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Abstract: The exponential growth of digital payment systems and electronic commerce has positioned 

credit card fraud as one of the most pressing challenges facing modern financial institutions. While 

traditional rule-based detection systems have demonstrated effectiveness in controlled environments, they 

exhibit fundamental limitations in adaptability when confronted with the dynamic and adversarial nature 

of contemporary fraud schemes. This comprehensive review examines the evolution and current state of 

machine learning approaches for credit card fraud detection, spanning from classical supervised 

learning algorithms to cutting-edge deep learning architectures and graph-based methodologies. This 

paper addresses critical challenges inherent in fraud detection, including extreme class imbalance 

(fraudulent transactions typically represent less than 1% of total volumes), concept drift caused by 

evolving fraud strategies, asymmetric misclassification costs, and real-time processing constraints. We 

systematically analyze supervised learning methods such as Logistic Regression, Decision Trees, 

Random Forests, Support Vector Machines, and Gradient Boosting Machines (XGBoost), alongside deep 

learning architectures including Artificial Neural Networks, Long Short-Term Memory (LSTM) networks, 

Convolutional Neural Networks, and hybrid CNN-LSTM models. A comparative analysis of existing 

studies from 2010 to 2025 reveals that ensemble methods and deep learning models consistently 

outperform traditional classifiers, with graph neural networks and attention-based architectures 

achieving state-of-the-art performance.  

Despite significant advancements, challenges related to model interpretability, adaptive learning in non-

stationary environments, computational efficiency for real-time deployment, and data privacy 

compliance remain unresolved. This review identifies emerging research directions—including semi-

supervised learning, adaptive feature selection, and explainable AI—as promising avenues for 

developing robust, scalable, and transparent fraud detection systems suitable for real-world financial 

environments. 
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I. INTRODUCTION 

The rapid expansion of electronic commerce and digital payment infrastructures has fundamentally transformed the 

landscape of modern financial transactions. Credit cards have emerged as one of the most widely used payment 

instruments globally, valued for their convenience, transaction speed, and international interoperability. According to 

recent industry reports, global credit card transaction volumes exceeded $42 trillion in 2024, representing a substantial 

portion of worldwide commerce [1]. However, this widespread adoption has simultaneously increased vulnerability to 

fraudulent activities, establishing credit card fraud as a persistent and economically devastating challenge for financial 

institutions, merchants, and consumers alike. The Federal Trade Commission reported that consumers lost 

approximately $10 billion to fraud in 2023, with credit card fraud accounting for a significant proportion of these 

losses [2]. 
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Fraudulent transactions impose substantial direct financial costs and indirect consequences, including erosion of 

consumer trust in digital payment ecosystems, increased operational expenses for fraud investigation and resolution, 

and potential regulatory penalties for inadequate fraud prevention measures [3]. These multifaceted impacts necessitate 

the development and deployment of robust, reliable, and adaptive fraud detection mechanisms capable of identifying 

fraudulent activities with high precision while minimizing disruption to legitimate transactions. 

Conventional fraud detection systems have predominantly relied upon rule-based and expert-driven approaches that 

employ predefined thresholds, static heuristics, and manually crafted decision rules to identify suspicious 

transactions [4]. While such methodologies can demonstrate effectiveness within controlled environments characterized 

by stable fraud patterns, they exhibit fundamental limitations in adaptability and struggle to accommodate the dynamic 

and adversarial nature of modern fraud. Fraudsters continuously evolve their strategies, techniques, and tactics to evade 

detection systems, rendering static rules progressively ineffective and contributing to elevated false positive rates that 

burden both financial institutions and customers [5]. Furthermore, the unprecedented scale, velocity, and complexity of 

contemporary transaction data exacerbate the limitations of traditional rule-based approaches, which cannot efficiently 

process and analyze massive data streams in real-time. 

Machine learning has emerged as a transformative alternative paradigm by enabling automated learning from historical 

transaction data and facilitating adaptive identification of complex, non-linear fraud patterns [6]. Machine learning-

based fraud detection systems possess the capability to model intricate relationships among transaction attributes, 

capture subtle behavioral characteristics that distinguish fraudulent from legitimate activities, and generalize effectively 

to previously unseen fraud scenarios [7]. Over the past fifteen years, an extensive array of supervised, unsupervised, 

semi-supervised, ensemble, and deep learning algorithms have been proposed, evaluated, and deployed for credit card 

fraud detection applications [8]. 

Despite notable advances in algorithmic sophistication and detection performance, persistent challenges continue to 

constrain the practical deployment and long-term effectiveness of machine learning-based fraud detection systems. 

These challenges include extreme class imbalance where fraudulent transactions represent less than 1% of total 

volumes, concept drift caused by evolving fraud patterns and changing consumer behavior, stringent real-time 

processing requirements that demand sub-second latency, the need for model interpretability to satisfy regulatory 

compliance and build stakeholder trust, and data privacy constraints that limit access to comprehensive training 

datasets [9], [10]. 

