
IJARSCT 
 ISSN (Online) 2581-9429 

    

 

         International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) 

 

 Volume 2, Issue 3, April 2022 
 

Copyright to IJARSCT    DOI: 10.48175/IJARSCT-3322                                               635 
www.ijarsct.co.in  

Impact Factor: 6.252 

Layer 7 Packet Filtering Implementation on Actual 

Kernels 
Pratibha Tambewagh1 and Asmita Jagtap2 

Lecturer, Bharati Vidyapeeth Institute of Technology, Kharghar, Navi Mumbai, Maharashtra, India1  

Lecturer, Bharati Vidyapeeth Institute of Technology, Kharghar, Navi Mumbai, Maharashtra, India2 

pratibha.tambewagh@gmail.com1 and smitj24@gmail.com2 

 

Abstract: The use of Application layer packet classifier and optimization of bandwidth towards QoS in Linux 

using netfilter, iproute2 and layer-7 Filter. As seen in the statistics the huge amount of data flows through the 

network, so it is necessity to apply packet-filtering rules in order to control the traffic and add   firewall rules. 

Some services are inherently insecure and impossible to secure on individual hosts. Packet filtering tools can 

help you segment and contain parts of your network to increase security. A packet filtering tools can help you 

enforce your network security policies by selectively allowing network services. Because a packet filtering 

tools must examine all inbound/outbound network traffic, it can help you log network activity. We are looking 

at packet filtering tools like Netfilters and iproute2, who examine the IP packets for filtering and using the 

queuing disciplines for traffic control. 

 

Keywords: Application layer packet, HTTP, FTP 
 

I. INTRODUCTION 

    At Layer 7 of the OSI model, we find Application (HTTP, MAIL, DNS. FTP, SSH etc.). As we can see from the following 

figure (Layer-7 filter), TCP/IP compacted OSI Layers 7, 6, and 5 into one Layer, TCP/IP Layer 4 (Application), which has 

the same name, but different functionality. Filtering and prioritizing traffic from some applications can be very easy and 

very hard at the same time. Normally, we would filter/prioritize web traffic by matching TCP packets with source or 

destination port 80, which is the standard HTTP port. However, web servers can be configured to use any port; so the 

network traffic filters for particular prioritizations based on source ports, destination ports and the source ip addresses and 

destination ip addresses won't work for that particular traffic. 

 
    Filtering traffic belonging to P2P (peer to peer) applications like Kazaa (is a completely distributed peer-to-peer file 

sharing service), DC++ (is an open source client for the Direct Connect network. Direct Connect allows you to share files 

over the Internet without restrictions or limits) and many more like Emule (peer-to-peer file sharing clients) etc., as those 



IJARSCT 
 ISSN (Online) 2581-9429 

    

 

         International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) 

 

 Volume 2, Issue 3, April 2022 
 

Copyright to IJARSCT    DOI: 10.48175/IJARSCT-3322                                               636 
www.ijarsct.co.in  

Impact Factor: 6.252 

applications don't use standard ports and, even worse, they can be configured to use other applications' standard ports for 

communication (e.g. TCP port 80), so to understand and classify the packet the layer 7 protocol is useful. 

    Layer 7-filter: Is a packet classifier for the Linux kernel that doesn't look up port numbers or Layer 4 protocols, but instead 

looks up the data in an IP packet and does a regular expression match on it to determine what kind of data it is, mainly what 

application protocol is being used. 

 

II. WORKING ON LAYER7 FILTER 

    What L7-filter does is provides a way for iptables to match packets based on the application they belong to. The TCP/IP 

model contains four layers and, before the L7-filter project, netfilter could match data by the first three layers: 

 

Network access layer: iptables -A CHAIN -m mac --mac-source …" Internet: iptables -A CHAIN -s IP_ADDRESS …" 

Transport: iptables -A CHAIN -p tcp --dport 80 … 

 

    At the Network Access layer, netfilter uses -m mac to match packets from or to a MAC address in the network. The 

Internet layer, we have the IP protocol; netfilter matches packets from or to an IP address, regardless of the transport protocol, 

port number, or application the packet uses. At the transport layer, we have TCP or UDP, and netfilter can match packets 

by protocol, and more specifically, by port number within the protocol. Any combination of the three lower layers is 

permitted, for example 

 

        iptables –A FORWARD –s 10.100.106.240 –p tcp -–dport 80 –m mac –-macsource 00:01:BC:2D:EF:2A –j DROP" 

 

    Will drop all packets from the IP address 10.100.106.240 if the source MAC address is 00:01:BC:2D:EF:2A and the 

packets use the TCP protocol and have the destination TCP port 80. 

