On Non-homogeneous Ternary Cubic Equation

$$
5\left(x^{2}+y^{2}\right)-6 x y=z^{3}
$$

S. Vidhyalakshmi ${ }^{1}$ and M. A. Gopalan ${ }^{2}$
Assistant Professor, Department of Mathematics ${ }^{1}$
Professor, Department of Mathematics ${ }^{2}$
Shrimati Indira Gandhi College, Trichy, Tamil Nadu, India
vidhyasigc@gmail.com ${ }^{1}$ and mayilgopalan@gmail.com ${ }^{2}$

Abstract

This paper aims at determining non-zero distinct integer solutions to the non-homogeneous ternary cubic equation $5\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)-6 \mathrm{xy}=\mathrm{z}^{3}$. Various choices of integer solutions are exhibited.

Keywords: Ternary Cubic, Non-Homogeneous Cubic, Integer Solutions

I. INTRODUCTION

The Diophantine equations are rich in variety and offer an unlimited field for research [1-4]. In particular refer [5-27] for a few problems on ternary cubic equation with 3 unknowns. This paper concerns with yet another interesting ternary cubic diophantine equation with three variables given by $5\left(x^{2}+y^{2}\right)-6 x y=z^{3}$ for determining its infinitely many non-zero distinct integral solutions.

II. METHOD OF ANALYSIS

The non-homogeneous ternary cubic equation to be solved is

$$
\begin{equation*}
5\left(x^{2}+y^{2}\right)-6 x y=z^{3} \tag{1}
\end{equation*}
$$

To start with, observe that (1) is satisfied by the triples given by

$$
\begin{aligned}
& (x, y, z)=\left(12 \alpha^{3 k}, 4 \alpha^{3 k}, 8 \alpha^{2 k}\right),\left(a\left(5 a^{2}+5 b^{2}-6 a b\right) \alpha^{3 t}, b\left(5 a^{2}+5 b^{2}-6 a b\right) \alpha^{3 t},\left(5 a^{2}+5 b^{2}-6 a b\right) \alpha^{2 t}\right) \\
& \left((2 s-1)\left(2 s^{2}-4 s+4\right),(2 s-3)\left(2 s^{2}-4 s+4\right), 2\left(2 s^{2}-4 s+4\right)\right)
\end{aligned}
$$

However, there are other choices of integer solutions to (1) that are illustrated below:
Illustration 1:
Introduction of the linear transformations

$$
\begin{equation*}
x=4 u+2 v, y=4 u-2 v, z=4 w \tag{2}
\end{equation*}
$$

in (1) leads to

$$
\begin{equation*}
\mathrm{u}^{2}+\mathrm{v}^{2}=\mathrm{w}^{3} \tag{3}
\end{equation*}
$$

which is satisfied by

$$
\begin{equation*}
\mathrm{u}=\mathrm{m}\left(\mathrm{~m}^{2}+\mathrm{n}^{2}\right), \mathrm{v}=\mathrm{n}\left(\mathrm{~m}^{2}+\mathrm{n}^{2}\right), \mathrm{w}=\left(\mathrm{m}^{2}+\mathrm{n}^{2}\right) \tag{4}
\end{equation*}
$$

In view of (2), the corresponding integer solutions to (1) are as follows:

$$
\mathrm{x}=(4 \mathrm{~m}+2 \mathrm{n})\left(\mathrm{m}^{2}+\mathrm{n}^{2}\right), \mathrm{y}=(4 \mathrm{~m}-2 \mathrm{n})\left(\mathrm{m}^{2}+\mathrm{n}^{2}\right), \mathrm{z}=4\left(\mathrm{~m}^{2}+\mathrm{n}^{2}\right)
$$

Note 1:
Observe that (3) is also satisfied by

$$
\mathrm{u}=\mathrm{m}\left(\mathrm{~m}^{2}-3 \mathrm{n}^{2}\right), \mathrm{v}=\mathrm{n}\left(3 \mathrm{~m}^{2}-\mathrm{n}^{2}\right), \mathrm{w}=\left(\mathrm{m}^{2}+\mathrm{n}^{2}\right)
$$

