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1. INTRODUCTION
Convolution Function: The convolution of the function [3]f (t)andg(t) is defined as

f@®) =gt = f f(t—u) gwdu.

Convolution Theorem: [4] If S, {f(t)} = F(v%, B)andS,{g(t)} = G(v*,B). Then
S {f(®) »g(©} =S, {f fle—- u)g(u)du}

= vPS,{f ()}Sa{g ()} = vFF(w® B)G(v*, B).
Properties: [1]
(1) If k4, k, are non-negative real numbers then
Salkif(©) + kag(©)} = ki S {f (D} + k2Sa{g(©)}.
2) lim £(&) = lim S, {f @)} = £(0).

The Sadik Transform of Distribution:

Let E(R,) be the space of smooth functions of an arbitrary support on R, and E'(R, )be its strong dual of distributions
of compact support. Denote D (R,) as subspace of E(R,) of test functions of compact support then its dual space D'(R,)
consists of Schwartz distributions.

Clearly, D c Eandhence Ec E'c D".

—tp%
etv

The Kernel function K (v,t) = 7 of Sadik transform is a member of E(R,).

Hence, it will be suitable to define distributional Sadik Transform of f(t) € E'(R,.) as the adjoint operator

e—tv®
) = <f(t)’v_ﬂ> ....... (1);
wherev-complex variable, a-any non-zero real number and -any real number, for every distribution
f € E'(RY).
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Theorem 1: ¢ is well defined mapping in the spaceE (R,). As *— 7 E E(R,).

k k [o—tv® ,
Theorem 2: ¢ is infinitely smooth and ﬁ {e()} = (f(0), # (ev—ﬁ,)), for everyf (t) € E (R,).

To prove this theorem we can use Theorem 2.9.1 from [11]

Theorem 3: ¢is linear operator.

Definition 1: Letf, g € E'(R,). The generalized convolution between fandg is defined by
((F *9)@),8(8)) = (f(£), (g (x), B(t + x))), for every @ € E(R,)........ @)

Using equation (1) and (2), we will get o (f * g)(v) = vof (v).pg(v).

f(t—a), t=a
0, t<a

Salg(W)} = e™ ™o {f ()}
Proof: Here, clearly g € E'(R,.).A translation property of distributions through a[11] implies that
SafgW)} = (f(t — @), ve™) = e™p{f (V)}.

{Putt—a=va-t=v+a,

Theorem 4: Let f € E'(R,)andg(t) = { then

Nowift = athenv = 0 andt = wothenv = .
2 So{lgW)} = (f (W), vePF+D) = (f(v), ve~@.e ")
= e~ W(f(v),ve™"") = e @{f(V)}}

Theorem 5: Let f € E'(R,) then

@) Sa(t- () = = —= .2 () — L. 0 (v).
(i) S, (¢2. F(£)) = (—1)? (Wi_l =t %) o).

Proof: By using equation (1) and (2) above we have,

—tv“

d e—tv“
d—v{fﬂ(v)}— (f() —) =, — < ))

= (f(O), 5 (vPe)
= (f(t), (e‘“’a. =BvF 1 +vF et (—av® 1))

=(f(D),— —twv® _ -l i t. e—tv“)

ﬁ+1

=(f(0),-% iﬁ ~tv® —av“—l.viﬁ.t.e—f”“> [10, 26(2)]

1 « 1 a
= (t.f (1), —av“‘l.v—b,. tetv"y — (f(t),%.v—ﬁ. ety
= —av®HEF(©), () — L (), p(v)).
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Divide by av®*~1, we will get

2 00 = =Su(6.f0) =25, 0).
{(p(v)} - _{<P(V)}

2 St f(O)} = ‘W av

(i) Sa{t% F (O} = So{t. (. F©)} = S (F(©), L (vFe "))
= <f(t)'d_( (vFe v ))

d 1 B 1 ,3
=@ ave1’ dv( ave1"dv v >_av“< av*1'dv )>
1 1
~ O~ i |- E{qo( - dvz{go( ) - (ﬁ(a+3{<p(v>}— . 5{4@)})]
AR
av® | av*ldv
d 1 d? d d
O ) R O . Za{go(v)}+ﬁ.5{¢(vn+5{¢(w}.#
2
b o)

= ) ooy D + (F (O, 5528 L o)) + (£ (), (e — -L52) (o)),

By properties of distributions, we have

1 2
SulEF(O) = ooy (2 F O, 0(00) + 2 (st e ) F O

%u £(©), p()) +

LT oo

= DO, [cw“ 1 dv av®

= (0 (A Y o).

av® 1 dy = av®

B
Theorem 6: (Shifting property) Letf € E'(R,) then S, {e%. f(t)} = @ u)a o(W* —a)

Proof: S, {e®. f(t)} = (f(t),eat-_e;;a>
_ 1 —t(v%—a)
= (F(©, 5 D (©))

= (f(0), [y 25 e~ D f(t)de).

Putv® —a=u*v*=u*+a=>v=W*+a)
»vB = (u® + a)f/e.

1 ¢t «
b Sale® FO) = (D= j et f(t)de)
0

1 ¢ «
=—(f(1), T f()dt

—{F® f et f(6)dt)
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L B
= SO )

ubB
S UGRIO)

(v —a)“

———@(v* — a)is proved.

