ISSN (Online) 2581-9429

IJARST

International Journal of Advanced Research in Science & Technology (IJARST)

IJARSCT Volume 5, Issue 6, May 2020

Motion Planning Of Robotics Manipulator

with Deep Reinforcement Learning

Mr. Navlesh Gavhale', Mr. S. S Patil’, Miss. Prajakta Koratkar®
'Student, Defense Institute of Advanced Technology (Deemed University) Girinagar, Pune.
**Faculty, Defense Institute of Advanced Technology (Deemed University) Girinagar, Pune.
navleshgavhale777@gmail.com

Abstract: Motion planning is a primary task for a robotic or mechanical system with closed kinematic
chains that let the robot find the optimal path in order to reach its goal position or destination. Sampling-
based methods like RRT, RRT* provide a good solution for motion planning in basic robot systems.
However, complex robotic systems such as hand manipulators have a large number of DoF. This makes
motion planning extremely complicated and difficult. Further, these systems also have restrictions such as
time and to do real-world tasks in an unstructured environment. Thus, incorporating these restrictions in
existing motion planners is complex and computationally expensive. So, real-time calculation i.e. very fast
computation of inverse kinematics (IK) in complex robotics systems with dynamically stable configuration
is of high priority .as they are very vulnerable to do tasks in an unstructured environment. In this thesis, a
methodology to motion planning for complex robotics manipulators using Deep Reinforcement Learning
(RL) is proposed. Where the robotics manipulator autonomously learns the optimal behavior through a series
of trial-and-error interactions with the environment. It is based on the Markov Decision Process (MDP),
Bellman’s Equation, Q learning, Deep Deterministic Policy Gradient (DDPG), and Hindsight Experience
Replay (HER). The proposed strategy was developed for various motion planning tasks in Robotics. Our
goal is to develop ways to train different kinds of complex Robotics Manipulator (gripers).To learn to
interact with different objects, especially to grasp, perform some maneuvers to these objects. Achieving this
would open up the possibility of the robot agent learning to interact with the environment without prior
knowledge.

Keywords: Hybrid power systems, micro grid, power management strategies, smart grid , MATLAB
simulation

1. INTRODUCTION
Recent technological Researches are aggressively pushing the state of the art in robotics. We know natural
manipulators like Hand, leg, etc. are very complex in design. Because they have a lot of soft tissue, complicated
networks of the sensory system, so it is hard to replicate. To design such complex systems come with a cost, nowadays
a lot of manipulators are available but they are simple in design.
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Figure 1.0.1: Simple Manipulators
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They are specially designed for a particular job they do that one job and do it accurately. They don’t do other jobs. This
does not mean that we don’t have a flexible manipulator, flexible manipulator exits but we don’t know who to control
this manipulator properly. They like if we increase the flexibility of manipulator than the performance of the
manipulator goes down and if we increase performance then we cannot get flexibility.

There has been an increasing demand for reinforcement learning (RL)[ 1]within the fields of Robotics and intelligent
systems. Reinforcement learning deals with learning actions in a given environment in order to maximize the growing
reward. Classic reinforcement learning (RL) technique makes use of tabular methods or linear approximation to learn
this correlation between actions and tasks.[2]RL over other methods is RL doesn’t require prior information on the
dynamics of the system. It enables the robot to learn optimal behaviour through a trial and error cooperation with the
environment. Instead of detailing the solution of the problem.

With the research in deep neural networks within recent times, learning feature extraction and non-linear
approximations has become much simpler. It was believed that non-linear approximations like neural networks are very
hard to train in the reinforcement learning scenario. However recent research in RL has successfully combined the deep
neural networks ANN with RL and improve the learning process. Deep Q Networks [3](DQN) used fully connected
ANN layers and convolutional neural networks (CNN to make the RL agents learn to play the ATARI games. From the
success of DQN, several variants of this architecture like Double DQN, Prioritized Replay, Duelling Network are
proposed which propelled the use of Deep RL in multi-agents. Deep Deterministic Policy Gradient (DDPG) algorithm
was proposed by [4] for learning continuous control and high action space tasks. which we use to motion planning of
robotics hand manipulator. Robotic systems like open and closed kinematic chains offer fresh perspectives to use deep
RL algorithms.

Hand manipulator robotic systems have constantly fascinated the research society for the past few decades. They have
relatively complex architecture, high degrees of freedom (DoF), and balancing requirements which make control tasks
of those robots difficult. Motion planning in Complex Robotics (humanoid) systems requires collision-free whole-body
motions along with active balancing. Even though control in robotics systems is a relatively old research topic, still, the
technology development has not been reached and many aspects of motion planning in humanoids need to be
improved. Sampling-based planning algorithms, like RRT and PRM are capable of generating globally collision-free
solutions.

