

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 1, November 2022

Smoke and Fire Detection using Deep Learning: A Review

K. Manoj¹, P. Suniti², K. Maruthi Durga Karthik³, K. Nikhil Kumar⁴, K. Raghu Vamsi⁵ K. V. Ranjith Varma⁶

Department of CSE^{1,3,4,5,6}

Assistant Professor, Department of CSE²

GMR Institute of Technology, Rajam, Andhra Pradesh, India

kundemmanoj@gmail.com, sunitynu@gmail.com, maruthikunuku718@gmail.com, nikhilkurakula16@gmail.com, kurmadasuraghuvamsi2003@gmail.com, kvrvarma2003@gmail.com

Abstract: The fire and smoke monitoring systems are useful in numerous industries like military, Social Security and economical. The recent methods for fire and smoke detection are used only motion and colour characteristics thus many wrong alarms are happening and this is often decrease the performance of the systems. During this study, we will observe the way we are able to divide the smoke columns with object detection and a deep learning-based approach and convolutional neural network (CNN) model for extracting smoke features and smoke detection. The colour, motion and disorder are useful characteristics in fire and smoke detection algorithm. Smoke of fireplace will blur the entire or a part of the photographs. Thus by processing of the frames, different objects will detect. Because of evaluate the features of objects, the goal objects (fire and smoke) will be defined easily. The results of the study have broad application prospects within the important military, social insurance, forest-fire alarm, commercial applications, and so on. preprocessing, feature extraction, and fire detection. Among, feature extraction is that the core part in algorithms. Traditional algorithm depends on the manual selection of fireplace whereas algorithms of deep learning, Convolutional Neural Networks (CNNs) like GAN, SS-GAN, DCGAN, DCNN, AlexNet, VGG, Bi-LSTM, Inception, ResNet, RetinaNet Faster R-CNN can automatically learn and extract complex image features effectively. These processes has many advantages like early fire detection, high accuracy, flexible system installation, and the capability to effectively detect fires in large spaces and complicated building structures.

Keywords: Smoke detection, Fire detection, Wildfires, Deep learning, Convolutional neural network (CNN)

I. INTRODUCTION

In the economic development, the hearth control has become great challenge within the constructions due to the increasing scale and complexity. Therefore, we'd like fire detection and alarm with high sensitivity and accuracy to cut back fire losses. Traditional fire detection technologies, like smoke and warmth detectors, don't seem to be suitable for giant spaces, complex buildings, or spaces with many disturbances. The restrictions of above detection technologies, missed detections, false alarms, detection delays and other problems often occur, making it even tougher to attain early fire warnings. Recently, image fire detection has become a trend within the research part. In this process the image's data from a camera is collected by algorithms to work out the presence of a fireplace in images. Therefore, the detection algorithms are the main part of this technology, it directly determining the performance of the image fire detector. There are three main stages within the process of fire detection algorithms, including image

II. LITERATURE SURVEY

1. Yin, H., Wei, Y., Liu, H., Liu, S., Liu, C., & Gao, Y. (2020). Deep convolutional generative adversarial network and convolutional neural network for smoke detection. Complexity, 2020. This paper mainly includes the following contributions:

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/568

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 1, November 2022

1. The vibe algorithm

- 2. DCGAN
- 3. CNN

In this article, author compares traditional algorithms and the deep learning algorithms like GAN, SS-GAN, DCGAN. The selected new algorithms give more accuracy in both the training and testing case studies. Thus the author concludes that these experimental results has better accuracy and reduces the false alarm rate for various forms of smoke appearances.

2. Gaur, A., Singh, A., Kumar, A., Kumar, A., & Kapoor, K. (2020). Video flame and smoke based fire detection algorithms: A literature review. Fire technology, 56(5), 1943-1980 In this paper, the author proposed handcraft feature with or without classifiers and deep learning approaches. The author gives a clear idea by how handcraft rules, classifiers based fire flames and smoke detection are used and by also using deep learning. In deep learning approach, CNN is used for fire detection and smoke detection in images and videos. Some initial works used DCNN alone to detect flames and smoke. It also been noticed that, there is a drawback of using CNN's for fire detection is that these have high memory and computational needs. Present it can detect in some of the locations using these approaches but in Future it may give better detection results in other locations like tunnels, parking places and in forest environments.