The corresponding integer solutions to (1) are given by

$$
\mathrm{x}=4 \mathrm{~m}\left(\mathrm{~m}^{2}-3 \mathrm{n}^{2}\right)+2 \mathrm{n}\left(3 \mathrm{~m}^{2}-\mathrm{n}^{2}\right), \mathrm{y}=4 \mathrm{~m}\left(\mathrm{~m}^{2}-3 \mathrm{n}^{2}\right)-2 \mathrm{n}\left(3 \mathrm{~m}^{2}-\mathrm{n}^{2}\right), \mathrm{z}=4\left(\mathrm{~m}^{2}+\mathrm{n}^{2}\right)
$$

Note 2:
(3) is written as

$$
\begin{equation*}
u^{2}+v^{2}=w^{3} * 1 \tag{5}
\end{equation*}
$$

Consider the integer 1 on the R.H.S. of (5) as

$$
\begin{equation*}
1=\frac{\left(p^{2}-q^{2}+i 2 p q\right)\left(p^{2}-q^{2}-\mathrm{i} 2 p q\right)}{\left(\mathrm{p}^{2}+\mathrm{q}^{2}\right)^{2}}, \mathrm{p} \geq \mathrm{q} \geq 0 \tag{6}
\end{equation*}
$$

Substitute (6) and the value of w given by (4) in (5). Employing the method of factorization \& equating the real and imaginary parts, the values of u, v are obtained. Replacing
$m=\left(p^{2}+q^{2}\right) M, n=\left(p^{2}+q^{2}\right) N$ in the values of u, v, w and using (2), the corresponding integer solutions to (1) are given by

$$
\begin{aligned}
& x=\left(p^{2}+q^{2}\right)^{2}\left[\left(M^{3}-3 M N^{2}\right)\left(4 p^{2}-4 q^{2}+4 p q\right)+\left(3 M^{2} N-N^{3}\right)\left(2 p^{2}-2 q^{2}-8 p q\right)\right] \\
& y=\left(p^{2}+q^{2}\right)^{2}\left[\left(M^{3}-3 M N^{2}\right)\left(4 p^{2}-4 q^{2}-4 p q\right)+\left(3 M^{2} N-N^{3}\right)\left(-2 p^{2}+2 q^{2}-8 p q\right)\right] \\
& z=4\left(p^{2}+q^{2}\right)^{2}\left(M^{2}+N^{2}\right)
\end{aligned}
$$

Illustration 2:
Introduction of the linear transformations

$$
\begin{equation*}
x=u+v, y=u-v, z=2 w, u \neq v \neq 0 \tag{7}
\end{equation*}
$$

in (1) leads to

$$
\begin{equation*}
u^{2}+4 v^{2}=2 w^{3} \tag{8}
\end{equation*}
$$

Take W as

$$
\begin{equation*}
\mathrm{w}=4\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) \tag{9}
\end{equation*}
$$

The integer 2 on the R.H.S. of (8) is taken as

$$
\begin{equation*}
2=(1+i)(1-i) \tag{10}
\end{equation*}
$$

Substituting (9) \& (10) in (8) and employing the method of factorization, consider

$$
\mathrm{u}+\mathrm{i} 2 \mathrm{v}=(1+\mathrm{i})(2 \mathrm{a}+\mathrm{i} 2 \mathrm{~b})^{3}
$$

Equating the real and imaginary parts in the above equation, the values of u, v are obtained.
In view of (7), the corresponding integer solutions to (1) are as follows:

$$
\begin{aligned}
& x=12 a^{3}-36 a b^{2}-12 a^{2} b+4 b^{3} \\
& y=4 a^{3}-12 a b^{2}-36 a^{2} b+12 b^{3} \\
& z=8\left(a^{2}+b^{2}\right)
\end{aligned}
$$

Note 3:
In addition to (10), the integer 2 on the R.H.S. of (8) is expressed as exhibited below:

$$
2=\frac{(7+i)(7-i)}{25}, \frac{(1+7 i)(1-7 i)}{25}
$$

Following the above procedure , two more sets of integer solutions to (1) are obtained.
Note 4:
Consider (8) as

$$
u^{2}+4 v^{2}=2 w^{3} * 1
$$

The repetition of the process as in Note 2 of Illustration 1, one obtains a different set of integer solutions to (1).