    Layer 7-filter adds a new feature to netfilter by matching packets that belong to an application that is found at the TCP/IP 

Layer 4. A very important thing is that L7-filter is just another match option for iptables, and so all the rules of the other 

match options apply in this case. Therefore, you can do all the iptables operations with the packets matched by L7-filter. 

After adding patch of Layer 7-filter to the kernel, you have -m layer7 --l7proto [http | ftp|snmp|...] 

    This is the match option we were talking about. In order to match Layer 7 data, netfilter looks deeper into an IP packet 

than just at its header. However, the actual data contained in the packet doesn't just say "I'm a SNMP packet; filter me!"; so 

the data is matched against a set of regular expressions that are common to different applications. 

    This set of regular expressions is probably the most important part of this project, and is called "protocol definitions".The 

Layer 7-filter contains three important parts: 

       - A kernel patch, which provides a way for the kernel to look into the IP packets 

      - iptables patch, which provides the match option for iptables. 

       -  A collection of pattern files that contain the regular expressions for supported protocols (protocol definitions). 

 

2.1 Layer 7 Filtering implementations on actual kernels 

    To implement Layer 7 filter on actual kernel, we need to patch our kernel with the patch provided by the source found at 

http://l7-filter.sourceforge.net. To do that, we need the kernel source. The next operation would be to apply the iptables 

patch, recompile iptables, and install the protocol definitions files. 

 

2.1.1 Applying the Kernel Patch 

    The first step is to download the kernel source we want from http://www.kernel.org. Next, we need to download L7-filter 

from at http://l7-filter.sourceforge.net For this project we are using the kernel linux-2.6.18.2 and Layer-7 filter 

netfilter-layer7-v2.7.tar.gz. After downloading what you need to the /usr/src folder, unzip the L7-filter TAR archive as 

follows: 

    [root@l7filter src]# tar -xfvz netfilter-layer7-v2.7.tar.gz 

  [root@l7filter netfilter-layer7-v2.7]# ls -l | awk '{NFS=" "} {print $9}'  

[root@l7filter netfilter-layer7-v2.7]#CHANGELOG 



IJARSCT 
 ISSN (Online) 2581-9429 

    

 

         International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) 

 

 Volume 2, Issue 3, April 2022 
 

Copyright to IJARSCT    DOI: 10.48175/IJARSCT-3322                                               637 
www.ijarsct.co.in  

Impact Factor: 6.252 

[root@l7filter netfilter-layer7-v2.7]#for_older_kernels  

[root@l7filter netfilter-layer7-v2.7]#iptables-layer7-2.7.patch  

[root@l7filter netfilter-layer7-v2.7]#kernel-2.4-layer7-2.7.patch 

[root@l7filter netfilter-layer7-v2.7]#kernel-2.6.18-layer7-2.7.patch  

[root@l7filter netfilter-layer7-v2.7]#README 

[root@l7filter netfilter-layer7-v2.7]#stray_code 

Next, go to the kernel source root and patch the kernel using the appropriate patch 

[root@l7filter ~]# cd /usr/src/linux-2.6.18.2 

 [root@l7filter linux-2.6.18.2]# patch -p1 < ../softwares/netfilter-layer7 2.7/ /kernel-2.6.18-layer7- 2.7.patch 

It will show the following output. 

Patching file include/linux/netfilter_ipv4/ip_conntrack.h  

patching file include/linux/netfilter_ipv4/ipt_layer7.h 

patching file net/ipv4/netfilter/Kconfig 

patching file net/ipv4/netfilter/Makefile 

patching file net/ipv4/netfilter/ip_conntrack_core.c 

patching file net/ipv4/netfilter/ip_conntrack_standalone.c 

patching file net/ipv4/netfilter/ipt_layer7.c 

patching file net/ipv4/netfilter/regexp/regexp.c 

patching file net/ipv4/netfilter/regexp/regexp.h 

patching file net/ipv4/netfilter/regexp/regmagic.h 

patching file net/ipv4/netfilter/regexp/regsub.c 

Now compile the kernel using, run make config, make menuconfig, or make Xconfig. You need to enable the following 

options: 

Code maturity level options | Prompt for development and/or incomplete code/drivers.  

Netfilter (Device Drivers | Networking support | Networking Options | Network packet filtering). 

