, it will enter the state of connecting to the MQTT server and begin fetching 

eve the message that the connected user has inputted. The first process in terms of the publisher is to 

receive input from the connected user, and then the programme will connect to the MQTT server.

After receiving the message, the publisher will perform the hashing process to preserve the integrity of the payload. 

Then, after creating a digest of the message, a process of combining digest with messages is used to ensure that the 

message is not altered during the process of transmission over the network. Finally, the programme will check the AES 

key in the configuration file, and if the key is present, the signing process will begin. 

The publisher can move on to the sending message state after the signing process is complete by sending the ciphertext 

Brokers. Brokers will continue to receive messages from the publisher. 

Fig. 2. Subscriber FSM 

A FSM diagram in terms of subscribers is shown in Figure 2. The subscriber will connect to the MQTT server in the 

first state, and if that connection is successful, the programme will attempt to reconnect it. In the second state, the 

subscriber will receive raw payload in the form of ciphertext that has not yet been displayed on the terminal. After that, 

the programme will check the AES key in the configuration file, and if it can, it will determine whether the ciphertext 

After the decryption process has entered the state splitting plaintext, which successfully separates the message from the 

digest, the digest will be temporarily saved. The plaintext produced by the state decryption contains both the digest and 

 ISSN (Online) 2581-9429 

  

, Communication and Technology (IJARSCT) 

 770 

ature scheme. This AES technique is 

employed for this purpose because hardware can utilise it effectively [3]. The methods that can be used to provide a 

secret key to the authorities include providing the key physically, using a reliable third party, or using the Diffie-

224,256,384,512. The scenario used by 

end mechanism, where the publisher initiates the encryption process and the subscriber 

The publisher's definition of a finite state machine (FSM) is shown in Fig. 1. If the condition does not hold, the 

programme will terminate, but if it does, it will enter the state of connecting to the MQTT server and begin fetching 

eve the message that the connected user has inputted. The first process in terms of the publisher is to 

receive input from the connected user, and then the programme will connect to the MQTT server. 

he hashing process to preserve the integrity of the payload. 

Then, after creating a digest of the message, a process of combining digest with messages is used to ensure that the 

nally, the programme will check the AES 

The publisher can move on to the sending message state after the signing process is complete by sending the ciphertext 

 

A FSM diagram in terms of subscribers is shown in Figure 2. The subscriber will connect to the MQTT server in the 

sful, the programme will attempt to reconnect it. In the second state, the 

subscriber will receive raw payload in the form of ciphertext that has not yet been displayed on the terminal. After that, 

file, and if it can, it will determine whether the ciphertext 

After the decryption process has entered the state splitting plaintext, which successfully separates the message from the 

ntext produced by the state decryption contains both the digest and 



IJARSCT  ISSN (Online) 2581-9429 

    

 

       International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) 

  

 Volume 3, Issue 2, January 2023 
 

Copyright to IJARSCT               DOI: 10.48175/IJARSCT-8037 771 

www.ijarsct.co.in 

Impact Factor: 7.301 

the original messages that the publisher has merged. On the decrypted text hashing state, the output from hashing is a 

SHA digest; after getting a new digest, going to the state "digest check," which functions to compare the temporary 

digest stored with the digest generated by the subscriber; if the digest values match, the subscriber will display the 

message and consider it to be valid data; otherwise, the programme will exit. 

The suggested method uses symmetric encryption to deal with computing that exceeds resources since IoT devices have 

constrained resources. There is no protection against repudiation, but the repudiation problem can be solved if both the 

publisher and the subscriber use an arbitrator or trusted third party. Symmetric keys have several drawbacks, including 

that each entity that has the same key can make a signature. However, we can solve these problems by using a trusted 

third party that is safe to make key exchanges. 

During the implementation phase depicted in Table 1, the environment is made up of the software. The Raspberry Pi 3 

is the device environment used, and the Google Compute Engine (VPS) cloud server has the 

following specifications: 1 Virtual CPU, 3.75GB Memory, and a 10GB Standard Persistent Disk. 

