
IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 1, August 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-5993 389

www.ijarsct.co.in

Impact Factor: 6.252

Performance Evolution of Software Engineering

Development and Project Management: A Critical

Evolution Software Engineering Process
Gurudev Sawarkar1 and Dr. Dipesh Rajput2

PhD Scholar, Department of Computer Science and Engineering1

Associate Professor, Department of Computer Science and Engineering2

Swami Vivekananda University, Sagar, MP, India

Abstract: Among the many pressing concerns in the realm of computers, software project development is

among the highest. System development life cycle is a part of this (SDLC). A key goal of the software

development life cycle (SDLC) is to reduce the likelihood of errors while improving the quality of the final

result. Without a well-defined set of steps, the software development process is a pretty complicated affair.

Method established to standardize and streamline software development. The introduction of the SDLC

(Software Development Life Cycle) existence. What we have here is a methodical and organized approach

to the process of creating software. Using the SDLC as a guide, entails a wide variety of steps and

processes that must be completed before the final programmer is released. Software comes in many forms.

Types of software development life cycles, each with their own benefits and drawbacks, are commonly

employed in the software development process. Disadvantages Five of these software development life cycle

(SDLC) models, including the waterfall model, the v-shaped model, and the prototype model, are presented

in this study. Existing models are compared using a spiral and an iterative structure.

Keywords: SDFC, Waterfall Model, Spiral Model.

I. INTRODUCTION

The software development life cycle (SDLC) has shown to be the most effective method for creating software. The

Software Development Life Cycle (SDLC) is a framework that describes the activities to be carried out at each stage of

the software development process. The Software Development Life Cycle (SDLC) is a method of monitoring and

managing projects; it improves the clarity of project planning and the rate at which new features are introduced.

Stages of SDLC are:

1) Project Definition

2) Requirement

a) User requirement

b) System requirement

3) Analysis and Design

4) System Build

5) Testing and Implementing

6) Deployment

7) Sustainment

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 1, August 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-5993 390

www.ijarsct.co.in

Impact Factor: 6.252

II. SDLC MODELS

To manage the level of complexity, a number of SDLC methodologies or models have been created. These models are

created to ensure success in software development process [3]. Below are the SDLC models followed in the software

industry.

2.1 Waterfall Model

In terms of design methodology, this is a straight sequential approach with no iterative steps. Each stage of a waterfall

model, such as successfully installed, requirements, analytical design, code and unit test, system integration,

deployment, and upkeep, must be finished before the next stage can begin.

Waterfall approach supports the performance of software projects by removing the challenges that were previously

experienced. With the waterfall paradigm, each stage's output feeds into the next.

A. Advantages

1. The requirements are well-defined; that is, they are straightforward and not difficult to grasp.

2. It's simple to control.

3. Detecting lapses in progress early on.

4. Four, the procedure and outcomes are meticulously recorded.

2.2 Spiral Model

Spiral model is a risk-driven process model generator for web applications. It manages to combine the idea of agile

process with the governed and systematic parts of waterfall model.

A. Advantages

1. Software is made and managed in a strategic way, and it is easy and effective to keep track of projects.

2. Users can see how the system works early, which means that software is made early.

3. Changes can be made more quickly and even later in the life cycle.

4. Documentation control and strong approval.

5. The spiral model lets us make highly customized products.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 1, August 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-5993 391

www.ijarsct.co.in

Impact Factor: 6.252

2.3 V-Model

The V-model is a method for making software in which the steps are carried out in a V-shaped order. The relationship

between each development life cycle and the testing phase is shown by the shape of a V. Verification and validation

model is another name for the V-model. In this prototype, the last step should be finished before the next step can

begin.

A. Phases of V-model:

B. Advantages

1. Very easy to use because each step has clear goals and objectives.

2. Development and progress are well-planned and step-by-step, and each phase is finished before moving on to

the next.