Connection tracking (Network packet filtering | IP: Netfilter Configuration Connection tracking). 

Connection tracking flow accounting and IP tables support. Layer 7 match support. 

Following modules should be selected during kernel compilation. That is Layer 7 match support. 

 
Figure: Kernel compilation 



IJARSCT 
 ISSN (Online) 2581-9429 

    

 

         International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) 

 

 Volume 2, Issue 3, April 2022 
 

Copyright to IJARSCT    DOI: 10.48175/IJARSCT-3322                                               638 
www.ijarsct.co.in  

Impact Factor: 6.252 

2.1.2 Applying the iptable patch 

    To apply the iptables patch, we need the iptables sources from http://www.netfilter.org. Go to the iptables source root and 

patch it with the patch provided by the L7-filter project. 

   [root@l7filter iptables-1.3.7]# patch -p1 < ../softwares/netfilter-layer7-v2.7/iptables-layer7-2.7.patch 

It will show the following output. 

patching file extensions/.layer7-test patching file extensions/libipt_layer7.c 

 

2.1.3 Protocol Definitions 

     First, we need to download the protocol definitions archive from the L7-filter project page at 

sourceforge,http://prdownloads.sourceforge.net/l7-filter/l7-protocols-2007-01-14.tar.gz download. And we need to copy the 

pattern files (.pat) from the archive to the /etc/l7-protocols folder. Following are the application patterns supported by L7 

filter 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Malware 

     This category includes worms, viruses, and anything else that uses the network to bother us. It doesn't appear that there 

is much demand for this functionality, but in case it interests you, this is a proof-of-concept. 

 



IJARSCT 
 ISSN (Online) 2581-9429 

    

 

         International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) 

 

 Volume 2, Issue 3, April 2022 
 

Copyright to IJARSCT    DOI: 10.48175/IJARSCT-3322                                               639 
www.ijarsct.co.in  

Impact Factor: 6.252 

Name Description 

code_red Code Red - a worm that attacks Microsoft IIS web servers 

nimda Nimda - a worm that attacks Microsoft IIS web servers, and MORE! 

 

III. HOW TO WRITE LAYER 7FILTER PATTERNS 

To write basic format in the following way: 

1. The name of the protocol on one line 

2. A regular expression defining the protocol on the next line (see regular expressions below) 

The name of the file must match the name of the protocol. (If the protocol is "ftp", the file must be "ftp.pat".) 

 

3.1 Metadata 

In the Pattern files, top four lines should look like this: 

#    <Protocol name and some concise detail about the protocol> 

#    Pattern attributes: [attribute word]* 

#    Protocol groups: [group name]* 

#    Wiki: [link]* 

    Pattern attributes" give information about how good the pattern is on various scales. Attribute words can be any of 

undermatch, overmatch, superset, subset, great, good, ok, marginal, poor, veryfast, fast, nosofast, or slow. Any number of 

these may be used. They are defined on the protocol pages. "Protocol groups" are supposed to give frontends a way to group 

similar protocols. Group names can be whatever you like, but should match existing names if possible. Any number may be 

used. 

 

3.2 Regular Expressions 

    The kernel and userspace versions of l7-filter use different regular expressions libraries. They use generally the same 

syntax, but have some differences. 

General information  

    Because patterns frequently need to use non-printable characters, both versions of l7-filter add perl- style hex matching 

on top of their stock libraries. This uses \xHH notation, so to match a tab, use "x09". Note that regexp control characters are 

still control characters even when written in hex: 

\x24 == $  

\x29 == )    \x28 == ( \x2a  

 \x2b == +          == * \x2e 

 \x3f == ?           == . \x5b  

 \x5c == \           == [ \x5d  

 \x5e == ^ \x      == |== ] 

7c == |\x7b == { (only a control character for the userspace) \x7d == } (only a control character for the userspace) 

 

3.3 What the Classifier Sees 

    If you have set up your iptables rules correctly, the classifier sees the data going in both directions in the order that it 

passes through the computer. For instance, in FTP, the first thing the filter sees is "221 server ready", then "USER bob", 

then "331 send password", then "PASS frogbeard", and so on. l7-filter can match across packets. For instance, you could 

match FTP with "220.*user.*331". 

 

IV. WHAT MAKES A GOOD PATTERN 

There are two general guidelines: 

1) A pattern must be neither too specific nor not specific enough. 

Example 1: The pattern "bear" for Bearshare is not specific enough. 

This pattern could match a wide variety of non-Bearshare connections. For instance, an HTTP request for http://bear.com 

would be matched. 



