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Abstract: Motion planning is a primary task for a robotic or mechanical system with closed kinematic 

chains that let the robot find the optimal path in order to reach its goal position or destination. Sampling-

based methods like RRT, RRT* provide a good solution for motion planning in basic robot systems. 

However, complex robotic systems such as hand manipulators have a large number of DoF. This makes 

motion planning extremely complicated and difficult. Further, these systems also have restrictions such as 

time and to do real-world tasks in an unstructured environment. Thus, incorporating these restrictions in 

existing motion planners is complex and computationally expensive. So, real-time calculation i.e. very fast 

computation of inverse kinematics (IK) in complex robotics systems with dynamically stable configuration 

is of high priority .as they are very vulnerable to do tasks in an unstructured environment. In this thesis, a 

methodology to motion planning for complex robotics manipulators using Deep Reinforcement Learning 

(RL) is proposed. Where the robotics manipulator autonomously learns the optimal behavior through a series 

of trial-and-error interactions with the environment. It is based on the Markov Decision Process (MDP), 

Bellman’s Equation, Q learning, Deep Deterministic Policy Gradient (DDPG), and Hindsight Experience 

Replay (HER). The proposed strategy was developed for various motion planning tasks in Robotics. Our 

goal is to develop ways to train different kinds of complex Robotics Manipulator (gripers).To learn to 

interact with different objects, especially to grasp, perform some maneuvers to these objects. Achieving this 

would open up the possibility of the robot agent learning to interact with the environment without prior 

knowledge. 

 

Keywords: Hybrid power systems, micro grid, power management strategies, smart grid , MATLAB 

simulation 

 

1. INTRODUCTION 

Recent technological Researches are aggressively pushing the state of the art in robotics. We know natural 

manipulators like Hand, leg, etc. are very complex in design. Because they have a lot of soft tissue, complicated 

networks of the sensory system, so it is hard to replicate. To design such complex systems come with a cost, nowadays 

a lot of manipulators are available but they are simple in design. 

 
Figure 1.0.1: Simple Manipulators 
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They are specially designed for a particular job they do that one job and do it accurately. They don’t do other jobs. This 

does not mean that we don’t have a flexible manipulator, flexible manipulator exits but we don’t know who to control 

this manipulator properly. They like if we increase the flexibility of manipulator than the performance of the 

manipulator goes down and if we increase performance then we cannot get flexibility.  

There has been an increasing demand for reinforcement learning (RL)[1]within the fields of Robotics and intelligent 

systems. Reinforcement learning deals with learning actions in a given environment in order to maximize the growing 

reward. Classic reinforcement learning (RL) technique makes use of tabular methods or linear approximation to learn 

this correlation between actions and tasks.[2]RL over other methods is RL doesn’t require prior information on the 

dynamics of the system. It enables the robot to learn optimal behaviour through a trial and error cooperation with the 

environment. Instead of detailing the solution of the problem. 

With the research in deep neural networks within recent times, learning feature extraction and non-linear 

approximations has become much simpler. It was believed that non-linear approximations like neural networks are very 

hard to train in the reinforcement learning scenario. However recent research in RL has successfully combined the deep 

neural networks ANN with RL and improve the learning process. Deep Q Networks [3](DQN) used fully connected 

ANN layers and convolutional neural networks (CNN to make the RL agents learn to play the ATARI games. From the 

success of DQN, several variants of this architecture like Double DQN, Prioritized Replay, Duelling Network are 

proposed which propelled the use of Deep RL in multi-agents. Deep Deterministic Policy Gradient (DDPG) algorithm 

was proposed by [4] for learning continuous control and high action space tasks. which we use to motion planning of 

robotics hand manipulator. Robotic systems like open and closed kinematic chains offer fresh perspectives to use deep 

RL algorithms.  

Hand manipulator robotic systems have constantly fascinated the research society for the past few decades. They have 

relatively complex architecture, high degrees of freedom (DoF), and balancing requirements which make control tasks 

of those robots difficult. Motion planning in Complex Robotics (humanoid) systems requires collision-free whole-body 

motions along with active balancing. Even though control in robotics systems is a relatively old research topic, still, the 

technology development has not been reached and many aspects of motion planning in humanoids need to be 

improved. Sampling-based planning algorithms, like RRT and PRM are capable of generating globally collision-free 

solutions. 

Within the past few decades, a variety of approaches based on Sampling based planning (SBP) algorithms, such as 

RRT connect, RRT* connect, RRT*/PRM*. Some recent[5,6,7] works demonstrated motion planning of humanoid 

robots using these SBP algorithms in different environmental settings proposed an optimal motion planner by posing it 

as an optimal control problem and combining it with RRT. These SBM based planners were designed for mobile robots 

and low DoF robotic systems, using them on high DoF humanoid systems which require active balancing is still a 

difficult task. Also, these are computationally expensive and thus cannot search for the optimal path in real-time. 