3. Zheng, X., Chen, F., Lou, L., Cheng, P., & Huang, Y. (2022). Real-Time Detection of Full-Scale Forest Fire Smoke Based on Deep Convolution Neural Network. Remote Sensing, 14(3), 5361. This paper evaluates the effectiveness of using deep convolution neural network to detect fire smoke in real time. Based on various CNN model like AlexNet, VGG, Inception, ResNet etc., the smoke and flame detection algorithms were also investigated during this paper. To investigate which deep CNN algorithm can perform the simplest for early fire detection, this paper implements and compares four deep CNN algorithms for fire detection in real time. The average measurement accuracy and detection speed of 4 investigated deep CNN algorithms. This paper concludes that everyone the four investigated algorithms achieved acceptable average accuracy.

4. F.Guede-Fernández, F., Martins, L., de Almeida, R. V., Gamboa, H., & Vieira, P. (2021). A deep learning based object identification system for forest fire detection. Fire, 4(4), 75. In this article comparison between the use of RetinaNet and Faster R-CNN was performed. The RetinaNet and Faster R-CNN models were trained for smoke classification with specific parameters and datasets. These models are trained with high, mid and low smoke level images. The time taken to detect the fire from start of the incident was 5.5 min on average for the same 8 sequences.

5. Fernandes, A. M., Utkin, A. B., & Chaves, P. (2022). Automatic Early Detection of Wildfire Smoke With Visible Light Cameras Using Deep Learning and Visual Explanation. IEEE Access, 10, 12814-12828. Author states that in this paper Support Vector Machines (SVM), Hidden Markov Models (HMM), Kalman filters, etc., frequently used to analyze features such as color, wavelets, texture, or motion of smoke. The present article indicates that when no mosaic output issused but rectification is employed to assure that neural networks are focusing on the desired features, the true positive percentages and AUROC are smaller than in the case without rectification.

S1.	PAPER	YEAR	DESCRIPTION	LIMITATIONS	ADVANTAGES	PERFORMANCE
No.	NAME					METRICES
1	Deep	2020	To overcome	Wind direction, wind	Vibe algorithm has	The proposed
	Convolutional		these issues, a	speed, light, and other	good applications in	approach is proved
	Generative		Graph-based	factors in the actual	moving object	with its increased
	Adversarial		Feature	environment will have	detection.	recognition rate.
	Network and		Extraction and	a great impact on the	We can make use of	
	Convolutional		Hybrid	smoke.	the background for	

III. COMPARISION TABLE

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

		1	G1 17 1			
	Neural		Classification		static feature	
	Network for		Approach (GFE-		extraction and	
	Smoke		HCA) is		classification	
	Detection		proposed for			
			recognizing the			
			facial			
			expressions			
2	Video Flame	2020	These are mainly	The behavior of flame	Some of them are	The Faster R-CNN
	and Smoke		based on	and smoke also	good cues of fire	with Inception
	Based Fire		handcraft	dependson their	but may require	ResNetV2 is best in
	Detection		features with or	distance from the	computationallyrigo	terms of accuracy
	Algorithms: A		without	camera, background,	rous algorithms	but it is slowest
	Literature		classifiers and	day or night time and	while some are	
	Review		deep learning	many such factors.	opposite.	
			approaches			
3	Real-Time	2022	Machine vision	The deep learning	The deep CNN	The Efficient Det
	Detection of		and image	algorithms also have	algorithm can	algorithm achieves
	Full-Scale		processing	their limitations. Most	automatically	an average detection
	Forest Fire		Technology is	of the existing deep	extract complex	accuracy of 95.7%,
	Smoke Based		widely used for	learning algorithms	image fire features	which is the best
	on Deep		detecting forest	consider fire detection	for	real-time forest fire
	Convolution		fire smoke.	as a classification	Fire detection in	smoke detection
	Neural			problem and ignore the	different scenes.	among the evaluated
	Network			region identification		algorithms.
				process such that the		
				entire image		
				was classified into one		
				category		
4	A Deep	2021	This paper uses	It can't differentiate	These models are	The time elapsed
	Learning		deep learning	night-time images.	trained with hrz,	from the start of the
	Based Object		approach.	It may not distinguish	mid and low smoke	fire until it is first
	Identification			clouds and smoke.	classes.	detected was 5.5
	System for			The HPWREN dataset		min on average for
	Forest Fire			have a clear view of		the same 8
	Detection			the horizon without		sequences.
				obstructions.		
5	Automatic	2022	Algorithms	The mosaic output	The best overall	The
	Early		tested	does notalways lead to	neural network	AUROC value of
	Detection of		were residual	better results.	created is the	0.949, obtained with
	Wildfire		neural networks		EfficientNet-	the test set,
	Smoke With		(ResNet) and		B0 configuration,	corresponds
	Visible Light		EfficientNet		which possesses the	to true and false
	Cameras Using				smallest number of	positive percentages
	Deep Learning				trainable weights	of 85.3% and
	and Visual				among all the	3.1%, respectively.
	Explanation				neural networks	
					tested.	
6	A Deep	2017	novel deep	Unlike algorithms	It can automatically	Results show that
	Normalization		normalization	based on handcrafted	extract features for	our method

