
IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 3, May 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-3697 5
www.ijarsct.co.in

Impact Factor: 6.252

VLSI Design and Implementation of Multipliers for

DSP Applications
Iqshan Ahamed A1, Karthikeyan E2, Naveen Baabu S3, Sundhar P4, Dr. S. C. Prasanna5

Students, Department of Electronics and Communication Engineering1,2,3,4

Professor, Department of Electronics and Communication Engineering5

SRM Valliammai Engineering College, Kattankulathur, India

Abstract: A multiplier is a critical building block found in processors, embedded systems, VLSI applications,

application specific integrated circuits, and most DSP applications. Speed, area, and power are the three

primary thrust characteristics in VLSI design. Low power and high speed is the desirable characteristic in

many applications that can extend the battery's life expectancy and increase the frequency of operation. The

goal of this project is to design, implement and analyse the performance of array multipliers, booth multipliers,

Wallace tree multipliers, and modified booth multipliers. In this work multipliers with different bit widths are

implemented on Spartan 3E FPGA and their performances are analysed. Among these architectures Wallace

tree multiplier provides higher speed of operation and consumes lesser power.

Keywords: Wallace tree, Array, Booth algorithm, Spartan 3E FPGA, Xilinx ISE 14.7 Design Suite, Speed,

delay, power

I. INTRODUCTION

 Multiplication performance is critical for digital signal processing (DSP) tasks such as filtering, correlation, convolution,

and Fourier transforms, which involves repeated multiply-accumulate operations. For example, multi-media applications

like 3D graphics systems that require the execution of a large number of multiplications. So the digital signal processors are

built around high-speed multipliers. The size, power consumption, and silicon area are all heavily influenced by the word

length of multiplication. In VLSI, the three main thrust performance parameters are area, speed and power consumption. It

is critical to have a design that is efficient in terms of area, speed and power. Therefore several researchers proposed several

architectures for efficient implementation of multipliers. It is suggested in [1] that Wallace tree multiplier is capable of doing

high speed operation than Braun array multipliers. Array multiplier is the conventional multiplier used to perform parallel

multiplication. This multiplier is suitable for lesser multiplier widths, because it will occupy larger area, consumes more

power and also give more delay as width increases [VLSI design- SIA publications]. In this project multiplier architectures

such as Wallace tree multiplier, and multipliers based on the Booth algorithm are designed, implemented and compared its

performance with conventional multipliers. It is seen that Wallace tree multiplier performs well in terms of speed of

operation as well as power consumption. The rest of the paper is organised as follows. Section II describes the architectural

details of array multiplier, Wallace tree multiplier and Booth algorithm based multiplier. The implementation results and

its analysis is presented in Section III and IV respectively. Finally the hardware implementation and conclusion is described

in section V and VI respectively.

II. MULTIPLIER ARCHITECTURES

A binary multiplier is a combinational circuit that multiplies two binary integers in digital electronics, such as computers.

The architectural details of array multiplier, Wallace tree multiplier and Booth algorithm based multiplier is discussed

below.

2.1 Array Multiplier

 The multiplication process in array multiplier is demonstrated in (Figure 1) using 4x4 array multiplier. It show partial

products can be generated. That is it requires AND gate for each bit position to generate partial products. Here 4 AND gates

are needed in each stage for generating each partial product (partial product 1 - b0a3 b0a2 b0a1 b0a0). Then these partial

products are added using half adders and full adders at each stage. Then the product can be obtained from the last stage of

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 3, May 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-3697 6
www.ijarsct.co.in

Impact Factor: 6.252

adders. The architecture for 4x4 array multiplier using AND gates, half adders and full adders is shown in (Figure 2). Table

1.1 Device utilization for MxN multiplier. The number of AND gates, half adders and full adders needed for MxN multiplier

is tabulated in Table 1

Table 1: Device Utilisation of Array Multiplier

No. of AND No. of HAs No. of FAs Total adders

M*N N (M-2) *N (M-1) *N

Figure 1: 4x4 Array Multiplier Methodology

 The number of stages increases with multiplier width, which will also increase the complexity and also delay and power

consumption. So for larger width multiplication where speed of operation and power consumption is critical array multipliers

are not suitable.