Besides, all the works mentioned in path planning considered only static obstacles. Proposed a stereo vision-based 

approach[8] for dynamic obstacles avoidance in humanoid robots with predefined motions for maneuver. In the recent 

DARPA Robotics Challenge (DRC), humanoids were required to perform a variety of maneuvers and coordinated tasks 

that show the need for real-time controllers and motion planning in complex 3D environments. Robotics systems 

constitute of kinematics open and closed chains. Even though they are not multi-agent systems, they can be posed as 

multi-tasking systems where there are shared and non-separable actions (common kinematic chains). In the humanoid 

model, the spine is the common chain which grants the reachability tasks of both the hands. The problem of motion 

planning in branched robotic systems can be seen as an optimal control problem of multiple kinematic chains where 

these may have common sub-chains. There are different mathematical ways that try to address the problem of multi-

tasking in branched manipulators. However, classical methods based on Jacobian[9,10] have very limited capability in 

branched manipulators. Methods like Augmented Jacobian have constrained solution spaces, while methods based on 

optimization do not provide real-time control. 
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2. LITERATURE REVIEW  

This section discusses the various methods used to control complex manipulators. There are a few more fields related to 

this project, containing algorithms and simulation environments. In this section, we discuss these related techniques.  

 

2.1 Sampling-based planning (SBP)  

Within the past few decades, a variety of approaches based on Sampling based planning (SBP) algorithms, such as 

RRT connect, RRT* connect, RRT*/PRM*. Some recent[5,6,7] works demonstrated motion planning of humanoid 

robots using these SBP algorithms in different environmental settings proposed an optimal motion planner by posing it 

as an optimal control problem and combining it with RRT. These SBM based planners were designed for mobile robots 

and low DoF robotic systems, using them on high DoF humanoid systems which require active balancing is still a 

challenging task. Also, these are computationally expensive and thus cannot search for the optimal path in real-time. 

Besides, all the works mentioned in path planning considered only static obstacles. Proposed a stereo vision-based 

approach[8] for dynamic obstacles avoidance in humanoid robots with predefined motions for maneuver. 

 

2.2 Grasping and Manipulation[26,27]  

From this paper [26,27] we get to know Grasp quality measures and GraspIt simulator platform. Grasping get more 

attention from the robotics community than dexterous hand manipulations. Researchers have proceeded to grasp 

primarily from two different directions. One approach target on improving the design of the manipulator so as to 

improve its capabilities in terms of making stable grasps. The other approach utilizes optimization-based techniques to 

evaluate the stability of the grasp using grasp metrics [26]. Various grasp metrics have been proposed but no clear 

advantage of using one over other. These methods are less suited to generalize for dexterous manipulation but are based 

on important ideas. 

While grasping has always the center of hand research, one common approach towards reactive manipulation is Tele-

operation using data sensor gloves. In teleoperation, the hard part of the planning and higher cognitive process 

(decision making) is left to the intelligent user while the controllers blindly follow the joint trajectories. Contact 

invariant trajectory optimization is capable of synthesizing hand manipulation but it’s slow and trades physics for 

expressive manipulation behavior. Such an approach is hard to generalizable and is less likely to scale in real 

applications. Also, see the review paper [28] [29].  

  

2.3 Dimensionality Reduction and Synergy Based Control  

Although rich and diverse, animal forms exhibit characteristic movements that will be attributed to its morphology, 

neural system, and habitat. Researchers have credited these to bio-muscular and neural factors. Low dimensional 

embeddings have been found at the level of kinematics [32], instantaneous muscle activity, Spatiotemporal muscle 

activity, and feedback control law[33]. These low dimensional embeddings have long been utilized in the graphics 

community to reduce the dimensionality of search spaces to synthesize full-body movements. It has also been 

demonstrated that such embedding exists in hand movements. Approx. 95% of the (positional) postural variance 

associated with hand grasping can be explained using four principal components. Such low dimensional embedding and 

synergy spaces have been utilized by the robotics community to accelerate the pace of grasping research [27]. 

However, it has constrained the capabilities of present robotic devices to simple grasps. Similar to biological systems, 

now day robots have many Dofs. While low dimensional spaces and synergy have helped us control and emulate some 

of the functionalities; they have restricted the behaviors to simple movements that cover up the expressiveness and 

dexterity of these robots.  