III. CONCLUSION

An attempt has been made to obtain non-zero distinct integer solutions to the non-homogeneous cubic diophantine equation with three unknowns given by $5\left(x^{2}+y^{2}\right)-6 x y=z^{3}$. One may search for other sets of integer solutions to the considered equation as well as other choices of the third degree diophantine equations with multi-variables

REFERENCES

[1]. L.E. Dickson, History of Theory of Numbers, Chelsea publishing company, Vol.II, New York, 1952.
[2]. R.D. Carmichael, The Theory of Numbers and Diophantine Analysis, Dover Publications, New York, 1959.
[3]. L.J. Mordell, Diophantine Equations, Academic press, London, 1969.
[4]. S.G. Telang, Number Theory, Tata Mcgrow Hill Publishing company, NewDelhi, 1996.
[5]. M.A. Gopalan, G. Srividhya, Integral solutions of ternary cubic diophantine equation $x^{3}+y^{3}=z^{2}$, Acta Ciencia Indica, Vol.XXXVII, No.4, 805-808, 2011.
[6]. M.A. Gopalan, S. Vidhyalakshmi, S. Mallika, On the ternary non-homogeneous Cubic equation $x^{3}+y^{3}-3(x+y)=2\left(3 k^{2}-2\right) z^{3}$, Impact journal of science and Technology, Vol.7, No.1, 41-45, 2013.
[7]. M.A. Gopalan, S. Vidhyalakshmi, N. Thiruniraiselvi, On homogeneous cubic equation with three unknowns $x^{2}-y^{2}+z^{2}=2 k x y z$, Bulletin of Mathematics and Statistics Research, Vol.1(1), 13-15, 2013.
[8]. M.A.Gopalan, S.Vidhyalakshmi,K.Lakshmi , Latice Points On The Non-homogeneous cubic equation $x^{3}+y^{3}+z^{3}+x+y+z=0$,Impact J.Sci.Tech; Vol.7(1), 21-25, 2013
[9]. M.A.Gopalan, S.Vidhyalakshmi,K.Lakshmi , Latice Points On The Non-homogeneous cubic equation $x^{3}+y^{3}+z^{3}-(x+y+z)=0$
, Impact J.Sci.Tech; Vol.7(1), 51-55, 2013
[10]. S. Vidhyalakshmi, Ms. T.R. Usharani, and M.A.Gopalan, Integral Solutions of the Ternary cubic Equation $5\left(x^{2}+y^{2}\right)-9 x y+x+y+1=35 z^{3}$, International Journal of Research in Engineering and Technology, Vol.3(11), 449-452, Nov 2014.
[11]. M.A. Gopalan, S. Vidhyalakshmi, S. Mallika, Non-homogeneous cubic equation with three unknowns $3\left(x^{2}+y^{2}\right)-5 x y+2(x+y)+4=27 z^{3}$, International Journal of Engineering Science and Research Technelogy, Vol.3, No.12, 138-141, Dec 2014.
[12]. M.A.Gopalan, N. Thiruniraiselvi, R. Sridevi, On the ternary cubic equation $5\left(x^{2}+y^{2}\right)-8 x y=74\left(k^{2}+s^{2}\right) z^{3}$, International Journal of Multidisciplinary Research and Modern Engineering, Vol.1(1), 317-319, 2015.
[13]. M.A.Gopalan, N. Thiruniraiselvi, V. Krithika, On the ternary cubic diophantine equation $7 x^{2}-4 y^{2}=3 z^{3}$
[14]. M.A. Gopalan, S. Vidhyalakshmi, J. Shanthi, J. Maheswari, On ternary cubic diophantine equation $3\left(x^{2}+y^{2}\right)-5 x y+x+y+1=12 z^{3}$, IJAR, Vol.1, Issue 8, 209-212, 2015.
[15]. G. Janaki and P. Saranya, On the ternary Cubic diophantine equation $5\left(x^{2}+y^{2}\right)-6 x y+4(x+y)+4=40 z^{3}$, International Journal of Science and Research-online, Vol.5, Issue 3, 227-229, March 2016.
[16]. R. Anbuselvi, K. Kannan, On Ternary cubic Diophantine equation $3\left(x^{2}+y^{2}\right)-5 x y+x+y+1=15 z^{3}$, International Journal of scientific Research, Vol.5, Issue 9, 369375, Sep 2016.
[17]. A. Vijayasankar, M.A. Gopalan, V. Krithika, On the ternary cubic Diophantine equation