Table:  Software Environment 

SL. No Title Explanation 

1 CentOS 7 64 bit  OS for a cloud server.  

2 Raspbian Strecth with Desktop,  

Kernel version 4.14  

OS for Raspberry Pi3  

3 Mosquitto 1.4.15  MQTT Server Broker  

4. Python 3  Publish/Subscribe Middleware made by python.  

 

 
Fig.4 

The payload size is the first overhead analysis to be performed. The payload size is determined by sending a payload 

"heartbeat: 66bpm" from the publisher to the broker for 5 minutes, after which the subscriber receives data from the 

broker. Figure 4 depicts the overhead of various payload sizes from the AES and SHA implementations for digital 

signatures. According to the results of the analysis, the AES key has no effect on the overhead of the payload length; 

rather, the effect occurred within the SHA itself. According to the analysis results, SHA-224 has an overhead of 56 

bytes, SHA256 has an overhead of 64 bytes, SHA-384 has an overhead of 96 bytes, and SHA-512 has an overhead of 

128 bytes. 

The message delivery time is measured in the second overhead analysis. The system is tested by calculating how long it 

takes the system to send the payload from the publisher to the subscriber. Publishers will deliver payloads to 



IJARSCT  ISSN (Online) 2581-9429 

    

 

       International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) 

  

 Volume 3, Issue 2, January 2023 
 

Copyright to IJARSCT               DOI: 10.48175/IJARSCT-8037 772 

www.ijarsct.co.in 

Impact Factor: 7.301 

subscribers via cloud brokers or VPS with Quality of Service (QoS) = 2. Because the QoS level is set to 2, each 

message is only received once by the intended recipient. 

Fig. 5 depicts the delivery time overhead, SHA-224 with AES128 has an overhead of 50 ms, then a key increase from 

AES to 192, an additional increase of 32%, and finally, a key increase from AES to AES-256, an increase of 4.55% of 

SHA-192. 

  
                                         Fig.5      Fig.6 

Whereas SHA-256 with AES-128 has an overhead of 62 ms, increasing the AES key to 192 results in a 24.19% 

increase. When the key is increased to 256, there is a 10.39% increase. The overhead on SHA-384 with AES-128 is 83 

ms, and if the AES key is increased to 192, the gain is 19.28%, and if the AES key is increased to 256, the gain is 

9.09%. At SHA-512 with AES-128 and an overhead of 104 ms, increasing the AES key size to 192 results in an 

11.54% increase, while increasing the key size to 256 results in a 7.76% increase. 

Figure 6 depicts data when the SHA key size is changed to the same AES key size. According to Fig. 6, as the key size 

of AES and SHA grows larger, the value of the message delivery time decreases. 

The measurement of the process of the digital signature security mechanism is the third overhead analysis. The digital 

signature security mechanism with AES and SHA implementation has different encryption and decryption times. In 

other words, the length of processing time is affected by the key sizes of AES and the SHA version. 

 
Fig.7 

The length of the digital signature process by using AES and SHA varies due to the key differences applied, and testing 

is done by calculating how the system does a long encryption and decryption. The longer the process runs, the larger the 



IJARSCT  ISSN (Online) 2581-9429 

    

 

       International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) 

  

 Volume 3, Issue 2, January 2023 
 

Copyright to IJARSCT               DOI: 10.48175/IJARSCT-8037 773 

www.ijarsct.co.in 

Impact Factor: 7.301 

key. On Fig. 7, it can be seen that SHA-224 with AES-128 has a 47 ms overhead. If the AES key is increased to 192, 

the increase is 34.04%; if it is increased again to a larger key, the increase is 4.76% for AES-256. 

 
Fig.8 

The overhead for the SHA-256 paired AES-128 is 59 ms; if the AES key is increased to 192, the overhead increases by 

23.73%; if the AES key is increased to 256, the overhead increases by 12.33%. The overhead for SHA-384 is 80 ms, 

but if the AES key is changed to 192, the overhead increases by 20%. Furthermore, an increase of 10.42% occurs when 

the key is increased to 256 at SHA-512 with AES-128 with overhead of 101 ms, an increase of 12.87% occurs when the 

key is changed to 192, and an increase of 7.89% occurs when the key is increased to 256 bits. 