Boehmians:
Consider a linear space V and U a subspace of V. For each pair of members, u € Vand
v € U, define a product u * v satisfying the conditions
HvwelU=>vxweUandv*w =w *v.
(ihu € Vandv,w €U = (u*v) *w =u=* (v*w)
(iii) Ifuq,u, € V,v € Uandk € R.Then(u, + u,) * v = uy * v+ u, * vand k(u; * v) = (kuy) * v.
Now, if A denotes the family of sequences from U which satisfy
(1) Ifuy, u, €V, (x,) € Aandu, * x,, = Uy, * x5, n € N then u; = u,.
(ii) (xn), () € A= x,, * y,, € A.Then here every member of A is called a §-sequence.

LetS = {((xn), (zn)): (x,) VWV, (z,) € A} be a class of pairs of sequences for eachn € N.

Here, an element ((xn), (z,)) € S denoted by JZC—" is a quotient of sequences when
n
X; *Zj = Xj *Zi,vi,j € N.
Two quotient of sequences z—: and ;—” are said to be equivalent if x; * z; = y; * @;,Vi,j € N;

n

denoted by z—" ~n
n

Here, ~ is an equivalence relation on S and hence induces the equivalence classes of S.
Denotes the equivalence class of z—"by[z—"] These equivalence classes are called Boechmians.
n n

We shall denote the space of all Boehmians byBj,.

Now, we can define the sum of two Boehmians and multiplication by a scalar as-

[x_n]+[g_:]= (xn*wn)+(yn*zn>]an da[ ] [axn]

Zn Zn*0n
Also the product operation * and the differentiation can be defined by
Xn zn] _ [xn*zn a D%xy,
o]+ [32] = om0 [32] = [52)
The linear space V has a notion of convergence. The natural relationship between the product * and the convergence is
given by
(1) Ifx, = xasn = o in V and for any fixed element u of U, x, *u > x *uin Vasn - oo.

(2) If x, = xasn - «in V and (§,) € Athenx, * §, = xinVasn — .

Definition 2: If [;—:] € Byandu € Uthen[;—:] * U = [x;;u]

This is an extension of * operation to By X U.
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Two types of convergence dandA on Byas

Definition 3: A sequence of Boehmians (a,) € By is said to be §-convergent to « if there exists a §- sequence (@,,) such
that (a,, * 0,), (a * @,) € S,vn € Nand
(ay, * @) = (a* @,)inSasn - o, Vk € N.

B
It is denoted by a,, = «.

Definition 4: A sequence of Boehmians (a,,) € By is said to be A-convergent to « if there exists a §- sequence (@,) € A

such that(a,, — @) * @,, € S,vn € Nand(a, — a) * @, — 0 inSasn — .

A
It is denoted by a,, = «.

The Sadik Transform of Boehmian:

LetV = L*(R,) and U = D(R,), and A be the collection of sequences (x,,) fromU = D(R,) such that
1. fR+xn(t)dt =1

2. ||xnll,2 < M, for all (x,,) € A and some constant M > 0.
3.f|x|>£|xn(t)|dt —-0asn - o0,e>0.

Then the space of Boehmians By (L, D,*, A) is convolution algebra with

O 2] + B2l = [P eanaa 2] = [S2] a e v

Zn*Pn n
PN E™ Zn Xn*Zn
in 2]« [32] = [5232)
( ) Yn Pn Yn*On
Dkxy

(iii)D* [;—:] = -

n

],keN.

If (x,,) € A then S,x,(t) — t uniformly on compact subsets of R, as n — oo.

t
Theorem 7: If f,, € L! such that [;—n] € By (LY, D, *, A) then S, f,,(v) = fow ve vf,(t) dt converges uniformly on each
n

compact set of R,.

Proof: Since S, g,, = vasn — o on compact subsets of R, S, g, > 0 for almost all k¥ € N and hence

_ Sagk®) _ vSa(fn*gr) W) _ vSa(fr*gn) _ Safk@)
Safn®) = Safn(W)-5 0 0 =~ Sugrt) SaIn®  Sagk®’

Sagn(v)onk;

whereK is some compact subset of R,

vSafr W)

Now, taking limit asn — oo, we will getS, f, (v) = Sk @)

We can define the Sadik transform of 8 € By (L, D, *, A); B = [5—:] by G = 71115)10 Safn on compact subset of R,.
Claim: To prove that the definition is well defined.

If possible let B, = fB,; where B; = [g_ﬂ andp, = [Z—:] thenf, * 8, = hyy * gn = iy * gy Applying Sadik transform on
both sides, we will get v. S, f;, (V) S0 (V) = .S hy (V) S gm (V).
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Now, as n —» o lim S, f;, (v) = lim S h,(v) = Gp; = SB,.
n—-oo n-—-oo

Volume 2, Issue 2, April 2022

Theorem 8: Let uj,u, € By (LY, D, *, A) and k € C then

(1) S(uy + uz) = S(uy) + S(uy)

(if) S(ku,) = kS(uy)

(iii) S(uy * f) = S(f * wy) = v.6(uy)

(iv)&(u) =0 = u; =0.

™) f, = f € By(L', D, *, A) > &f, » &f € By(L', D, *, A)asn — o on compact subsets.
Proof: We can prove (i), (ii) and (iv) using the linearity property of Sadik transform.

To prove (iii) Letu; € By (L', D, *, A) such that u; = [;’_n] then uy * g, = [fn;gn]_

Hence, G(u, * g,,) = v. lim S, f, (v) = v.6(uy).
n—-oo

Also we will prove (v) using proof of Theorem 2 (f) from[2].
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