Within the past few decades, a variety of approaches based on Sampling based planning (SBP) algorithms, such as
RRT connect, RRT* connect, RRT*/PRM*. Some recent[5,6,7] works demonstrated motion planning of humanoid
robots using these SBP algorithms in different environmental settings proposed an optimal motion planner by posing it
as an optimal control problem and combining it with RRT. These SBM based planners were designed for mobile robots
and low DoF robotic systems, using them on high DoF humanoid systems which require active balancing is still a
difficult task. Also, these are computationally expensive and thus cannot search for the optimal path in real-time.
Besides, all the works mentioned in path planning considered only static obstacles. Proposed a stereo vision-based
approach[8] for dynamic obstacles avoidance in humanoid robots with predefined motions for maneuver. In the recent
DARPA Robotics Challenge (DRC), humanoids were required to perform a variety of maneuvers and coordinated tasks
that show the need for real-time controllers and motion planning in complex 3D environments. Robotics systems
constitute of kinematics open and closed chains. Even though they are not multi-agent systems, they can be posed as
multi-tasking systems where there are shared and non-separable actions (common kinematic chains). In the humanoid
model, the spine is the common chain which grants the reachability tasks of both the hands. The problem of motion
planning in branched robotic systems can be seen as an optimal control problem of multiple kinematic chains where
these may have common sub-chains. There are different mathematical ways that try to address the problem of multi-
tasking in branched manipulators. However, classical methods based on Jacobian[9,10] have very limited capability in
branched manipulators. Methods like Augmented Jacobian have constrained solution spaces, while methods based on
optimization do not provide real-time control.
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2. LITERATURE REVIEW
This section discusses the various methods used to control complex manipulators. There are a few more fields related to
this project, containing algorithms and simulation environments. In this section, we discuss these related techniques.

2.1 Sampling-based planning (SBP)

Within the past few decades, a variety of approaches based on Sampling based planning (SBP) algorithms, such as
RRT connect, RRT* connect, RRT*/PRM*. Some recent[5,6,7] works demonstrated motion planning of humanoid
robots using these SBP algorithms in different environmental settings proposed an optimal motion planner by posing it
as an optimal control problem and combining it with RRT. These SBM based planners were designed for mobile robots
and low DoF robotic systems, using them on high DoF humanoid systems which require active balancing is still a
challenging task. Also, these are computationally expensive and thus cannot search for the optimal path in real-time.
Besides, all the works mentioned in path planning considered only static obstacles. Proposed a stereo vision-based
approach[8] for dynamic obstacles avoidance in humanoid robots with predefined motions for maneuver.

2.2 Grasping and Manipulation[26,27]

From this paper [26,27] we get to know Grasp quality measures and Grasplt simulator platform. Grasping get more
attention from the robotics community than dexterous hand manipulations. Researchers have proceeded to grasp
primarily from two different directions. One approach target on improving the design of the manipulator so as to
improve its capabilities in terms of making stable grasps. The other approach utilizes optimization-based techniques to
evaluate the stability of the grasp using grasp metrics [26]. Various grasp metrics have been proposed but no clear
advantage of using one over other. These methods are less suited to generalize for dexterous manipulation but are based
on important ideas.

While grasping has always the center of hand research, one common approach towards reactive manipulation is Tele-
operation using data sensor gloves. In teleoperation, the hard part of the planning and higher cognitive process
(decision making) is left to the intelligent user while the controllers blindly follow the joint trajectories. Contact
invariant trajectory optimization is capable of synthesizing hand manipulation but it’s slow and trades physics for
expressive manipulation behavior. Such an approach is hard to generalizable and is less likely to scale in real
applications. Also, see the review paper [28] [29].

2.3 Dimensionality Reduction and Synergy Based Control

Although rich and diverse, animal forms exhibit characteristic movements that will be attributed to its morphology,
neural system, and habitat. Researchers have credited these to bio-muscular and neural factors. Low dimensional
embeddings have been found at the level of kinematics [32], instantaneous muscle activity, Spatiotemporal muscle
activity, and feedback control law[33]. These low dimensional embeddings have long been utilized in the graphics
community to reduce the dimensionality of search spaces to synthesize full-body movements. It has also been
demonstrated that such embedding exists in hand movements. Approx. 95% of the (positional) postural variance
associated with hand grasping can be explained using four principal components. Such low dimensional embedding and
synergy spaces have been utilized by the robotics community to accelerate the pace of grasping research [27].
However, it has constrained the capabilities of present robotic devices to simple grasps. Similar to biological systems,
now day robots have many Dofs. While low dimensional spaces and synergy have helped us control and emulate some
of the functionalities; they have restricted the behaviors to simple movements that cover up the expressiveness and
dexterity of these robots.