3. The V-model works well for most small projects because the requirements are easy to understand.

4. Bugs are found earlier in the process of making a product.

5. Early phase as during software development life cycle gives it a greater chance of success than the waterfall

model.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 1, August 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-5993 392

www.ijarsct.co.in

Impact Factor: 6.252

C. Disadvantages

1. It's not good for complex, object-oriented projects because it's difficult to change features later.

2. Less likely to meet customer needs because no prototypes are made.

3. There is uncertainty and risk because there is no way to do a risk analysis.

4. It locks in clarity and coherence.

5. If changes are made to a project while software is being made, all project documentation should be revised.

III. LITERATURE REVIEW

3.1 Defining Games and Gamification

Game refers to "a system in which participants participate in a manufactured conflict, specified by rules and leading to

a measurable end," but there are still conflicts of view. It's on page 80 of the book [153]. In a typical game there are

players, rules of interaction, a procedure or game scheme with which a actor interrelates, and a goalmouth often

founded on a manufactured conflict or a result.

 The concept of gaming is pervasive and strongly linked. There are several advantages to categorizing human activity.

For complicated software artefacts that require a large amount of collaboration, games are a tremendous help in

forming social structures. As a result, it should come as no surprise that social games offer significant social and

economic advantages. They may even be able to provide remedies to societal issues in some circumstances.

To put it simply, gasification is the use of game design features and game-based thinking to inspire behavior similar to

that of a gamer (such as competitiveness, cooperation, etc.). Game mechanics and design standards are being used

outside of the video game industry for the first time. Given the magnitude of the sector, games have shown to be

effective motivators for a predetermined period of time. There are several ways in which the application of gasification

may change a tedious task into a favorite pastime. To add to this, some companies have already included gamification

into their customer loyalty programmes, mostly to gain an edge over competitors by enticing consumers to utilize their

products and services (for example, by awarding reputation points or accomplishment badges.

The phrase gamification, on the other hand, is still a bit of a grey area. Gamification might signify various things to

different people. GAMIFICATION is defined as "the employment of game design aspects in non-game situations" by

Deterring and others. Game-like elements may be used to increase the quality of services, which could be beneficial for

marketing services.

There are many who believe that unlike serious games, which propose an entire game design, gamified apps should

merely include parts of a game in order to be considered gamified [162]. A possible drawback to this explanation is that

the definitions of game elements are not agreed upon. Even if a game is made up of self-similar pieces, the process of

gamification might result in the creation of an entirely new product, such as a game itself. It's a third point made by this

investigator that early images don't take procedure rational into consideration.

Gamified systems and components can only be created when players' interaction patterns and game mechanisms (i.e.,

rules of interaction) are defined. Gamers' desired degree of involvement should be taken into consideration while

designing the game's mechanisms (such as levels, badges, etc.). Gamification is a relatively recent concept in the world

of software development. Game-based frameworks can aid in the exploration of management issues, such as the best

team configurations, in software engineering contexts. Non-gaming contexts can benefit from game-based ideas in

avariety of ways. First and foremost, it inspires individuals more effectively than any other known

strategy. An inherent motivation with an external reward can be transformed' Second, we argue that a game may be

constructed from a collection of game components, and the results of that game can be examined using game theory.

3.2 Games in Software Engineering

In an information-based global economy, computer project's social and economic importance has grown. As a result,

just as in subjects like sociology, economics, and computer science, certain methods to software engineering study

make use of game theory.

Software development has been conceptualized as a type of positive and cooperative gaming in a few small studies to

date. Cooperative game theory was used to build a model for optimizing work allocation in software engineering

efforts. A game theoretic method, on the other hand, was proposed by Grechanik and Perry [6] because of the

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 1, August 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-5993 393

www.ijarsct.co.in

Impact Factor: 6.252

possibility for conflict between roles in a software development approach. Software development was also viewed as a

series of games of creation and interaction by, who called the process of creating software "economic-cooperative

gaming. "" It is as though two goals are contending for a resource in an iterative game. The mechanics and economics

of communication is a new field he proposed as an emergent one "It's something that has to be looked into soon.

IV. EXPECTED RESULT

4.1 Research Process: Case Study I

In this part, we go over the steps we used to gather data for Case Study I. A case study examination of a medium-sized

software firm was utilized to investigate empirically the factors impacting software development productivity. In terms

of technique, the following phases are included in our study.

