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Abstract: Internet of Things (IoT) technology provides the basic infrastructure for a hyper connected 

society where all things are connected and exchange information through the Internet. IoT technology is 

fused with 5G and artificial intelligence (AI) technologies for use various fields such as the smart city and 

smart factory. As the demand for IoT technology increases, security threats against IoT infrastructure, 

applications, and devices have also increased. A variety of studies have been conducted on the detection of 

IoT malware to avoid the threats posed by malicious code. While existing models may accurately detect 

malicious IoT code identified through static analysis, detecting the new and variant IoT malware quickly 

being generated may become challenging. Due to the complexity of design and implementation in both 

hardware and software, as well as the lack of security functions and abilities, IoT devices are becoming an 

attractive target for cyber criminals who take advantage of weak authentication, outdated firmware’s , and 

malwares to compromise IoT devices .This project provides the light on the system named as malware 

classification and detection of IOT devices, used to detect the cyber-attacks caused by malware on IOT 

devices by using machine learning techniques. The malware classification and detection system detect and 

identifies the various types of malwares using static analysis with the help of machine learning algorithm. 

An easy-to-use user interface for easy uploading of files and checking for virus is designed. Also, 

acceptance testing is performed on the application to remove vulnerabilities. 
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I. INTRODUCTION 

   Internet of Things (IoT) occurs to be the largest digital mega-trend that bridges physical and virtual worlds. The 

increment within the connectivity of humans, objects, machines and the Internet is directing to the emergence of latest 

business models as well as new interactions between mankind. Due to the complexity of design and implementation in 

both hardware and software, along with the lack of security functions and capabilities, IoT devices have become an 

attractive target for cyber criminals who benefit from weak authentication, outdated firmware’s, and malwares to 

compromise IoT devices. There are two fundamental approaches to malware analysis. Static analysis and dynamic 

analysis. We’ve used Static analysis; it consists of examining the executable file without viewing the existing instructions. 

It is used in order to confirm or get an idea of whether the file being inspected is malicious or not. We achieve this by 

figuring out the functions and libraries that are being called by the executable. A basic static analysis does act as a 

steppingstone for the rest of the malware analysis and offers a thought about things one should be looking into. There are 

mainly two types ofsignatures based and behaviour-based detection. We’ve used signature-based detection, which is the 

most commonly used detection method. The process uses known patterns to detect malware. These patterns are loaded 

from an interior database. The process is able to detect malware fast, but it cannot detect new forms of threats if they are 

not stored within the interior database. Signature-based identification methods have become popular due to their 

performance and stability in commercial systems until now. Therefore, the best file format is PE Header, it is the 

commonly used file format because of the wide use of Windows operating system. A PE File is a data framework that 

contains the data necessary for the Windows OS loader to manage the wrapped executable code. There are no mandatory 

constraints in many fields of PE files and contain many redundant fields and spaces, creating opportunities for malware 

propagation and malware attacks. A PE File contains the PE file header, section table and section data. They have many 

valuable pieces of data for malware analysts, including imports, exports, time-date stamps, subsystems, sections and 
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resources. Hence, we propose an answer to utilize the strengths of static analysis to maximise their chances of detecting 

malware by using machine learning. 

 

II. RELATED WORK 

    [1], have stated that, the DAIMD scheme learns IoT malware using the convolution neural network (CNN) model and 

analyses IoT malware dynamically in nested cloud environment. It was also observed that the DAIMD performs dynamic 

analysis on IoT malware in a nested cloud environment to extract behaviours related to memory, network, virtual file 

system, process, and system call. By converting the extracted and analysed behaviour data into images, the behaviour 

images of IoT malware were classified and trained in the Convolution Neural Network (CNN). DAIMD can minimize the 

infection damage of IoT devices from malware by visualizing and learning the vast amount of behaviour data generated 

through dynamic analysis. 

    [2],[7],[8],[11] have used deep learning methods for classification of malware. [2] they proposed methods to resample 

the raw bytecodes of the classes.dex files of Android applications as input to deep learning models. They have used two 

deep learning models, DexCNN and DexCRNN, to train the pre-processed sequences. These models are trained and 

evaluated in a dataset containing 8000 benign applications and 8000 malicious applications. Experiments show that the 

proposed methods can achieve 93.4% and 95.8% detection accuracy respectively. [7] have used deep learning-based 

feature detector and use its results to classify the Android and IoT samples either as Benign or Malware. In order to train 

Deep Models, they have gathered Android and IoT samples from various sources. Samples are decompiled and opcode are 

extracted from them. They feed the binary opcodes to the chars2vecmodel for embedding. The embeddings received are 

used as input to the feature detector. The feature learned by the detector are classified via a fully connected SoftMax 

network and a LSTM network. Findings reveal that the proposed feature detector achieves significant results with an F1-