Volume 2, Issue 1, November 2022

$2\left(x^{2}+y^{2}\right)-3 x y=56 z^{3}$, Worldwide Journal of Multidisciplinary Research and Development, Vol.3, Issue 11, 6-9, 2017.
[18]. G. Janaki and C. Saranya, Integral Solutions Of The Ternary Cubic Equation $3\left(x^{2}+y^{2}\right)-4 x y+2(x+y+1)=972 z^{3}$, IRJET, Vol.4, Issue 3, 665-669, 2017.
[19]. Dr.R. Anbuselvi, R. Nandhini, Observations on the ternary cubic Diophantine equation $x^{2}+y^{2}-x y=52 z^{3}$, International Journal of Scientific Development and Research Vol. 3, Issue 8, 223225, August 2018.
[20]. M.A. Gopalan, Sharadhakumar, On the non-homogeneous Ternary cubic equation $3\left(x^{2}+y^{2}\right)-5 x y+x+y+1=111 z^{3}$, International Journal of Engineering and technology, Vol.4, Issue 5, 105-107, Sep-Oct 2018.
[21]. M.A. Gopalan, Sharadhakumar, On the non-homogeneous Ternary cubic equation $(x+y)^{2}-3 x y=12 z^{3}$, IJCESR,Vol.5, Issue 1, 68-70, 2018.
[22]. A. Vijayasankar, Sharadha Kumar , M.A.Gopalan, On Non-Homogeneous Ternary Cubic Equation $x^{3}+y^{3}+x+y=2 z\left(2 z^{2}-\alpha^{2}+1\right)$, International Journal of Research Publication and Reviews, Vol.2(8), 592-598, 2021.
[23]. S. Vidhyalakshmi, J. Shanthi, K. Hema, M.A. Gopalan, Observation on the paper entitled Integral Solution of the homogeneous ternary cubic equation $\mathrm{x}^{3}+\mathrm{y}^{3}=52(\mathrm{x}+\mathrm{y}) \mathrm{z}^{2}$, EPRA IJMR, Vol.8, Issue 2, 266273, 2022.
[24]. S.Vidhyalakshmi ,M.A.Gopalan ,GENERAL FORM OF INTEGRAL SOLUTIONS TO THE TERNARY NON-HOMOGENEOUS CUBIC EQUATION $y^{2}+\mathrm{Dx}^{2}=\alpha \mathrm{z}^{3}$, IJRPR, Vol 3,No 9, 1776-1781,2022
[25]. S.Vidhyalakshmi ,M.A.Gopalan ,On Finding Integer Solutions To Non-homogeneous Ternary Cubic Equation $\mathrm{x}^{2}+\mathrm{b} \mathrm{y}^{2}=\left(\mathrm{m}^{2}+\mathrm{bn}^{2}\right) \mathrm{z}^{3}$,IRJEdT, Vol 4,Issue $10,22-29,2022$
[26]. S.Vidhyalakshmi ,M.A.Gopalan ,On Finding Integer Solutions To Non-homogeneous Ternary Cubic Equation $x^{2}+y^{2}+x y=\left(m^{2}+3 n^{2}\right) z^{3}$,JAES, Vol 2,Issue $4,28-31,2022$
[27]. S.Vidhyalakshmi ,M.A.Gopalan ,On Finding Integer Solutions To Non-homogeneous Ternary Cubic Equation $\mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{x} y-\mathrm{k}(\mathrm{x}+\mathrm{y})+\mathrm{k}^{2}=\mathrm{z}^{3}$, IJARSCT, Vol 2,Issue $1,489-492,2022$