IJARSCT 
 ISSN (Online) 2581-9429 

    

 

         International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) 

 

 Volume 2, Issue 3, April 2022 
 

Copyright to IJARSCT    DOI: 10.48175/IJARSCT-3322                                               640 
www.ijarsct.co.in  

Impact Factor: 6.252 

Example2: "220 .*ftp.*(\[.*\]|\(.*\))" for FTP is too specific. 

Not all servers send () s or []s after their 220. In fact, servers are not even required to send the string "ftp" at any time, but 

the vast majority do. Good judgment and testing are necessary for instances such as this. 

2) It should use a minimum of processing power. If it's possible to reduce the number of instances of *, + and | in your 

pattern, you should do so. Use the performance testing program included in the patterns package. 

3) It should complete its match on the earliest packet possible. 

    The FTP pattern could be "^220[\x09-\x0d -~]*\x0d\x0aUSER[\x09-\x0d -~] *\x0d\x0a331", but that  won't match until 

the third data packet. Instead, we use "^220[\x09-\x0d -~]*ftp", which matches on  the first data packet. 

 

4.1 Recommended Procedure for Writing Patterns 

1. Find and read the spec for the protocol you wish to match. If it's an Internet standard, RFCs are a good place to 

start, although not all standards are RFCs. If it is a proprietary protocol, it is likely that someone has written a 

reverse-engineered spec for it. Do a general web search to find it. Skipping this step is a good way to write patterns 

that are overly specific! 

2. Use something like Wireshark (formerly known as Ethereal) to watch packets of this protocol go by in a typical 

session of its use. (If you failed to find a spec for your protocol, but Wireshark can parse it, reading the Wireshark 

source code may also be worth your time.) 

3. Write a pattern that will reliably match one of the first few packets that are sent in your protocol. Test it. Test its 

performance 

 

4.2 Testing the Layer7 filter Installation 

First, we might want to see if our module is in place. We can do that using the modinfo command: 

[root@l7filter softwares]# modinfo ipt_layer7 

filename: /lib/modules/2.6.18.2/kernel/net/ipv4/netfilter/ipt_layer7.ko 

 author: Matthew Strait <quadong@users.sf.net>, Ethan Sommer <sommere@users.sf.net> 

 license: GPL 

description: iptables application layer match module 

version: 2.0 

parmtype: maxdatalen:int 

parm: maxdatalen:maximum bytes of data looked at by l7-filter 

vermagic: 2.6.18.2 mod_unload 686 REGPARM 4KSTACKS gcc-3.4 

depends: x_tables,ip_conntrack 

srcversion: C5460962D1CE10F665D072A 

The output shows that we have a module called ipt_layer7 and some information about it, such as filename, author, license, 

description, version, and other module dependencies. 

Next, we will try to load the module using the modprobe command: 

[root@l7filter softwares]# modprobe ipt_layer7 [root@l7filter softwares]# lsmod 

Module Size Used by 

ipt_layer7 12932 0 

    The module loaded into the kernel, its size, and the number of processes it is used by (in our case 0), because we didn't 

used it yet. When downloading the files, we should see that all packets are match and we will insert an accounting rule in 

the OUTPUT chain to match all the outgoing HTTP traffic. 

[root@l7filter ~]# /usr/local/sbin/iptables -A OUTPUT -m layer7 --l7proto http 

[root@l7filter ~]# /usr/local/sbin/iptables -L OUTPUT -n -v  

Chain OUTPUT (policy ACCEPT 31 packets, 3164 bytes)  

pkts bytes target prot opt in out source destination  

0   0 0 -- * * 0.0.0.0/0 0.0.0.0/0 LAYER7 l7proto http 

 



IJARSCT 
 ISSN (Online) 2581-9429 

    

 

         International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) 

 

 Volume 2, Issue 3, April 2022 
 

Copyright to IJARSCT    DOI: 10.48175/IJARSCT-3322                                               641 
www.ijarsct.co.in  

Impact Factor: 6.252 

[root@l7filter ~]# wget http://127.0.0.1/Qos.ps --17:23:25-- http://127.0.0.1/Qos.ps 

=> `Qos.ps' 

Connecting to 127.0.0.1:80... connected. 