Figure 8 depicts the AESSHA data. If the key size of AES is increased, the security mechanism time always increases. 

The length of time in the digital security mechanism is increased for each use of AES and SHA. It always increases in 

proportion to the size of the key used. There is no decrease in the security mechanism process because the key size 

affects the program's execution process. Figures 7 and 8 demonstrate this. The longer the key, the more overhead it 

generates and the longer it takes to issue security. 

 
Fig.9 

The fourth overhead analysis is a measurement of the proposed system's memory consumption. In this case, the system 

is tested using Linux's process status (ps) tool and measured according to the appropriate id process. 



IJARSCT  ISSN (Online) 2581-9429 

    

 

       International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) 

  

 Volume 3, Issue 2, January 2023 
 

Copyright to IJARSCT               DOI: 10.48175/IJARSCT-8037 774 

www.ijarsct.co.in 

Impact Factor: 7.301 

Figure 9 depicts the overhead of memory consumption caused by using various types of AES and SHA sizes in the 

environment. Furthermore, Fig. 9 depicts the data obtained graph. When the AES key size is increased, there is an 

increase. 

Memory usage overhead on the SHA-224 when combined with AES128 is 7.082 MB. If the AES key is increased to 

192, the increase is 1.12%, resulting in an increase of 0.079 MB. When the AES key is increased to 256, the expansion 

is 0.06%, with an additional 0.004 MB of memory usage. This increase is not significant. It has an overhead of 7.138 

MB when using SHA-256 and AES-128. If the AES key is increased to 192, the result is a 0.47% increase. 

Furthermore, if the AES key is 256, the resulting inflation is 0.76%, with a 0.055 MB increase in memory. The 

overhead for SHA-384 combined with AES-128 is 7.235 MB. 

  
                                       Fig.10      Fig.11 

Then, if the key is increased to 256, there is a 0.22% or 0.016 MB increase. The overhead value for SHA-512 paired 

with AES-128 is 7.262 MB, which is the highest overhead value of all SHA key sizes. When the AES key is increased 

to 192 on SHA-512, it increases by 0.11% or equals 0.008 MB. 

Following that, the key is changed by increasing the AES key to 256, a 0.43% or 0.031 MB increase.Figure 10 depicts 

data when the SHA key size is changed to the same AES key size. In addition, see Fig. 10. AES-128SHA-224 and 

AES256SHA-512 use the least amount of memory, while AES-128SHA-512 and AES256SHA-512 use the most. 

According to the results of the preceding experiments, SHA-512 and/or AES-256 require the most resources when 

compared to the others. In Linux, the system is tested using the process status (ps) tool and measured according to the 

appropriate id process. Figure 11 depicts the CPU overhead caused by applying a digital signature with various AES 

and SHA key sizes. The overhead of SHA-224 in conjunction with AES-128 CPU usage is 1.83%. If the AES key is 

increased to 192, the increase is 4.92%, which is equal to 0.09. If the AES key is increased to 256, the increase is 

36.46%, or 0.7. The CPU overhead for SHA-256 with AES 128 is 2.01%. 

If the AES key is increased to 192, CPU usage will rise. That is, the resulting increase is 2.49%, or 0.05. If the key is 

increased to 256, the growth occurs again. The resulting improvement is 37.86%, or 0.78. The CPU usage overhead for 

SHA-384 with AES-128 is 2.04%. When the key 128 is increased to 192, there is an increase. In this case, the increase 

is 8.82%. There is also an increase if the key is raised to 256. Notably, the resulting expansion is 36,49%, or 0.81. The 

overhead for SHA-512 with AES-128 is 2.2%. An increase occurs when the AES key is increased by 30.91% to 192. 

 

 

 



IJARSCT  ISSN (Online) 2581-9429 

    

 

       International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) 

  

 Volume 3, Issue 2, January 2023 
 

Copyright to IJARSCT               DOI: 10.48175/IJARSCT-8037 775 

www.ijarsct.co.in 

Impact Factor: 7.301 

IV. CONCLUSION 

The paper discusses an overhead analysis of digital signature implementations in MQTT in this chapter. The 

investigation AES and SHA are symmetric encryption algorithms that were used. End-to-end hashing requires 

publishers to encrypt and subscribers to decrypt. This method's digital signature can safely secure the MQTT payload. 