Score of 98.97% and an accuracy of 98%. [8] have proposed a novel behaviour-based deep learning framework (BDLF) 

which is built in cloud platform for detecting malware in IoT environment. In the proposed BDLF, they first construct 

behaviour graphs to provide efficient information of malware behaviours using extracted API calls. They then use a neural 

network-Stacked Autoencoders (SAEs) for extracting high-level features from behaviour graphs. The layers of SAEs are 

inserted one after another and the last layer is connected to some added classifiers. The architecture of the SAEs is 6,000-

2,000-500. The experiment results demonstrate that the proposed BDLF can learn the semantics of higher-level malicious 

behaviours from behaviour graphs and further increase the average detection precision by 1.5%. [11] consists of two 

modules, colour image transformation and DCNN model. End malware image contains patterns in arbitrary form, the use 

of colour images produces better results with deep learning algorithms. Malware binary file is transformed into colour 

image. In-depth analysis is done using DCNN model. The performance of model is increased with optimization of 

convolutional kernel width, the number of hidden units and learning rate. Pooling layers reduce the amount of data by 

holding meaningful information. After this dense layer converts the 2-D features into 1-D features and further supplies 

them for classification. Additional, fine tuning number of neurons with activation function and learning error rate in 

different layers also increase the classification performance. Finally, the classifier identifies the images as malware or 

benign. 

   Danish Vasan et al [3], used the unique MTHAEL model using stacked ensemble of heterogeneous feature selection 

algorithms and state-of-the-art neural networks to learn different levels of semantic features demonstrates enhanced IoT 

malware detection than existing approaches. MTHAEL is the first of its kind that effectively optimizes recurrent neural 

network (RNN) and convolutional neural network (CNN) with high classification accuracy and consistently low 

computational overheads on different IoT architectures. Cross-architecture benchmarking was performed during the 

training with different architectures such as ARM, Intel80386, MIPS, and MIPS+Intel80386 individually. Two different 

hardware architectures were employed to analyse the architecture overhead, namely Raspberry Pi 4 (ARM-based 

architecture) and Core-i5 (Intel-based architecture). The proposed MTHAEL was evaluated comprehensively with a large 

IoT cross-architecture dataset of 21,137 samples and has achieved 99.98 percent classification accuracy for ARM 

architecture samples, surpassing prior related works. Overall, MTHAEL has demonstrated practical suitability for cross-

architecture IoT malware detection with low computational overheads requiring only 0.32 seconds to detect any IoT 

malware. 
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   N. Moses Babu et. al [4], have proposed the system design for detection of malware for multi cloud servers using a 

intermediate monitoring server, any file transmission to multi clouds should be scanned by intermediate server, providing 

scanning, detection and removal of malware before transmitting to cloud servers. The Proposed Malware Detection for 

Multi clouds provides an inter -place routing primarily based on each probabilistic and deterministic forwarding 

mechanisms, the proposed malware provides tolerant networking, discussing the main necessities and viable solutions, 

and outlining the open research issues for detection and removal of malware in multi clouds using intermediate server. 

   Abhijit Yewale et. al [5], have modelled a new method to detect malwares based on the frequency of opcodes in the 

portable executable file. It was identified that; Opcode frequency can be used to detect the unknown malwares. They 

found 20 most frequent opcodes can be used as feature vector for machine learning classifier. The dataset for good wares 

and malwares were containing 20 most frequent Opcode with their frequency. By using their dataset, they have 

constructed four models which are SVM, RF, BOOST and Decision Tree. Out of four models Random Forest has 

provided 97% accuracy and zero per cent false positive ratio. 

   S. Muthurajkumar et. al [6], have put forward the method to detect malware infected files while transmitting the files 

from server to client and to provide a secure way to transfer files among users The system developed in this project is 

more efficient than the existing systems as it takes less time since the malwares are blocked in the router itself. Therefore, 

the client system does not need to carry out any detection and saves time. 

   A deep Recurrent Neural Network based approach for Internet of Things malware threat hunting was discussed by 

Hamed Haddad Pajouh et. al. [9] in the year 2018. This paper explores the potential of using Recurrent Neural Network 

(RNN) deep learning in detecting IoT malware. Specifically, the approach uses RNN to analyse ARM-based IoT 

applications’ execution operation codes. To train the models, we use an IoT application dataset comprising 281 malware 

and 270 benign wares. Then, they evaluate the trained model using 100 new IoT malware samples (i.e. not previously 

exposed to the model) with three different Long Short-Term Memory (LSTM) configurations. Findings of validation 

analysis show that the second configuration with 2-layer neurons has the highest accuracy (98.18%). A comparative 

summary demonstrates that the LSTM approach delivers the best possible outcome. 