HTTP request sent, awaiting response... 200 OK Length: 24,803,838 (24M) [application/postscript] 

100%[========================================>] 24,803,838 53.65M/s 17:23:25 (53.64 MB/s) - 

`Qos.ps' saved [24803838/24803838] 

 

       [root@l7filter ~]# /usr/local/sbin/iptables -L OUTPUT -n -v    

       Chain OUTPUT (policy ACCEPT 31 packets, 3164 bytes)  

        pkts bytes 

target prot opt in Out Source destination  

0   0 0 --   * * 0.0.0.0/0 0.0.0.0/0 LAYER7 l7proto http 

 

[root@l7filter ~]# 

modprobe ip_conntrack   

[root@l7filter ~]# /usr/local/sbin/iptables -L OUTPUT -n -v  

Chain OUTPUT (policy ACCEPT 2402 packets, 25M bytes)  

pkts 

bytes 

target 

prot 

opt 

in out source destination  

2290  

25M 

0  -- 

* * 0.0.0.0/0 0.0.0.0/0 

LAYER7 

l7proto 

http 

Well, as you can see, it worked. Now we have a Linux router with application layer filtering capabilities. 

 

V. LAYER7FILTER APPLICATIONS 

     We can use L7-filter with any iptables option; L7-filter provides just another match option. L7-filter might match packets 

belonging to other applications than the one you want. 

 

5.1 Filtering Application Data 

      Blocking unwanted applications data that passes through your router is one things that you can do with L7-filter. Traffic 

from different applications might look similar; so you might experience problems when dropping data based on the L7-filter 

match. For example, if you drop packets that belong to eDonkey, there might be some other protocols that will experience 

problems. The eDonkey pattern matches about 1% of other streams with random data. If you still want to use L7-filter for 

blocking several applications passing through your Linux router, it can be done as follows: 

[root@l7filter ~]# iptables -A FORWARD -m layer7 --l7proto edonkey -j DROP 

 For port number and ip addresses. 

        [root@l7filter ~]# iptables -A FORWARD -m layer7 --l7proto edonkey –d 10.100.106.244 -j DROP 

Finally, L7-filter is used for small to medium networks that need bandwidth optimization. The advantage of L7-filter over 

the specialized hardware solutions is, of course, the cost. Use L7-filter if it doesn't affect the network performance and 

doesn't overload the router's CPU. 

      The decision whether to use L7-filter must be based on the machine performance (mainly CPU speed) and the type of 

traffic passing through it . L7-filter is recommended to be used for marking packets in order to queue them. 

 

REFERENCES 

[1]. Lucian Gheorghe “Designing and Implementing Linux Firewalls and QoS using netfilter, iproute2, NAT, and 

LFilter” 

[2]. Packt Publishing, October 2006 



IJARSCT 
 ISSN (Online) 2581-9429 

    

 

         International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) 

 

 Volume 2, Issue 3, April 2022 
 

Copyright to IJARSCT    DOI: 10.48175/IJARSCT-3322                                               642 
www.ijarsct.co.in  

Impact Factor: 6.252 

[3]. Application Layer Packet Classifier for Linux website “http://l7filter.sourceforge.net/” 

[4]. Netfilter, firewalling, nat and packet mangling for linux website http://www.netfilter.org 

[5]. Nigel Kukard “Bandwidth Management and Optimization” International Network INASP, Open source Bandwidth 

Solutions March 2006 

[6]. Lukas Kencl, Christian Schwarzer, “Traffic Adaptive Packet Filtering of Denial of Service Attacks” Intel Research 

laboratories, World of Wireless, Mobile and Multimedia Networks,2006. WoW MoM 2006. 

[7]. J. McCann and Satish Chandra, “Packet Types: Abstract Specification of Network Protocol Messages” Bell 

Laboratories, ACM SIGCOMM Computer Communication Review Volume 30 , Issue 4 October 2000 

[8]. Jeffrey C. Mogul, “ The Packet Filter An Efficient Mechanism for Userlevel Network Code ”Digital Equipment 

Corporation Western Research Laboratory, ACM Operating Systems Review, SIGOPS 

[9]. Holger Dreger, Anja Feldmann, Michael Mai, Vern Paxson, Robin Sommer “Dynamic Application Layer Protocol 

Analysis for Network Intrusion Detection” USENIX Security 

[10]. Pankaj Gupta ,Nick McKeown “Packet Classification on Multiple Fields”, Proc. Sigcomm, Computer 

Communication Review, vol. 29, no. 4, pp 14760,September 1999, Harvard University. 

[11]. Florin Baboescu George Varghese “Scalable Packet Classification” , University of California, San Diego 

Proceedings of ACM Sigcomm, pages 199210, August, 2001. 

 