Figure 2: 4x4 Array Multiplier Implementation

2.2 Wallace Tree Multiplier

 The final outputs of Wallace tree multiplier will be generated by a collection of adders. Because of the lengthy wires

required to propagate carries from low order bits to high order bits, carry propagate addition are rather sluggish.

 Wallace's use of carry save adders (CSAs, also known as mixture of full adders and half adders or 3-2 counters) to add

three or more numbers in a redundant and carry propagation freeway is perhaps the single most important development in

boosting the speed of multipliers.(Figure. 3) illustrates the procedure.

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 3, May 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-3697 7
www.ijarsct.co.in

Impact Factor: 6.252

 Any number of partial products can be added and reduced to two values without using a carry propagate adder by

recursively using the basic three input adder. To reduce the two numbers to a single end product, just a single carry propagate

addition is required.

Figure 3: 8*8-bit Wallace tree multiplier

There are three stages in the Wallace tree:

1. Multiply each multiplier bit by the multiplicand bit position. The weights of created partial products vary depending

on the location of the multiplier bits.

2. Using layers of full and half adders, reduce the number of partial products to two.

3. We now have two rows of sum and carry, which we may combine using traditional adders.

Explanation of the second step: Add a following layer if there are three or more rows with the same weight:

1. Input any three rows with the identical weights into a complete adder. For each of the three input wires, the outcome

will be an output row with the same weight, i.e., sum, and an output row with a greater weight, i.e., carry.

2. If there are two rows of the same weight left, use a half adder to combine them.

3. Connect the last row to the next layer if there is just one remaining. The Wallace tree has the benefit of having just

O (log n) reduction layers (levels), each with an O(1) propagation time. Multiplication is just O (log n), not much

slower than addition, because partial products are O(1) while final addition is O(log n) (however, gate count

increases progressively). Regular adders would take O(log n2) time to combine incomplete products.

Figure 4: Action in constructing 4-bit Wallace tree multiplier

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 3, May 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-3697 8
www.ijarsct.co.in

Impact Factor: 6.252

 Multiply each Xi with each Yi in the first stage (AND gates) to generate a total of n*n intermediate wires. Each wire is

assigned a weight, such as X0. 1(20.20 =1) is the weight of Y0. Y3 has the same weight as X3. Using extra stages made up

of full adders and half adders, you may reduce the number of intermediary wires. Using a complete adder, combine any

three wires of the same weight; the outcome in the following step is one wire of the same weight (sum) and one wire of a

greater weight (i.e., carry). In the last phase, all weights have only one or two wires. To make two 2n-bit values, connect

the wires together.

2.3 Radix 2 Booth Multipliers

 This method quickly and efficiently calculates the multiplication of two signed binary numbers in two's complement

notation. This approach evaluates adjacent pairs of bits in the 'N'-bit multiplier Q in signed two's complement format,

including an implied bit below the least significant bit, N1 = 0. When these two bits are equal, the product accumulator P

remains unchanged. The multiplicand times 2i is added to P where Qi = 0 and Qi1 = 1, and the multiplicand times 2i is

removed from P when Qi = 1 and Qi1 = 0. P's final value is the signed product.

 The steps are not in any specific order in this case. It generally proceeds from LSB to MSB starting at I = 0; the

multiplication by 2i is then replaced by slow shifting of the P accumulator to the right between stages; low bits can be

pushed out, and subsequent additions and subtractions can only be done on the higher N bits of P.

Figure 5: Booth’s Algorithm Architecture

The radix-2 Booth's algorithm is demonstrated in Figure (ex. Fig. 6) as a flowchart.