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

	and		and	features	smoke detection	achieved very low
	Convolutional		convolutional	our DNCNN can	It also achieves	false alarm rates
	Neural		neural network	automatically extract	high detection rates	below 0.60% with
	Network for		(DNCNN) with	features forsmoke	and low false alarm	detection rates
	Image Smoke		14 layers to	detection	rates at the same	above 96.37% on
	Detection		implement	detection.	time	our smoke data sets
	Detection		automatic feature		time	our smoke data sets.
			extraction and			
			classification			
7	An Attention	2010	In this paper, we	To ago the limitations	the proposed	This mothed
/	An Attention	2019	in this paper, we	of ease the miniations	AD: LSTM	ashisyad a high
	Didiractional		Attention	imaga complete on and	ADI-LOIM from ouverly obtained	achieved a high
	L STM for		Future	image samples, an end-	high an accuracy in	accuracy of 97.8%
	LSIM for		Ennanced	to-end trainable	nigher accuracy in	
	Early Forest		Bidirectional	framework based	early forest	
	Fire Smoke		Long Short-	on fast detector SSD	fire smoke	
	Recognition		Term Memory	and MSCNN for	recognition	
			Network (ABI-	smoke detection is	compared with	
			LSIM) for video	proposed, which can	other methods.	
			based forest fire	optimize the model		
			smokerecognitio	from synthetic andreal		
0		2010	n.	smoke samples.		
8	Dual Deep	2019	This paper uses	It does not give 100%	This algorithm is	Accuracy for CNN
	Learning		Deep	accuracy.	applicable in any	is 92.3% and for
	Model for		Convolutional		conditions like	SVM 18 98.29%
	Image Based		Neural Networks		wild-smoke,	
	Smoke				distance or nearby	
	Detection				smoke, cloudy, fog	
-		2020		T. 1 1000/	or mist etc.	0 1 1
9	KutralNet: A	2020	One	It does not gain 100%	Our proposed	One of our models
	Portable Deep		of the new	accuracy in this paper.	model KutralNet	presents /1% fewer
	Learning		approaches to the		obtains better	parameters than
	Model for Fire		problem is the		accuracy and	FireNet, while still
	Recognition		use of images to		AUROC index than	presenting
			perform the		previously deep	competitive
			detection.		learning models for	accuracy and
					fire recognition,	AUROC
					with just a few	performance.
					layers and with a	
1					considerable	
1					reduction in	
					computational cost	
10	A Real-time	2022	This paper uses	This algorithm takes	This method is an	This method gives
	Fire		the lightweight	long time for	encoder-decoder	an accuracy of
	Segmentation		network to build	evaluation.	structure network.	92.46% to 86.98%.
	Method Based		a new deep		This method is an	
	on A Deep		convolution		improved version of	
	Learning		neural network.		deeplabv3+	
	Approach					
11	FIgLib&Smok	2022	This paper uses	Neither of these	one limitation is	This achieved an