2.4 Capturing Hand Manipulation

In this papers [38,39,40 ] they work on Gesture-based programming for robotic hands. Also, vision-based techniques to
observe and record real-life hand manipulation. They also use 3D visualization devices to achieve desired visual
effects, and for motion capture, these techniques have been used for hand movement synthesis. Human hand function
has been recorded and studied extensively within the past, mostly in the context of static grasping as opposed to more
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dexterous manipulation. Investigations have to lead to different shape based grasp taxonomies and grasp evaluation
metrics [26]. These metrics have been widely leveraged by data-driven and optimization-based techniques[27] for static
grasp synthesis. However, they have very limited utility for more dexterous manipulation involving dynamic contact
phenomena. To the best of our knowledge, there has not been prior work done that successfully captured physically
consistent dynamic interactions for hand manipulation. This is not surprising; given that the full suite of sensor
technologies needed to do this is not readily available. Researchers [37] have however extensively looked at using
human motion data for robot programming and robot teaching. Human demonstrations were recorded using a
combination of vision, hand tracking, and motion tracking systems. Recorded demonstrations were then first segmented
and classified into predetermined steps (reaching, pre grasp, grasp types etc), and then appropriately sequenced to
generate a robot program equivalent to the human demonstration. These approaches [37] propelled the advancement in
grasp planning towards manipulation, but have been limited to basic reaching and pick-place operations with simple
grippers.

Scaling attempts towards manipulation using dexterous manipulators were challenged by the low fidelity Scaling
attempts towards manipulation using dexterous manipulators were challenged by the low fidelity recordings of human
demonstration. Obstruction due to compact workspaces-inhabited by the object being manipulated significantly impacts
the ability of motion tracking and vision-based techniques to observe and record real-life hand manipulation
demonstration. a lot of manual work [38] was required to clean up the recorded data sets with specific attention towards
individual hand object interaction. Furthermore, phenomena such as sliding, rolling, deformations, compliance which
heavily dominate manipulation, and geometric inconsistencies are very difficult to fix in data sets recorded using such
techniques. Technological limitations and physically inconsistent datasets considerably impact the pursuit of
understanding manipulation from empirical data.

2.5 Model-based Reinforcement Learning

In this paper [45, 48] author give a basic understanding of model-based reinforcement learning. Depending on one's
preference of terminology, the methods we will detail in Chapter3 and Chapter6 can be classified as model-free
Reinforcement Learning (RL). While RL aims to solve the same general problem as optimal control, its uniqueness
comes from model-free learning in stochastic domains [45]. The idea of learning policies without having models still
dominates RL, and forms the basis of the most remarkable success stories, both old [46] and new [47]. However, RL
with learned models has also considered. Adaptive control on the other hand mostly focuses on learning the parameters
of a model with predefined structure, essentially interleaving system identification with control [48]. Our approach here
lies somewhere in between (to fix terminology, we call it RL in subsequent sections). We rely on a model, but that
model does not have any informative predefined structure. Instead, it is a time-varying linear model learned from data,
using a generic prior for regularization. Related ideas have been pursued previously [49]. Nevertheless, as with most
approaches to automatic control and computational intelligence in general, the challenge is not only in creating,
formulating ideas but also in getting them to scale to hard problems. which is our main contribution here. In particular,
we demonstrate scaling from al4-dimensional state space in [49] to a 100-dimensional state-space here. This is
important in light of the curse of dimensionality. Indeed RL has been successfully applied to a range of robotic tasks
[50], however, dimensionality and sample complexity have presented major challenges [51]

From paper [1,3,46,47].The main disadvantage is that a ground-truth model of the environment is usually not available
to the agent. If agents want to use a model in this case, it has to learn the model purely from experience, which creates
several challenges. Like bias in the model can be utilized by the agent, resulting in an agent which performs well with
respect to the learned model, but behaves super terribly in the real environment.

3. Methodology

3.1 Robotic Hand Manipulator

Three important decisions have been made at the early stage of this project: the simulation tools we needed design
environment as well as to carry out our training experiment; a language not only to implement our reinforcement
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learning algorithms but also with support from a machine learning library to construct and train the deep neural
networks; the structure to combine these two-part together.

3.2 DDPG (Deep Deterministic Policy Gradients.) [4]

In paer[4] we get to know that DQN solves problems with high-dimensional observation spaces and discrete low
dimensional action space pretty well.

Many real tasks i.e. physical control tasks have continuous and high dimensional action space. Like in our task action
space is very large it is 24 DOF and 20 control joint.so action space is 20. To find an action that maximizes action valve
function which requires optimization of at every step. In discrete and low dimensional action space we can simply use
the max function but we cannot use it in this case. So we can’t use Q-learning straightforwardly to continuous action
spaces.

