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Abstract: Partial differential equation plays an important role in almost every application of mathematics
where they provide a natural description of many phenomenon involving change in physical science. The
concept of wave equation originated in thermodynamics acoustic and statistical physics during 19" century
to describe the heat exchange that occur in thermal processes in thermodynamics system. Since wave
equation and bounded value have become two of the most important concept in mathematics. In particular
wave equation and bounded value have been playing an increasingly important role in partial differential
equation in recent decades.
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I. INTRODUCTION
The wave equation is an important second order linear partial differential equation for the description of wave as they
occur in physics- such as thermodynamics/ mechanical wave (eg water waves, sound wave, seismic wave, light wave).
It arises in field like thermodynamics, acoustic, electromagnetic and fluid dynamics.
The wave equation is a hyperbolic partial differential equation. It typically concerns a time variable t, one more

spatial variable X; X;, X3 ..ceeennnnn. and x, a scalar function u=u(X; Xz , X3 -ceuveenenn. X, t) whose values could model
for example, the heat wave. The wave equation for is:

0Zu 2

—=cV*u

at?

where V2 is the (spatial) laplacian c is a constant.

Solution of this equation describe propagation of heat wave out from the region at a fixed speed in one or in all spatial
directions, as do physical waves from plane or localized sources: the constant C is identified with the propagation speed
of wave. This equation is linear. Therefore, the sum of any two solutions is again a solution: in physics this property is
called the super position principle. The wave equation alone does not specify a physical solution: a unique solution is
usually obtained by setting a problem with further conditions such as initial conditions which prescribes the amplitude
and phase of the wave. Another important class of problems occurs in enclosed spaces specified by boundary
conditions bounded value for which the solution represented heat wave. The wave equation and modification of it are
also found in thermodynamics/ elasticity/quantum mechanics/ plasma physics and general relativity.

II. THE EQUATION OF HEAT
The equation of conduction of heat
When heat flows along an insulated uniform straight rod of thermal conductivity K, density p and specific heat c, the
temperature u at time t at a distance x from a fixed point of the rod satisfies the equation

o pc ou
2 Ko

Since K, P, ¢ are constants, this can be written in the form
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cu ou
by a change of time-scale. This is the simplest linear equation of parabolic type with two independent variables. It is
called the equation of heat or the equation of diffusion. It has one family of characteristics namely the lines t = constant

in the xt-plane.
The simplest problem is that of the infinite rod with a given initial temperature distribution

u(z, 0) = f(:l?)

On physical ground, it is obvious that the temperature at any sub- sequent instant is uniquely determined. The problem
is to find conditions satisfied by f(x) so that this is true, and to find an explicit ~ formula for u

A formal solution of the equation of heat
If, in

—— = (D)

ot

2l &

We put u= XT where X and T are functions of x and t respectively, we have
X T

X T
Where dashes and dots denote differentiation with respect to x and t.

Hence

X'"=-a’X,T=-2’T
where a” is the separation constant. Thus we have a solution
u=exp(-a’ (t-ty) cosa(x—xo),
where X, and t( are constants.

In the physical problems of heat conduction, u cannot increase indefinitely with t, so we assume that a is real. A
more general solution, valid when t>t, is
U= j-m exp (—a¥(i—1,)) cosa(x — ) da
— oG
T 85 Ll:iol}

— Ji—t) P\ g —t)

It & = Zys this solution tends to zero as i—> to -+ O

Other formal solutions can be obtained by integration. For example,

ki Zt‘i%?)f T f©exp(—ta@—ERNAE @
is a solution valid when t>0. If we put
E=u+2t
we obtain
- jﬂ‘[fmfmwrmy Vi) exp (—72) d7, o
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when t> 0. The limit of this as t ~ +0 is f(x). Hence (2),is the formal solution of the initial value problem for the infinite
rod.
If f (x) is zero when x<a and when x>b where a<b, the solution (2) becomes

L " {02/ dE.
.u=mj.af(g)exp( Ha—&)t)d§

If, in addition, f(X) is positive when a< x<b, u(x,t) is positive when t>0 for all values of x. The effect of an initial non-
zero temperature distribution on a finite interval is immediately felt everywhere. This result is quite different from that
for the equation of wave motions where an initial disturbance restricted to a finite interval is propagated with a finite
velocity.
It is convenient to write 1

A s — 12t
so that the formal solution (2) becomes

ulx,t) =jf¢j(§)k(x—§,t)d§, e

when t> 0. This result can be justified if we assume that f (x) possesses a continuous second derivative and satisfies
suitable conditions at infinity to ensure the uniform convergence of the integrals obtained from (3) by differentiation
under the sign of integration. But, the result holds under very much less restrictive conditions.

he solution (4) was obtained by integrating a multiple

k(;‘z:'—-g::', i—T)

along a path in the E o — 1 plane. Another formal solution is

4
u(z,t) = " o(7) k(z, ¢t — 7)dr, cld)

&

where t> 0, the upper limit being t since k(x, t - r) is complex when r>t. This solution is an even function of x. Its value
when x =0 is >

2 drt
Va i)y ") VE—7)

This is Abel's integral equation for 5. If u(0, t) is continuous and vanishes when t = 0, the solution of the integral
equation is
i [
u(0,) = ——_ ) dr
2\ ) o N JE=1)
Thus (5) is a formal solution of the equation of heat in terms of the values taken by the solution when x = 0. Yet
another formal solution can be obtained by differentiating the expression on the right of (5) with respect to x. It is a
multiple of

¢ .
u(, ) - fo @(7) t-—ﬁcr E(x, &~ T)dT,

.een(6)
t being positive. The expression (6) is an odd function of x. If we make the substitution t - r = Vax*/t when x> 0, t> 0, (6)
gives
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e t) = [ g(r) &
€T = *
il fo é(ﬂm_k(&‘,t-—r) dr,
The limit of this as x-->+ O is @ (t) when t> 0; but the limit as x — 01is - @(t), since u(x, t) is an odd function of x.