 To further understand Booth's technique, consider the following scenario. Take the multiplier Q = +3 and the

multiplicand A = -6. The functioning of this method may be characterised as a trace table that displays the state of each

processing step. In this case, input A is a negative number, and the 2's complement counterpart is required to finish the

calculation. A= (-6)10 = (1010)2 while (-A) = (0110)2

Figure 6: Flowchart of radix 2 Booth’s algorithm

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 3, May 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-3697 9
www.ijarsct.co.in

Impact Factor: 6.252

Figure 7: Radix 2 booth’s algorithm grouping table

 At the point where n-1 Equals 0, the result in PQ = 11110110. The final product in base-10 must be its 2's complement

equivalent since this is a negative integer. Booth's approach preserves the sign of the result. The result must be stated in

negative notation when the signed bit in the value of PQ is 1. (00010010)2 = (-18)10 is the 2's complement of PQ.

2.4 Booth’s Radix 4 Multiplication Algorithm

 The Booth's Multiplication method has been significantly improved, resulting in an increment in the count of bits

grouped and a reduction in the number of computing phases. These tactics have been shown to increase the multiplier's

performance and, as a result, the efficiency of DSP applications. In the Radix-4, Radix-8, and Radix-16 type Booth's

Multiplication method, Table 2 specifies the bit grouping and the related operation. Radix-32, Radix-128, Radix-256, and

even radix-4096 kind multipliers were developed using a similar technique, with more study and implementation advised

for best application design.

Table 2: Grouping Table of Radix 4

CODE OPERATION

000,111 0

001 1* multiplicand

010 1* multiplicand

011 2* multiplicand

100 -2*multiplicand

101 -1*multiplicand

110 -1*multiplicand

III. SIMULATION RESULTS

 Array multiplier, Wallace tree multiplier, Radix 2 Booth’s multiplier were implemented and simulated in Xilinx 14.7

ISE Design suite and generated output were given below.

3.1 Array Multiplier

Figure 8: Simulation results of 4- bit array multiplier Figure 9: Simulation results of 8- bit array multiplier

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 3, May 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-3697 10
www.ijarsct.co.in

Impact Factor: 6.252

3.2 Wallace Tree Multiplier

Fig. 10: Simulation results of 4- bit Wallace tree multiplier Fig. 11: Simulation result of 8 -bit Wallace tree multiplier

3.3 Radix 2 Booth’s Multiplier

Fig. 12: Simulation results of 4- bit radix 2 Booth’s algorithm Fig. 13: simulation results of 8 -bit radix 2 Booth’s algorithm

IV. PERFORMANCE AND REPORT ANALYSIS

4.1 Device Utilisation Summary

 The device utilisation summary, time delay, power parameters of array multiplier, Wallace tree multiplier, Radix – 2

Booth’s algorithm for 4 bit and 8- bit are tabulated below. The power consumption of these multipliers are calculated with

the help of Xilinx Vivado Design suite. The tabular column 3 given below is device utilisation summary of 4- bit multipliers

Table 3: 4-bit Multipliers

PARAMETER Array Wallace Radix 2 Booth’s Radix 4 Booth’s

No. of slices 18/63400 22/63400 43/63400 55/64300

No. of bonded IO’s 16/210 16/210 16/210 16/210

Total delay (nS) 3.345 3.172 5.740 5.295

The tabular column 4 given below is device utilisation summary of 8- bit multipliers.

Table 4: 8-Bit Multipliers

PARAMETER Array Wallace Radix 2 Booth’s Radix 4 Booth’s

No. of slices 99/63400 94/63400 216/63400 259/63400

No. of bonded IO’s 32/210 32/210 32/210 32/210

Total delay (Ns) 7.847 7.153 12.57 10.972

The tabular column 5 given below is device utilisation summary of 4- bit multipliers.

Table 5: 16-Bit Multipliers

PARAMETER Array Wallace Radix 2 Booth’s Radix 4 Booth’s

No. of slices 351/63400 553/63400 818/63400 1086/63400

No. of bonded IO’s 64/210 64/210 64/210 64/210

Total delay (nS) 15.017 12.948 25.059 18.49

B. POWER ANALYSIS:

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 3, May 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-3697 11
www.ijarsct.co.in

Impact Factor: 6.252

The tabular column 6 given below is the power consumption of 4 -bit multipliers.