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

12	eyNet: Dataset and Deep Learning Model for Real-Time Wildland Fire Smoke Detection	2020	deep learning approaches for wildlife smoke detection.	methods improved model performance.	that this ratio is not representative of real-world scenarios in which positive examples of visible smoke are much more rare than negative	average accuracy of 78.5%.
12	neural network based early fire detection	2020	proposed a fire detection method which is based on powerful machine learning and deep learning algorithms	strategiesrequire an extensive amount of smoke, heat or gas for detection.	Adaboost-LBP model is to find emergencies fromthe image and to generate ROI of that detected object.	ourproposed model is more than 99%. It can be more accurate after more training.
13	Low- Complexity High- Performance Deep Learning Model for Real-Time Low-Cost Embedded Fire Detection Systems	2020	Most deep learning systems outperform the hand-crafted algorithms for fire detection, particularly due to the enormous potential offered by Convolutional Neural Network and its variants.	We dint get the desired accuracy.	Our method outputs the best performance in terms of accuracy, precision, false positives, and F- measure metrics. The model also gives a good value of recall while keeping the false negatives to sufficiently low value.	The accuaracy is 0.94%.
14	False Positive Decremented Research for Fire and Smoke Detection in Surveillance Camera using Spatial and Temporal Features Based on Deep Learning	2019	we introduce a novel smoke detection algorithm that reduces falsepositive detection using spatial and temporal features based on deep learning from factory installedsurveilla nce cameras.	a deep learning method using the shape of an object frequentlygenerate false positives, where general object is detected as the fire or smoke.	The frame similarity using SSIM and MSE. Second, we adapted the Faster R-CNN algorithm to find smoke and fire candidate region for the detected frame	

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 1, November 2022

15	Fire Detection	2021	Weexamined the	This cannot be done in	CNN were explored	The testing accuracy
	Method in		originalYOLOv4	real time.	using large	is 96.3%.
	Smart City		approach to		databases to make	
	Environments		determine the		accurate predictions	
	Using a Deep-		accuracy of		and control	
	Learning-		predictions of		overfitting issues.	
	Based		candidate			
	Approach		fireregions.			
			However, the			
			anticipated			
			results were not			
			observed after			
			several			
			experiments			
			involving			
			thisapproach to			
			detect fire			
			accidents.			

4.1 GAN

IV. METHODOLOGY

Generative adversarial network (GAN) is an exciting recent innovation in deep learning. GAN is generative model which means they can create new data instances that resemble your training data.

In GANs, there's a generator and a discriminator. The Generator generates fake samples of information (like image, audio, etc.) and tries to fool the Discriminator. On the other hand, the Discriminator tries to tell apart between the important and faux samples. The discriminator filters through the knowledge and returns a probability between 0 and 1. 1 correlates with real data and 0 correlates with fake data. These values are then manually checked for achievement and repeated until the required outcome is reached. The Generator and also the Discriminator are both Neural Networks and that they both run in competition with one another within the training phase.

4.2 Types of GAN

- Vanilla GAN
- Conditional GAN (CGAN)
- Deep Convolutional GAN (DCGAN)
- Laplacian Pyramid GAN (LAPGAN)
- Super Resolution GAN (SRGAN)

Fig1: GAN model composition. The generator model generates the images and differentiates whether the sample is real or not.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 1, November 2022

A. DCNN

Deep convolutional neural networks (DCNN) are the sort most typically won't to identify patterns in images and video. DCNN have evolved from traditional artificial neural networks, employing a 3-D neural pattern. Deep convolutional neural networks are mainly focused on applications like object detection, image classification, and recommendation systems. Convolutional networks were inspired by biological processes there in the connectivity pattern between neurons resembles the organization of the animal cortical region. Types of Deep Conventional Neural Networks:

- R-CNN
- Fast RCNN
- GoogleNet
- VGGNet
- ResNet
- DNCNN

Fig2: A DCNN model for smoke and fire detection.