  

2.4 Capturing Hand Manipulation  

In this papers [38,39,40 ] they work on Gesture-based programming for robotic hands. Also, vision-based techniques to 

observe and record real-life hand manipulation. They also use 3D visualization devices to achieve desired visual 

effects, and for motion capture, these techniques have been used for hand movement synthesis.  Human hand function 

has been recorded and studied extensively within the past, mostly in the context of static grasping as opposed to more 
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dexterous manipulation. Investigations have to lead to different shape based grasp taxonomies and grasp evaluation 

metrics [26]. These metrics have been widely leveraged by data-driven and optimization-based techniques[27] for static 

grasp synthesis. However, they have very limited utility for more dexterous manipulation involving dynamic contact 

phenomena. To the best of our knowledge, there has not been prior work done that successfully captured physically 

consistent dynamic interactions for hand manipulation. This is not surprising; given that the full suite of sensor 

technologies needed to do this is not readily available. Researchers [37] have however extensively looked at using 

human motion data for robot programming and robot teaching. Human demonstrations were recorded using a 

combination of vision, hand tracking, and motion tracking systems. Recorded demonstrations were then first segmented 

and classified into predetermined steps (reaching, pre grasp, grasp types etc), and then appropriately sequenced to 

generate a robot program equivalent to the human demonstration. These approaches [37] propelled the advancement in 

grasp planning towards manipulation, but have been limited to basic reaching and pick-place operations with simple 

grippers.  

Scaling attempts towards manipulation using dexterous manipulators were challenged by the low fidelity Scaling 

attempts towards manipulation using dexterous manipulators were challenged by the low fidelity recordings of human 

demonstration. Obstruction due to compact workspaces-inhabited by the object being manipulated significantly impacts 

the ability of motion tracking and vision-based techniques to observe and record real-life hand manipulation 

demonstration. a lot of manual work [38] was required to clean up the recorded data sets with specific attention towards 

individual hand object interaction. Furthermore, phenomena such as sliding, rolling, deformations, compliance which 

heavily dominate manipulation, and geometric inconsistencies are very difficult to fix in data sets recorded using such 

techniques. Technological limitations and physically inconsistent datasets considerably impact the pursuit of 

understanding manipulation from empirical data.  

  

2.5 Model-based Reinforcement Learning  

In this paper [45, 48] author give a basic understanding of model-based reinforcement learning. Depending on one's 

preference of terminology, the methods we will detail in Chapter3 and Chapter6 can be classified as model-free 

Reinforcement Learning (RL). While RL aims to solve the same general problem as optimal control, its uniqueness 

comes from model-free learning in stochastic domains [45]. The idea of learning policies without having models still 

dominates RL, and forms the basis of the most remarkable success stories, both old [46] and new [47]. However, RL 

with learned models has also considered. Adaptive control on the other hand mostly focuses on learning the parameters 

of a model with predefined structure, essentially interleaving system identification with control [48]. Our approach here 

lies somewhere in between (to fix terminology, we call it RL in subsequent sections). We rely on a model, but that 

model does not have any informative predefined structure. Instead, it is a time-varying linear model learned from data, 

using a generic prior for regularization. Related ideas have been pursued previously [49]. Nevertheless, as with most 

approaches to automatic control and computational intelligence in general, the challenge is not only in creating, 

formulating ideas but also in getting them to scale to hard problems. which is our main contribution here. In particular, 

we demonstrate scaling from a14-dimensional state space in [49] to a 100-dimensional state-space here. This is 

important in light of the curse of dimensionality. Indeed RL has been successfully applied to a range of robotic tasks 

[50], however, dimensionality and sample complexity have presented major challenges [51]  

From paper [1,3,46,47].The main disadvantage is that a ground-truth model of the environment is usually not available 

to the agent. If agents want to use a model in this case, it has to learn the model purely from experience, which creates 

several challenges. Like bias in the model can be utilized by the agent, resulting in an agent which performs well with 

respect to the learned model, but behaves super terribly in the real environment.  

  

3. Methodology  

3.1 Robotic Hand Manipulator  

Three important decisions have been made at the early stage of this project: the simulation tools we needed design 

environment as well as to carry out our training experiment; a language not only to implement our reinforcement 
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learning algorithms but also with support from a machine learning library to construct and train the deep neural 

networks; the structure to combine these two-part together.  

 

3.2 DDPG (Deep Deterministic Policy Gradients.) [4]  

In paer[4] we get to know that DQN solves problems with high-dimensional observation spaces and discrete low 

dimensional action space pretty well.  

Many real tasks i.e. physical control tasks have continuous and high dimensional action space. Like in our task action 

space is very large it is 24 DOF and 20 control joint.so action space is 20. To find an action that maximizes action valve 

function which requires optimization of at every step. In discrete and low dimensional action space we can simply use 

the max function but we cannot use it in this case. So we can’t use Q-learning straightforwardly to continuous action 

spaces.  

To solve this problem [4] paper proposes the RL algorithm. DDPG is RL based algorithm for continuous action space. 