1. Considered as latent variables that can't be directly seen are: productivity, social productivity, and social

capital As a result, we employ a number of different variables to narrow the field of candidates.

2. In order to construct our hypothesis, we use the specified variables to show that productivity, social

productivity, and social capital all have an observable relationship.

3. After identifying the components that affect productivity, social productivity and social capital in a software

development organization above, we do a literature analysis in order to identify the most important aspects

that influence these outcomes.

4. To further investigate the relationships between the many latent variables that have been discovered, we group

them into three different categories.

5. Fourth, we devised a survey instrument containing sixty items on a Likert scale ranging from 1 (strongly

disagree) to 5 (strongly agree) (strongly agree).

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 1, August 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-5993 394

www.ijarsct.co.in

Impact Factor: 6.252

6. Before moving on to data collection and analysis, the questions are turned into a questionnaire. The majority

of the data is utilized to examine the correlations between our three latent variables and the factors influencing

them. As part of our research, we questioned participants about their job experience, gender, and preferred

team size (see Appendix A for questions 18, 19, and 20).

7. For the fifth step, we use a case study to show how the framework works in practice by doing a confirmatory

factor analysis and creating multiple structural equation models using single, double, and tripartite models.

8. With one latent variable models, we first use data from the literature to construct our first model and then

refine it by doing a focus group research where we ask the firm for their thoughts on which factors are most

important to the organization.

9. In order to compare a version from the literature with a version generated using indicators specified by the

firm from an industrial viewpoint, we design alternative SEM models for each latent construct (see Model II,

Model IV, Model VI).

Figure 4.1: The Systematic Approach for Creating SEM Models of Productivity

4.2 Research Process: Case Study II

For our second case study, we describe the research approach we used (Figure 3.2). The following are the specifics of

the research procedure

1. In the beginning, we hypothesize that successful software teams have unique personality qualities that are

linked to their ability to work well together.

2. Second, we look at the literature on the usage of MBTI testing in the field of software engineering, and we

examine prior findings. As part of the grounded theory analysis, we'll look at coding that is based on context

cards.

3. Finally, we develop the situational context cards (described in the next chapters).

4. In order to carry out a game-based examination of personality, we must first set the laws of the game.

5. First we perform a pilot research and gather data for the questionnaire in order to assess the situational context

cards.

6. A second pilot research will be conducted with the same set of persons to recollect data for each topic.

7. Step 7 involves applying a quantitative analytic approach in order to identify issues that are troublesome in

both pilot testing. We conduct a two-step case study in the industrial sector.

8. 216 individuals from the same software firm were surveyed in the eighth phase to examine the significance of

the questions. Accordingly, the average weights for each element that influences personality characteristics are

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 1, August 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-5993 395

www.ijarsct.co.in

Impact Factor: 6.252

calculated, which are used to assign weights to each question.

9. At this point, we rerun our game with a total of sixty software practitioners working on a variety of teams.

10. On the basis of this case study, we demonstrate five software team architectures in terms of their members'

personality attributes.

According to Yin, a case study ought to be an empirical investigation that investigates a state-of-the-art phenomenon in

real-life scenarios on the basis of various data sources and fuzzy boundaries in the given context. Yin makes this

recommendation in the context of a particular context. In his conversations about the significance of a case study as a

research strategy, Verschuren produced the following argument: "A case study is a [triangulated] study design that can

be qualified as holistic in nature, following an iterative-parallel way of preceding, looking at

only a few strategically selected cases, observed in their natural context in an ajar way, clearly attempting to avoid (all

variants of) tunnel vision, making use of analytical comparison of cases or sub-cases, , there are six distinct kinds of

data (evidence) that are appropriate for use in case studies: I paperwork; (ii) archival records; (iii)interviews (or

surveys); (iv) direct observation; (v) participant observation; and (vi) physical artefacts. Both independently and in

conjunction with one another, they can provide useful information.

In general, there are four types of case research design available: (1) single-case ingrained, (2)single-case holistic, (3)

multiple-case engrained, and (4) multiple-case holistic. Each of these particular instance study designs is based on a

holistic analysis of individual case or numerous instances, and each of these case study designs can be based on

individual unit of inquiry or numerous units of study. It is common for a researcher to use a case study as a way to

relate the data he or she has gathered to the original research question.