   Quoc-Dung Ngo et. al. [10] have dealt with IoT malware detection methods which can be divided into two groups: non-

graph-based and graph-based methods. The non-graph-based methods can achieve a good result when detecting "simple" 

and "forthright" malware without customization or obfuscation, but potentially lose accuracy when detecting unseen 

malware. In opposite, the graph-based methods show advantages when analysing the control flow of IoT malware, thus 

have the potential to accurately detect unseen or complicated malicious code despite the complexity of these methods. The 

methods of using non-graph-based features have achieved better results than using a graph-based features method in 

detecting IoT botnet, both in terms of accuracy and time cost complexity. 

   Hayate Takase et. al [12] have proposed a malware detection mechanism using the processor information obtained from 

a CPU. They have implemented a prototype using a virtual machine and evaluated their proposed mechanism. From the 

evaluation results, it was found that they can detect malware variants including packed malware by training one by one 

from each malware family. 

 

III. MALWARE DETECTION OVERVIEW 

3.1 Static Analysis 

   Static malware is malware at rest. Static malware is the process of extracting information from malware while it is not 

running. In static malware analysis ( also called code analysis ), the program is analyzed without executing it, and reverse 

engineering is performed using different tools like debugger, disassemble, decompile, etc. It is the easiest and least risky 

process. There is no risk of an infection occurring while analysis is taking place. 

 

3.2 Signature Based Detection 

   It's the most commonly used detection method. The method uses known patterns to detect malware. These patterns are 

loaded from an internal database. The method is able to detect malware fast, but it cannot detect new kinds of threats if 

they are not stored in the internal database. This is the reason, why antivirus programs must upgrade their internal 

databases. Methods also cannot effectively deal with malware obfuscation. 
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3.3 PE Format 

   Portable Executable (PE) is a format defining a form and a section layout of the executable files. PE is a data structure in 

the binary form that is used by Windows system for exe files, dll libraries and other executable formats. PE keeps the file 

description information which is used by Windows OS loader and also keeps the program code itself. PE format and 

blocks are described below: 

 

A. DOS MZ Header 

   Defined as _IMAGE_DOS_HEADER_ structure. The first 64 bytes of the file is a header guarantee of DOS 

compatibility, and it is included even in current applications. The first value of the header is named as e_magic_ (so called 

magic number) and it is used to identify the DOS mode. The value must be always equal to 0x54AD ("MZ" in ASCII). 

The header also contains the e_lfanew value which is a relative offset to the PE header. 

 

B. DOS Stub 

   This is a section for the DOS code itself. Nowadays, it is compiled only to show the message: “This program cannot be 

run in DOS mode.” 

 

C. PE Header 

   A structure also defined as “IMAGE_NT_HEADERS” containing the signature, “IMAGE_FILE_HEADER” structure 

and “IMAGE_OPTIONAL_HEADER” structure. It is the main header for the Windows executables and it consists of a 

variety of fields placed in “signature”, “COFF header” and “PE Optional Header” structures. The description of the fields 

itself exceeds the scope of this paper but in the research, the “signature” value, “machine” value, “magic” value and 

“AddressOfEntryPoint” value are the important ones: 

   PE _signature_ value has the similar meaning as “e_magic” value from the DOS MZ header. The value is equal to 

0x50450000 ("PE n0n0" in ASCII) and it is used for the identification of PE header. The machine value holding the type 

of CPU the code is compiled for (the value is used for compatibility check). “Magic” field is a 2-byte value placed at the 

beginning of the optional header and representing the architecture type (0x010B for PE32, 0x020B for PE64, 0x0107 

ROM). _AddressOfEntryPoint_ is an address of the application entry point (address where the applications code begins). 

 

D. Section Table 

   Defined in “IMAGE_SECTION_HEADER” structure. Each section has its own section header and these headers are 

used to describe each of the following sections. The headers contain section name, relative address, section size and other 

values. The number of sections and their names can be different because the com- piler controls these sections and names. 

 

E. Sections 

   The sections contain data created by compiler, code itself and metadata corresponding with the code. Sections names are 

controlled by a compiler, but the most commonly used names are: 

 .text = section containing the main executable code. 

 rdata = read-only data that is globally accessible within the program. 

 .data = global data of the program. 

 .idata = stores the information about the import functions, if this section missing, data can be stored in 

the .rdata. .edata = stores the information about the export functions, if this section missing, data can be stored 

in .rdata section; .pdata = exception handling for 64-bit architecture. 