Table 6: 4-Bit Multipliers

Multipliers Dynamic Power(W) Static Power(W) Total Power(W)

Array 3.942 0.143 4.085

Wallace 3.920 0.143 4.063

Radix 2 Booth’s 3.776 0.143 3.918

Radix 4 Booth’s 5.651 0.150 5.801

The tabular column 7 given below is the power consumption of 8 -bit multipliers.

Table 6: 8-Bit Multipliers

Multipliers Dynamic Power(W) Static Power(W) Total Power(W)

Array 13.649 0.199 13.848

Wallace 13.849 0.202 14.10

Radix 2 Booth’s 16.071 0.222 16.293

Radix 4 Booth’s 18.096 0.244 18.341

The tabular column 8 given below is the power consumption of 16-bit multipliers.

Table 6: 16-Bit Multipliers

Multipliers Dynamic Power(W) Static Power(W) Total Power(W)

Array 48.047 1.346 49.398

Wallace 37.58 0.726 38.318

Radix 2 Booth’s 40.157 0.852 41.009

Radix 4 Booth’s 45.539 1.166 46.705

V. HARDWARE IMPLEMENTATION

 The hardware implementation of Wallace tree multipliers was done with the help of Spartan 3E FPGE kit available in

the VLSI laboratory which is shown in the figure(Ex. Fig. 14,15 and 16).

Figure 14

Figure 15

IJARSCT
 ISSN (Online) 2581-9429

 International Journal of Advanced Research in Science, Communication and Technology (IJARSCT)

 Volume 2, Issue 3, May 2022

Copyright to IJARSCT DOI: 10.48175/IJARSCT-3697 12
www.ijarsct.co.in

Impact Factor: 6.252

Figure 16

VI. CONCLUSION

 The multipliers were implemented using Xilinx 14.7 ISE Design Suite and the performance of these multipliers were

analysed successfully. From this performance analysis, the Wallace tree multipliers (i.e., 3.172nS for 4 bit, 7.152nS for 8

bit and 12.948nS for 16 bit) are having high speed and less delay compared with array and booth’s algorithm. In terms of

power consumption, Wallace consumed less power. So, for DSP application, it is better to use Wallace tree multiplier.

Wallace tree multiplier was implemented in Spartan 3E FPGA kit due to its better performance.

ACKNOWLEDGMENT

 We sincerely thanking our respected principal Dr. B. Chidhambararajan. We also expressing our profound thanks to the

Head of the Department Dr. Komala James and to our supervisor Dr. S. C. Prasanna, Assistant professor for their constant

support, guidance and motivation while facing tough time in our project and making this project a successful one.

REFERENCES

[1]. P.V. Rao, C Prasanna Raj, S. Ravi, “VLSI Design and Analysis of Multipliers for Low Power”, Fifth International

Conference on Intelligent Information Hiding and Multimedia Signal Processing”, 2009.PP-1354-1357.

[2]. R.Bajaj, S. Chhabra, S. Veeramachaneni and M B Srinivas, “A Novel, Low-Power Array Multiplier Architecture”,

International Institute of Information Technology-Hyderabad,2017.

[3]. Sangeetha P, Aijaz ali khan, “Comparison of Braun multiplier and Wallace multiplier techniques in VLSI” in

IEEE Access, 2019.

[4]. Iffat Fatima, “Analysis of Multipliers in VLSI” Journal of Global Research in Computer Science,2014.

[5]. N. Honarmand, M.R.Javaheri, N.SedaghatiMokhtari and A. Afzali-Kusha “Power Efficient Sequential

Multiplication Using Pre-computation” ISCAS 2006.

[6]. Anandha Gunduru, Youngstown state university, “Analysis of Booth’s Multiplier Algorithm vs Array Multiplier

Algorithm and their FPGA Implementation” in 2019.

[7]. https://www.researchgate.net/publication/2575879_Fast_Multiplication_Algorithms_And_Implementation

[8]. Laxman S, Darshan Prabhu R, Mahesh S Shetty, Mrs. Manjula BM, Dr. Chirag Sharma “FPGA Implementation

of Different Multiplier Architectures” ISSN 2250- 2459, Volume 2, Issue 6, June 2012)