There are several advantages to using case studies.

 Software engineering activities may be merged with them, and if genuine projects are employed, there is no need to

raise the size because they are already on the actual industrial scale, and (iii) they allow the researcher to assess the

actualized and predicted advantages of the progress made. A case study has four primary steps: I planning, (ii) carrying

out, (iii) analysing, and (iv) drawing inferences. If you're looking to evaluate software engineering processes and tools

industrial case studies are a must. They help to reduce biases and assure validity (e.g., internal and external) from an

evolutionary perspective.

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 1, August 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-5993 396

www.ijarsct.co.in

Impact Factor: 6.252

VI. CONCLUSION

6.1 Discussion of the Case Study I

Using survey data provided in Appendix C, we conduct an empirical evaluation of the hypothesized correlations

between the latent variables and many factors influencing them in the first case study. The findings reveal a modest

relationship between social capital and productivity, and a strong relationship between productivity and social

productivity.

In spite of this, a moderate relationship between social production and social capital is visible. These results lend

significant credence to the argument that social variables have a significant impact on software output. Regarding the

societal and organizational concerns raised at the outset of this investigation, it is now able to assert that the majority of

the criteria chosen from the literature are influencing the efficiency with which a software development company

operates.

The aforementioned findings, taken as a whole, provide important new insight into the economic and social

determinants of productivity that can be measured with the structural equation model. Because it creates a multifactor

productivity metric, this study is also the most thorough (empirical) research to date, which has important implications

for both business and academics. Tripartite structural equation modelling (SEM) utilizes a multi-dimensional

components structure, with seven variables, to assess three of our structures of interest. This is the first research of its

kind to examine the effects of software development team size, social capital, and individual responsibilities.

6.2 Validation Interviews

One of the problems that arises from these models is the necessity to assess them through a set of model validation

interviews [144] with members of the Simurg management team in order to determine how accurately we assess the

output scale.

We used questions like "What do you think about the company-based outcomes we have identified using SEM

models?" to get participants' feedback on the accuracy of our models "Do you think there is a component of the

productivity model that is either missing or incorrect? Which ones, if any, have helped your company the most? Do you

think these findings might aid the software development company in increasing productivity? "

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 1, August 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-5993 397

www.ijarsct.co.in

Impact Factor: 6.252

The leadership team was excited to look at the results of this section of the work since they had previously reviewed a

number of reduced versions of these models in a focus group research [330]. The Model IX, X, and XI were of most

interest to them. Respondents were asked about their thoughts on the connections between the predictors and latent

constructs.

The majority of respondents agreed that the findings were in line with their expectations, although a few offered small

tweaks to the ranking of criteria. Our structural models allow for insightful conversation about social aspects,

quantifiable latent characteristics, and most crucially, how to use these insights to boost organizational output.

Finally, this research suggests that software development companies may employ our method to gauge the

effectiveness of internal variables. The upshot of this is that the upper management may build a scale and find the

causal links between indicators to determine the underlying causal hierarchy of these factors.

6.2.2 Limitations

There are certain problems with the current research. To begin, the data included in this literature evaluation of

productivity determinants comes solely from published sources. Therefore, the factors we included in our SEM models

constitute a constraint.

Second, although we have nearly two hundred participants from an industrial company (Simurg), which can be

considered as a substantial sample set in terms of software engineering to draw some evidence based findings, we

gathered our data from a single software company, that should be tested with various settings for model comparison.

Third, there is the potential for unintentional sampling error. As a result, multi-latent-variable models were checked for

a single-factor solution to assess the gravity of a typical technique mistake.

Fourth, although the sample size is large enough according to the SEM literature, we may decide to expand our

research to a larger pool of businesses. Participants' anonymity was guaranteed to preserve their privacy. We were able

to collect a sizable portion of the data, but there was no enforcement at the business level. Fifth, the self-report measure

is used in this study. As a result, we were unable to determine whether or not the same outcomes would be seen using

alternative data gathering techniques. Additionally, we used a cross-sectional study design, meaning that we collected

data by conducting our survey at a static moment in time. Because the evidence does not provide substantial

substantiation for causality, the direction of causation and causal ordering cannot be identified. That is to say, we can't

make any definite conclusions about the causal correlations from our models because they're based on correlational

data. However, the technique bias was mitigated by using a combination of case studies and questionnaires.