 .rsrc = stores various resources. 

 .reloc = information for relocation of libraries. 

 

 

 

 

 



IJARSCT 
 ISSN (Online) 2581-9429 

    

 

          International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) 

 

 Volume 2, Issue 4, May 2022 
 

Copyright to IJARSCT    DOI: 10.48175/IJARSCT-3877    5 
www.ijarsct.co.in  

Impact Factor: 6.252 

The following picture shows the layout and the structures of PE file format: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Structure of PE Format 

 

IV. SYSTEM ARCHITECTURE 

   System architecture is the conceptual model that defines the structure, behaviour and more views of a system. The 

system architecture of our project is as shown in fig 2, 

 

 

 

 

 

 

 

 

 

 

Figure 2: System Architecture 

   We have a dataset of different (.exe) and (.dll) files with the available information about that file memory Header 

information. The dataset will first undergo static analysis where features will be extracted. Later feature selection will be 

performed, and model will be trained using machine learning algorithm having highest accuracy among Random Forest, 

Ada-boost and Decision trees. Then the user will upload an .exe file using the designed UI and on starting detection the 

file will be passed through the classifier and classified as malicious or legitimate. 

 

V. IMPLEMENTATION 

5.1 Data Acquisition 

 The dataset is collected from VirusShare.com, which has total 138,047 files out of which 41323 files are legitimate and 

96724 are malicious. It contains 57 features. All are (.exe) and (.dll) files with the available information about that file 

Memory Header information, Size of code, ImageSize, etc. These act as ‘features’ for our ML Models. 

 

5.2 Feature Selection 

   The dataset is first loaded, and the feature selection is performed using extra trees classifier for selecting the best 

features out of total 57 features for accurate classification of malware files. As a result, 14 features were obtained as the 

important ones and saved into a (.pkl) file. 
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Figure 3: Number of Legitimate and Malware files 

 

5.3 Machine Learning Model 

   We used three machine learning methods Random Forest, Decision Trees and Adaboost to classify a file as 

malicious/legitimate. The algorithm which was able to distinguish the malware file with lowest error rate and maximum 

accuracy was selected and used as a final model. We got the following accuracy from the three methods used: 

 Decision Tree : 99.014832 % (Overfitting) 

 Random Forest : 99.319075 % (Best) 

 AdaBoost : 98.422644 % (Good) 

 
Figure 4: ROC curve for Algorithms. 

   We found that Random Forest has the best accuracy and used it for classifying an unknown file uploaded through our 

application. Decision Trees, though they have a better accuracy than Adaboost, are overfitting the train data. Adaboost 

could be used after Random Forest for malware file classification. 

 

5.4 Static Analysis 

 

 

 

 

 

 

 

 

 

 

Figure 5: ROC curve for Legitimate and Malicious file. 

   The dataset was split into training set and testing set out of which 80% was for training and 20% was for testing. The 

machine learning model was trained using the training dataset and later it was tested using an unknown (.exe) and (.dll) 
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file. When the file is uploaded by the user, the features are extracted from the PE header of the file then the entropy values 

for each feature are calculated according to the PE header information of the file. Later on, those features are passed to the 

Random Forest classification model and the file is predicted as legitimate or malicious. 

 

5.5 Malware Report 

    Malware report is generated by analysing a PE file and find out whether anything suspicious exists. It gives information 

about file such as its MD5, SHA1, Timestamp. It also checks PEiD Signature, Section, Imports, Exports, Resources and 

TLS Call-backs Overview done by the file. 

 
Figure 6: Malware Report 

 

VI. FUTURE WORK 

    In the future, more static characteristics (like control flow graphs) and perform feature selection using more different 

methods (like chi-square distribution, etc) can be included. Dynamic characteristics can be used along with static 

characteristics to detect even more complex malware types. A website can be created and hosted on web for real time 

analysis of files on the cloud. 

 

VII. Conclusion 

    A Malware Detection tool has been created where the user will upload the (.exe) or (.dll) file and can detect whether 

the file is malicious or legitimate. For the same we have used extra trees classifier for performing feature selection on the 

dataset to select the important features needed for classification. Along with it we have used Random Forest algorithm as 

it has the highest accuracy among the other two algorithms which are Decision Trees and AdaBoost. We got 99.31% 

accuracy with Random Forest. The true positive rate is 98.81% and true negative rate is 99.53%. We have also made an 

easy-to-use user interface for easy uploading of files and checking for virus. With this accuracy we were able to 

successfully detect malicious or legitimate file. With the help of this the user’s system will be safe from the viruses 

spreading across the computer. This tool is fully ready and has been tested for all the corner cases. It is easy to use and 

very intuitive. 
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