B. Bi-LSTM

Long Short Term Memory (LSTM) is a type of reasonably recurrent neural network. In RNN output from the last step is fed as input within the current step. It tackled the matter of long-term dependencies of RNN within which the RNN cannot predict the word stored within the remembering but can give more accurate predictions from the recent information. As the gap length increases, efficient performance of RNN decreases. LSTM can by default retain the knowledge for an extended period of your time. It's used for processing, predicting, and classifying on the premise of time-series data. A common LSTM unit is composition of

- Cell
- Input gate
- Output gate
- Forgot gate

Bidirectional long-short term memory (bi-lstm) is that the process of creating any neural network which have the sequence information in both directions backwards or forward. In bidirectional, our input flows in two directions making a bi-lstm, this is the difference in the regular LSTM.

This structure allows the networks to own both backward and forward information about the sequence at each time step.

Fig 3: A single layer bidirectional LSTM. We feed spatial features in both forward and backward which allows our model learns both the past and future context information context information from both left and right side over time.

Copyright to IJARSCT www.ijarsct.co.in

IJARSCT Impact Factor: 6.252

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

IJARSCT

Volume 2, Issue 1, November 2022

Fig4: Smoke and fire detection techniques classification chart.

V. RESULT AND DISCUSSION

5.1 Methodology-1

In this paper proposes a generative adversarial network and convolutional neural network for smoke and fire detection. By using these algorithms, the model has obtained higher accuracy rates than traditional methods.GAN algorithm doesn't have DR% and FAR%.The obtain ed AR% for this algorithm is 85.43%.

5.2 Methodology-2

In this paper, the author proposed DCNN algorithms for smoke and fire detection. These algorithms performed right strategy for combination of new and original training samples. The DCNN algorithms used and accuracy given by them are as follows:

-			
ALGORITHMS	DR%	AR%	FAR%
DNCNN	96.37	98.19	0.60
AlexNet	93.29	97.18	0.26
VGG16	96.19	97.48	0.60

Table 1: The DCNN algorithms used and accuracy given by them are as follows:

5.3 Methodology-3

In this paper, the author used d bidirectional LSTM. The proposed ABi-LSTM has been inspired by the attention mechanism in neural machine translation, which can adaptively focus on discriminative frames. Bi-LSTM framework obtains higher accuracy in early forest fire smoke recognition compared with other methods. These algorithms give the 97.8% accuracy rate, 97.5% detection rate.

VI. PERFORMANCE METRICS AND VALUATION

DR, FAR, AR represents detection rate, false alarm rate, and accuracy rate respectively.TPR, TNR represents true positive rate, true negative rate respectively. TP, TN, FP, FN represents True Positive, True Negative, False Positive, False Negative respectively. NN, P, N represents the number of negative samples wrongly detected, the number of negative samples, and the number of positive samples, respectively

TPR = (TP) / (TP + FN)	(1)
TNR = (TN) / (TN + FP)	(2)
= (TP+TN) / (TP+FN+TN+FP)	(3)

$$DR = TP / P \tag{4}$$

Copyright to IJARSCT www.ijarsct.co.in

AR

DOI: 10.48175/568

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

Volume 2, Issue 1, November 2022

FAR = NN / N	(5)
AR = (TP+TN) / (P+F)	(6)
From the above formulas,	
We can equalize	
TPR=DR	(7)
As,	
P=TP+FN	(8)
N=TN+FP	(9)
Table 2. Recent algorithms	proposed for smoke

 Table 2: Recent algorithms proposed for smoke and fire detection and their accuracies.

ALGORITHMS	DR%	AR%	FAR%
GAN	-	85.43	-
SS-GAN	-	89.24	-
DCGAN	-	93.24	-
DNCNN	96.37	98.19	0.60
AlexNet	93.29	97.18	0.26
VGG16	96.19	97.48	0.60
Bi-LSTM	97.5	97.8	-
Inception	93.2	93.4	-

VI. CONCLUSION

In this paper, several deep learning techniques have been applied to detect the smoke and fire in various samples. These techniques mainly focused on handcraft feature image and video based fire and smoke detection. The static and dynamic characteristics of both fire and smoke are mainly focused. The treatment for smoke and fire also differs because they have different prominent features. The behavior of fire and smoke also depends on their distance from the camera, background, day or night time and many such factors. The deep learning and CNN algorithms provides higher accuracy compared to that of the traditional algorithms and fire alarms. These algorithms not only can detect the fire accidents in public, but also can be helpful in forest regions. Therefore, we consider combining the new optimization algorithms with our network model for better smoke detection performance. We should focus on applying smoke detection to real-life or industrial environments, extending to real-time smoke detection. It is of great significance for the prevention of fire in production and life. From the methods we used above, we obtained the highest accuracy rate by using the DNCNN algorithm.