The attacker can view the payload using Wireshark based on penetration and overhead testing. However, the payload 

that would be visible is in the ciphertext. Because the message is cut off and the ciphertext is in byte form, it is difficult 

to determine the ciphertext content. Furthermore, the payload size grows due to the digital signature security 

mechanism that secures the payload.Additionaly, This paper's overhead analysis includes payload size, message 

delivery time, security time, memory consumption, and CPU usage. Furthermore, the overhead is performed by 

checking the various types of AES keys and SHA. According to the findings of this study's overhead analysis, the larger 

the key size of AES and SHA, the greater the overhead generated, and vice versa. The lightest digital signature 

implementation in this study was AES-128SHA-224, and the heaviest was AES-256SHA-512. 

 

REFERENCES 

[1]. Syaiful Andy, Budi Rahardjo, and BagusHanindhito. Attack scenarios and security analysis of mqtt 

communication protocol in iot system. International Conference on Electrical Engineering, Computer 

Science and Informatics (EECSI), 4(September):600–604, 2017.  

[2]. Syed Naeem Firdous, Zubair Baig, Craig Valli, and Ahmed Ibrahim. Modelling and evaluation of malicious 

attacks against the IoT MQTT protocol. Proceedings - 2017 IEEE International Conference on Internet of 

Things, IEEE Green Computing and Communications, IEEE Cyber, Physical and Social Computing, IEEE 

Smart Data, iThingsGreenComCPSCom-SmartData 2017, 2018-Janua:748–755, 2018. K. Elissa, “Title of 

paper if known,” unpublished. 

[3]. Manish Parmar Lochan Bisne. Composite Secure MQTT for Internet of Things using ABE and Dynamic S-

Box AES. pages 1–5, 2017. 

[4]. Yuri F Gomes, Danilo F S Santos, Hyggo O Almeida, and Angelo Perkusich. Integrating MQTT and ISO / 

IEEE 11073 for Health Information Sharing in the Internet of Things. 2015 IEEE International Conference 

on Consumer Electronics (ICCE), pages 200–201, 2015 

[5]. Nut Aroon. Study of using MQTT cloud platform for remotely control robot and GPS tracking. 2016 13th 

International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and 

Information Technology, ECTI-CON 2016, 2016.  

[6]. Yuvraj Upadhyay, Amol Borole, and D. Dileepan. MQTT based secured home automation system. 2016 

Symposium on Colossal Data Analysis and Networking, CDAN 2016, 2016.  

[7]. Singh Meena, MA Rajan, VL Shivraj, P Baramuralidhar P. Secure MQTT for Intenet of Things (IoT). 2015 

Fifth International Conference on Communication Systems and Network Technologies 

[8]. RashiDhagat and Purvi Joshi. New approach of user authentication using digital signature. 2016 Symposium 

on Colossal Data Analysis and Networking (CDAN), pages 1–3, 2016.  

[9]. Muhammad Arif Mughal, Xiong Luo, and A T A Ullah. A Lightweight Digital Signature Based Security 

Scheme for Human-Centered Internet of Things. 2018. 

[10]. Don Jomar S Hombrebueno, Ma Gracia Corazon E Sicat, Jasmin D. Niguidula, Enrico P. Chavez, and 

Alexander A. Hernandez. Symmetric cryptosystem based on data encryption standard integrating HMAC and 

digital signature scheme implemented in multi-cast messenger application. 2009 International Conference on 

Computer and Electrical Engineering, ICCEE 2009, 2:327–334, 2009. 

[11]. Sourabh Chandra, SmitaPaira, B Tech Student, SkSafikul, Alam Assistant, and Goutam Sanyal. A 

comparative survey of symmetric and asymmetric key cryptography. 2014 International Conference on 

Electronics, Communication and Compytational Engineering (ICECCE), pages 83–93, 2014. 

[12]. Alizai, Zahoor Ahmed. Improved IoT Device Authentication Scheme Using Device Capability and Digital 

Signatures. 2018 International Conference on Applied and Engineering Mathematics. 

 