To solve this problem [4] paper proposes the RL algorithm. DDPG is RL based algorithm for continuous action space.
This combines DQN and Deterministic policy gradient (actor-critic) which use deep neural networks as function
approximate for actor and critic. Which we optimize by minimizing the loss. In DQN optimization too slow to be
practical with large, unconstraint function approximators and action spaces instead we used an actor-critic approach
based on the deterministic policy gradients (DPG) which we see in 3.9.

In our case actor and critic networks are approximated using a fully connected neural network with MLP 3 layers with
256 unit each (ReLU).the actor neural network has state vector has input and action space that contain angular
velocities of all the joint needed to achieve goals as output. The critic network takes the state-action vector as input and
gives corresponding action-value as outputs. Batch normalization used to avoid over-fitting. The critic Q(s; a) network
is learned using the Bellman equation shown in3.12. actor updates the policy in the direction that improves Q value,
i.e., critic provides the loss function for the actor.

Environment

Figure 3.2: Actor and critic Model
The Deterministic Policy Gradient algorithm maintains a parameterized actor function p(s/®@u) which defines the
present policy by deterministically mapping(give) states to a particular action. The actor is updated by applying rules to
the expected return from the start distribution J with respect to the actor parameters:[4]
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Parameter noise lets us train agents tasks much more rapidly. Parameter noise adds adaptive noise to the parameters of
the ANN neural network policy, rather than to its action space. Earlier RL uses action space noise [54] to change the
likelihoods associated with each action the agent might take from one moment to the next. Parameter space noise adds
randomness into the parameters of the agent, modifying the types of decisions it makes such that they depend on what
the agent currently senses.
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Deep reinforcement learning approaches like ,DQN, and DDPG [54].where you don’t touch the parameters, but add

noise to the action space of the policy.
Action Action

{+} Noise

Input Input
Figure 3.3: Parameter Noise
Parameter noise helps algorithms explore their environments more preciously and effectively, leading to higher rewards
and more elegant behaviours. Deliberately adding noise to the parameters of the policy makes an agent’s exploration
consistent across different time steps, whereas adding noise to the action space leads to more unpredictable exploration.
which isn’t like anything unique to the agent’s parameters.

3.3 Hindsight Experience Replay (HER)

From this paper[55] we can increase the training rate significantly. Hindsight Experience Replay (HER)[55] which
allows the algorithm to perform exactly this kind of reasoning and can be combined with any off-policy Algorithm. Not
only does HER improve the sample efficiency, but more importantly, it makes learning possible even if the reward
signal is sparse and binary. Our approach is based on training generalize policies that take as input not only the current
state but also a goal state. The main idea behind HER is to replay each episode with a different goal than the one the
agent was trying to achieve, e.g. one of the goals which were achieved in the episode. This reinforcement learning
algorithm that can learn from failure.

Let take an example to stabilize cartpole. Our first attempt mostly will not be a successful one. Unless we get lucky, the
next few attempts will also likely not succeed. Typical RL algorithms like DDPG,DQN would not learn anything from
this experience since they just obtain a constant reward in failure this is -1 that does not contain any learning signal.
The key insight that HER formalizes is what humans do: Even though we have not succeeded at a specific goal, we
have at least achieved a different goal. So why not just pretend that we wanted to achieve this goal only to begin with,
instead of the one that we set out to achieve originally. By doing this substitution, the RL algorithm can obtain a
learning signal since it has achieved some goal; even if it wasn’t the one that we meant to achieve originally. If we
repeat this process, we will eventually learn how to achieve random goals, including the goals that we really want to
achieve. it often used in off-policy RL algorithms like DQN and DDPG[1,2,4] with goals. which are chosen in
goal(hindsight) after the episode has finished. HER can, therefore, be combined with any off-policy RL algorithm (for
example, HER can be combined with DDPG, which we write as “DDPG + HER”).[55]

4. CONCLUSION

The objective of the thesis is to address the problem of motion planning in complex, higher DOFs robotic systems such
as Hand manipulators, Humanoids using RL reinforcement learning. The advantage of using RL over other methods is
RL doesn’t require prior knowledge of the dynamics of the system. It enables the robot to learn optimal behavior
through the trial-and-error interaction with the environment. Instead of detailing the solution of the problem, in RL the
evaluation is done using the feedback provided in the form of the scalar objective function which measures the one-step
performance of the robot. Also, unlike sampling-based planners, Inverse kinematic Base planners, we bypass the need

for accurate and robust dynamics modeling of the system.
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We evaluate the performance of DDPG with and without Hindsight Experience Replay(HER) DDPG+HER with sparse
rewards DDPG with sparse rewards DDPG+HER significantly performs well than DDPG.
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