REFERENCES

- [1]. Yin, H., Wei, Y., Liu, H., Liu, S., Liu, C., &Gao, Y. (2020). Deep convolutional generative adversarial network and convolutional neural network for smoke detection. Complexity,2020
- Gaur, A., Singh, A., Kumar, A., Kumar, A., &Kapoor, K. (2020). Video flame and smoke based fire [2]. detection algorithms: A literature review. Fire technology, 56(5), 1943-1980
- [3]. Zheng, X., Chen, F., Lou, L., Cheng, P., & Huang, Y. (2022). Real-Time Detection of Full-Scale Forest Fire Smoke Based on Deep Convolution Neural Network. Remote Sensing, 14(3), 536
- [4]. Guede-Fernández, F., Martins, L., de Almeida, R. V., Gamboa, H., & Vieira, P. (2021). A deep learning based object identification system for forest fire detection. Fire, 4(4), 75
- [5]. Fernandes, A. M., Utkin, A. B., & Chaves, P. (2022). Automatic Early Detection of Wildfire Smoke With Visible Light Cameras Using Deep Learning and Visual Explanation. IEEE Access, 10, 12814-12828.
- [6]. Yin, Z., Wan, B., Yuan, F., Xia, X., & Shi, J. (2017). A deep normalization and convolutional neural network for image smoke detection. Ieee Access, 5, 18429-18438.
- [7]. Cao, Y., Yang, F., Tang, Q., & Lu, X. (2019). An attention enhanced bidirectional LSTM for early forest fire smoke recognition. IEEE Access, 7, 154732-154742.
- Pundir, A. S., & Raman, B. (2019). Dual deep learning model for image based smoke detection. Fire [8]. technology, 55(6), 2419-2442

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/568

International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

- [9]. Ayala, A., Fernandes, B., Cruz, F., Macêdo, D., Oliveira, A. L., &Zanchettin, C. (2020, July).Kutralnet: A portable deep learning model for fire recognition. In 2020 International Joint Conference on Neural Networks (IJCNN) (pp. 1-8).IEEE
- [10]. Li, M., Zhang, Y., Mu, L., Xin, J., Yu, Z., Jiao, S., ...&Yingmin, Y. (2022). A Real-time Fire Segmentation Method Based on A Deep Learning Approach. IFAC-PapersOnLine, 55(6), 145-150.
- [11]. Dewangan, A., Pande, Y., Braun, H. W., Vernon, F., Perez, I., Altintas, I., ...& Nguyen, M. H. (2022). FIgLib&SmokeyNet: Dataset and Deep Learning Model for Real-Time Wildland Fire Smoke Detection. Remote Sensing, 14(4), 1007
- [12]. Saeed, F., Paul, A., Karthigaikumar, P., &Nayyar, A. (2020). Convolutional neural network based early fire detection. *Multimedia Tools and Applications*, 79(13), 9083-9099.
- [13]. Jadon, A., Varshney, A., & Ansari, M. S. (2020).Low-complexity high-performance deep learning model for real-time low-cost embedded fire detection systems. *Procedia Computer Science*, 171, 418-426.
- [14]. Lee, Y., & Shim, J. (2019). False positive decremented research for fire and smoke detection in surveillance camera using spatial and temporal features based on deep learning. *Electronics*, 8(10), 1167
- [15]. Avazov, K., Mukhiddinov, M., Makhmudov, F., & Cho, Y. I. (2021). Fire Detection Method in Smart City Environments Using a Deep-Learning-Based Approach. *Electronics*, 11(1), 73