Few papers have been published in software engineering journals on the topic of structural modeling's efficacy in

quantifying factors impacting software development productivity. For instance, there is a SEM model for increasing

efficiency in software development ([331]) and another for gauging the likelihood of a project's success ([332]). Since

there is a dearth of corroborating research, it is important to proceed with care, since the results may not generalize to

other software development companies at this time.

6.3 Discussion of the Case Study II

The second case study's principal goal is to create a game-based tool to classify the personalities of software

developers. The purpose of the tool used in personality testing is to quantify some facet of human performance.

Therefore, experimental studies should be used to validate assessment of such an instrument. The card game was field-

tested twice on sixteen individuals over the course of six months to assess question reliability (see Appendix E for both

data sets). All sorts of business scenarios serve as backdrops for these cards. By applying grounded theory to a set of

interview transcripts, we were able to collect context-specific keywords for use in the creation of our playing cards.

When all the pieces have been moved around, the player's final score reflects their dominant personality attribute on an

MBTI-compatible scale. Second, we utilize these cards to illustrate the distinct personality types of 63 software

development industry professionals working in a wide range of teams and departments (see Appendix H). Based on the

findings in Simurg, we also utilize a questionnaire to isolate the variables that may make up each of the four Jungian

personality types (on a 4-point Likert scale). When determining the relative importance of various external factors that

may have an effect on a person's personality, this survey is employed. We use this data to determine an overall average

weight for the questions (see Appendix G). Using the findings from our card game, we are able to identify the

IJARSCT ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 1, August 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-5993 398

www.ijarsct.co.in

Impact Factor: 6.252

quantitative form of different personality types. When people in the workplace reflect on the diversity in personality

types among their colleagues, they often wonder how they may better interact with one another.

REFERENCES

[1]. R. Conradi and A. Fuggetta, “Improving software process improvement,” IEEE Software, vol.19, no.4,

pp.92–99,2002.

[2]. R. L. Glass, Facts and Fallacies of Software Engineering.Addison-WesleyProfessional,2002.

[3]. S. T. Acuna, N. Juristo, A. M. Moreno, and A. Mon, A Software ProcessModel Handbook for

Incorporating People’s Capabilities.Springer-Verlag,2005.

[4]. T. DeMarco and T. Lister, People ware: productive projects and teams. Dorset House Publishing

Company,1999.

[5]. Y. Dittrich, C. Floyd, and R. Klischewski, Social thinking-software practice. The MIT Press, 2002.

[6]. M. Grechanik and D. E. Perry, “Analyzing software development as a non cooperative game,” in

IEE Seminar Digests, vol.29, 2004.

[7]. H. Van Vliet, “Editorial: Signs of a thriving journal,” Journal of Systems and Software, vol. 86, no.1, p.1,

2013.

[8]. R. Charette, “Why software fails,” IEEE Spectrum, vol. 42, no. 9, pp.42–49,2005.

[9]. D. Hartmann, “Interview: Jim johnson of the standish group,” Infoqueue,Aug,vol.25,2006.

[10]. C. Jones, Software Engineering Best Practices: Lessons from Successful Projectsinthe Top

Companies. McGraw-Hill Osborne Media, 2009.

[11]. J. E. Tomayko and O. Hazzan, Human Aspects of Software Engineering. Firewall Media, Dec.

2005.

[12]. G. M. Weinberg, The psychology of computer programming. Van Nos-trandReinholdNewYork,1971.

[13]. H. Robinson and H. Sharp, “Collaboration, communication and coordi-nation in agile software

development practice,” in Collaborative SoftwareEngineering.BerlinHeidelberg:Springer,2010,pp.93–

108.

[14]. S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and P. Grunbacher, Value-based software

engineering. Springer,2005.

[15]. Standish Group, “The chaos report,” Available on-lineat http://www.projectsmart.co.uk/docs/chaos-

report.pdf,1995.