This combines DQN and Deterministic policy gradient (actor-critic) which use deep neural networks as function 

approximate for actor and critic. Which we optimize by minimizing the loss. In DQN optimization too slow to be 

practical with large, unconstraint function approximators and action spaces instead we used an actor-critic approach 

based on the deterministic policy gradients (DPG) which we see in 3.9.  

 In our case actor and critic networks are approximated using a fully connected neural network with MLP 3 layers with 

256 unit each (ReLU).the actor neural network has state vector has input and action space that contain angular 

velocities of all the joint needed to achieve goals as output. The critic network takes the state-action vector as input and 

gives corresponding action-value as outputs. Batch normalization used to avoid over-fitting. The critic Q(s; a) network 

is learned using the Bellman equation shown in3.12. actor updates the policy in the direction that improves Q value, 

i.e., critic provides the loss function for the actor. 

 
Figure 3.2: Actor and critic Model 

The Deterministic Policy Gradient algorithm maintains a parameterized actor function µ(s/Θµ) which defines the 

present policy by deterministically mapping(give) states to a particular action. The actor is updated by applying rules to 

the expected return from the start distribution J with respect to the actor parameters:[4]  

 
Parameter noise lets us train agents tasks much more rapidly. Parameter noise adds adaptive noise to the parameters of 

the ANN neural network policy, rather than to its action space. Earlier RL uses action space noise [54] to change the 

likelihoods associated with each action the agent might take from one moment to the next. Parameter space noise adds 

randomness into the parameters of the agent, modifying the types of decisions it makes such that they depend on what 

the agent currently senses.  
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Deep reinforcement learning approaches like ,DQN, and DDPG [54].where you don’t touch the parameters, but add 

noise to the action space of the policy. 

 
Figure 3.3: Parameter Noise 

Parameter noise helps algorithms explore their environments more preciously and effectively, leading to higher rewards 

and more elegant behaviours. Deliberately adding noise to the parameters of the policy makes an agent’s exploration 

consistent across different time steps, whereas adding noise to the action space leads to more unpredictable exploration. 

which isn’t like anything unique to the agent’s parameters.  

  

3.3 Hindsight Experience Replay (HER)  

From this paper[55] we can increase the training rate significantly. Hindsight Experience Replay (HER)[55] which 

allows the algorithm to perform exactly this kind of reasoning and can be combined with any off-policy Algorithm. Not 

only does HER improve the sample efficiency, but more importantly, it makes learning possible even if the reward 

signal is sparse and binary. Our approach is based on training generalize policies that take as input not only the current 

state but also a goal state. The main idea behind HER is to replay each episode with a different goal than the one the 

agent was trying to achieve, e.g. one of the goals which were achieved in the episode. This reinforcement learning 

algorithm that can learn from failure.  

Let take an example to stabilize cartpole. Our first attempt mostly will not be a successful one. Unless we get lucky, the 

next few attempts will also likely not succeed. Typical RL algorithms like DDPG,DQN would not learn anything from 

this experience since they just obtain a constant reward in failure this is -1 that does not contain any learning signal.  

The key insight that HER formalizes is what humans do: Even though we have not succeeded at a specific goal, we 

have at least achieved a different goal. So why not just pretend that we wanted to achieve this goal only to begin with, 

instead of the one that we set out to achieve originally. By doing this substitution, the RL algorithm can obtain a 

learning signal since it has achieved some goal; even if it wasn’t the one that we meant to achieve originally. If we 

repeat this process, we will eventually learn how to achieve random goals, including the goals that we really want to 

achieve. it often used in off-policy RL algorithms like DQN and DDPG[1,2,4] with goals. which are chosen in 

goal(hindsight) after the episode has finished. HER can, therefore, be combined with any off-policy RL algorithm (for 

example, HER can be combined with DDPG, which we write as “DDPG + HER”).[55]   

 

4. CONCLUSION 

The objective of the thesis is to address the problem of motion planning in complex, higher DOFs robotic systems such 

as Hand manipulators, Humanoids using RL reinforcement learning. The advantage of using RL over other methods is 

RL doesn’t require prior knowledge of the dynamics of the system. It enables the robot to learn optimal behavior 

through the trial-and-error interaction with the environment. Instead of detailing the solution of the problem, in RL the 

evaluation is done using the feedback provided in the form of the scalar objective function which measures the one-step 

performance of the robot. Also, unlike sampling-based planners, Inverse kinematic Base planners, we bypass the need 

for accurate and robust dynamics modeling of the system.  
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We evaluate the performance of DDPG with and without Hindsight Experience Replay(HER) DDPG+HER with sparse 

rewards DDPG with sparse rewards DDPG+HER significantly performs well than DDPG. 
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