Use of Cauchy—Kowalewsky theorem

The equation
*u ou
= ——
ox: o
has, by the Cauchy—Kowalewsky theorem, a unique analytic solution, regular in a neighbourhood of (xy, o), satisfying
the conditions

u(Zy,8) = §E), U (2g, 1) = Y(£), (2)

provided that ®(t) and \4@ {rg gular in a neighbourhood of t,. If, these conditions are satisfied at every point (Xo, ty)
of a finite interval y of the initial line x = x,, the problem has a unique solution regular near y. -

(1)

By a change of origin, we may take X, and t, to be zero. By a repeated differentiation of the differential equation, we
can calculate all the derivatives of u with respect to x, and obtain the Taylor series
Where ¢, and y" are the nth derivatives of ¢ and y
Let 2 23

x x
u(z, £) = $) + Y (t) 1+ Gal) 55+ Valt) 35 + -
xin x2ﬁ+f
et f) ————— ...
OO G O Gt

_ .3
D(E) = % <, ™, Y (&) = % 6, =,

the series having radii of convergence R; and R, say. Let
R <Min(Ry, Ry)
Since @(t) and ¢ (t) are analytic functions of the complex variable t regular in (t) < R, we have
. B,
¥ =
where M, and M, are the maxima of the moduli of [@(t) and ¢ (t)] respectively on [t] = R. Therefore

el < 18,.] <

>

Ak

M
lan] < = 1Bal <
where M = Max (M;, M,). It follows that, when [t] <R, the function

MR

is a majorant for @(t) and ¢ (t), and so
MR n!
(R i t)ﬂ-+1

is a majorant for.

¢, (t) and for ¥, (£).
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If we substitute in (3) the Taylor series for @(t) and ¢ (t) and their derivatives, we obtain a formal double series S.
The corresponding' double series S obtained by replacing @(t) and ¢ (t) by @(t) is a majorant of S. Typical terms in S
are

T =T >y > £ Fe
(=22)f = = (R)

and

a].‘wl—%—l
'M(‘?.n—i—l)'R“ b (R)

The double series S is therefore absolutely convergent for all values of [x] and for all values of [t] less than R. Hence
the double series S is absolutely convergent for all values of [x] and for all [t[<R and is uniformly convergent on any
bounded closed subset. We can therefore differentiate S, and hence also the series (3), term-by-term. It follows that '(3)
satisfies the equation of heat under the given conditions when [t[<R This verifies the result of the Cauchy-Kowalewky
theorem when

u(0,8) = @(F), u,(0,t) = ¥(0),

where @(t) and ¢ (t) are analytic functions of't, regular when [t[<R This has an interesting consequence. When t =
0, u(x, t) is equal to F(x), where

+2 a2—+ '

x
F(x):ao+bnl—!+1!al—+1 b - 2z +

21 13!

The absolute value of the coefficient of x*" is

et S oy o B R S
)l = (272)! B~
And of x*™! is
n! n! M
bp| < —
(2n+ 1)! (2n+1)! R*
Hence F(x) regarded as a function of a complex variable X, is an integral function
Evidently
Faye Mi+zs 20t 2
= - x T .
O ( ) Rrn!
If
g 22 ¥ 92 % )
— (Z22)?! (K )™=
We have
Apss __ (e +1)= 1 1
Aa_ Crtr L Crt2) KR —akR"

If we choose K so that 4KR. A, {A,} is a decreasing sequence and so A, < 1. Therefore
(Kz 2)

F(x) < M(1 +x) = M(1+z)exp (Kz2).

In particular, when [x] is large

| F(=)] < Mexp (2Kx2),
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Since
|1 +2] < 1+ |x] < exp (K=2).

Lastly, if we rearrange the double series S as a power series in t, we obtain

oo FRr
u{x,t) = & jo S :
( > ) F(x) —+ |‘%ﬂ(¢)f
1 22:.
Where F, (x) is the nth derivative of F(x). this is a solution of the equation of heat under the initial conditions (u(x,0)=
F(x)

Boundary Conditions

In the problem of heat conduction in a finite rod, there are, in addition to the initial condition, boundary conditions at
the end points of the rod. Similar problems arise in the theory of heat conduction in the plane or in space. Suppose that
we have a conducting solid bounded by a closed surface S. The temperature u satisfies

T 2 32 & o2 o
ox®  Jy? ' 9=z2 ot

and is given initially everywhere, inside S. There are three possible types of boundary condition on S. -
(i) The temperature may be prescribed on S for all time.

ou
(i) There may be no flow of heat across S so that —— vanishes on S.

(iii) If the flux of heat across S is proportional to the difference between the temperature at the surface and the
temperature u, of the surrounding medium, it is equal to H(u,.u) where H is a positive constant. The boundary
condition is then

See

K?ﬂ!—? = HH (g — ),

0
Where 5 is differentiation along the outward normal, and K is a positive constant. We write this as

L
o N
where h is a positive constant.,
If the solid is bounded externally by a closed surface S, internally by a closed surface S,, we could have different types
of boundary condition on S; and S,

—— Fave — Foe,.

III. CONCLUSION
On the basis of observation of this work we concluded that the wave equation and bounded value is also useful for use
in integral transform, an example due to Tikhonov, the case of continuous initial data, the existence and uniqueness
theorem, the equation heat in two and three dimensions, the finite rod and the semi infinite rod etc. Wave equation and
bounded value is also important for other field of physical science like acoustic electrodynamics and fluid dynamics
etc.
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