 
Credit Card Fraud Detection: Problem Overview 

Credit card fraud detection is formally characterized as a binary classification problem wherein each transaction must 

be categorized as either legitimate (class 0) or fraudulent (class 1) [11]. In fraud detection applications, the cost function 

is inherently asymmetric, as false negatives (failing to detect fraud) typically incur substantially higher costs than false 

positives (incorrectly flagging legitimate transactions), though the latter negatively impacts customer experience and 

operational efficiency [12]. 

One of the most significant challenges in credit card fraud detection is extreme class imbalance, where fraudulent 

transactions typically represent less than 1% of total transaction volumes, and in many real-world datasets, the 

imbalance ratio can be as severe as 1:1000 or even 1:10000 [13]. This severe imbalance causes standard machine 

learning classifiers to exhibit a strong bias toward the majority class, as minimizing overall classification error can be 

trivially achieved by predicting all transactions as legitimate [14, 15]. 

The asymmetric cost structure of fraud detection further complicates the classification problem [16]. False negatives, 

where fraudulent transactions are incorrectly classified as legitimate, result in direct financial losses that must be 

absorbed by financial institutions or cardholders. The average cost of an undetected fraudulent transaction can range 

from tens to thousands of dollars, depending on transaction characteristics and fraud type [17]. Conversely, false 

positives, where legitimate transactions are incorrectly flagged as fraudulent, impose indirect costs including customer 

dissatisfaction, potential loss of business due to declined transactions, operational expenses associated with fraud 

investigation and customer service, and potential damage to the institution's reputation [18]. Research indicates that 
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excessive false positive rates can lead to customer attrition and reduced transaction volumes, particularly in e-

commerce environments where declined legitimate transactions may drive customers to competing platforms [19]. 

Modern payment systems demand real-time or near-real-time fraud detection to authorize or decline transactions within 

milliseconds [20]. This stringent latency requirement constrains the computational complexity of detection algorithms 

and limits the feasibility of ensemble methods or deep learning architectures that require extensive computation. A 

typical credit card authorization must be completed within 2-3 seconds, leaving minimal time for fraud scoring and 

decision-making [21]. 

Balancing detection accuracy with computational efficiency represents a fundamental trade-off in system design. While 

complex deep learning models may achieve superior detection performance, their computational requirements may 

exceed real-time processing constraints, necessitating model compression, pruning, or deployment on specialized 

hardware accelerators [22]. 

 
Dataset and Data Preprocessing 

Due to confidentiality constraints and privacy regulations, access to real-world credit card transaction data remains 

severely limited for academic research [23]. Consequently, most published studies rely on anonymized, synthetic, or 

publicly available datasets that may not fully represent the complexity and characteristics of production fraud detection 

environments. 

The most widely used benchmark dataset in fraud detection research is the European cardholders dataset, collected 

during two days in September 2013 and made publicly available for research purposes [24]. This dataset contains 

284,807 transactions, of which 492 (0.172%) are fraudulent, exhibiting the extreme class imbalance characteristic of 

real-world fraud data. The dataset comprises 30 features, including 28 principal components obtained through PCA 

transformation to protect cardholder privacy, along with transaction time and amount as non-transformed features [25]. 

Alternative datasets used in fraud detection research include the IEEE-CIS Fraud Detection dataset from a Kaggle 

competition, synthetic datasets generated using simulators, and proprietary datasets from financial institutions used in 

industry research but not publicly available [26]. The development of more comprehensive, realistic, and publicly 

accessible fraud detection datasets remains an important priority for advancing research in this domain. 

Data preprocessing is a critical stage in fraud detection pipelines, directly impacting model performance and 

generalization capability. Key preprocessing steps include: 

Missing Value Handling: Transaction data may contain missing values due to incomplete information capture, system 

errors, or privacy-preserving transformations. Common strategies include deletion of records with missing values 

(when the proportion is small), imputation using statistical measures (mean, median, mode), and model-based 

imputation using algorithms such as k-nearest neighbors or matrix factorization [27]. 

Feature Scaling and Normalization: Many machine learning algorithms, particularly distance-based methods such as k-

NN and SVM, are sensitive to feature scales [28]. For tree-based ensemble methods such as Random Forest and 

XGBoost, feature scaling is generally not required due to their invariance to monotonic transformations [29]. 

Categorical Encoding: Categorical features such as merchant category codes, country codes, and transaction types must 

be transformed into numerical representations suitable for machine learning algorithms [30]. One-hot encoding creates 

binary indicator variables for each category, while ordinal encoding assigns integer values based on category order. 

More sophisticated techniques include target encoding (replacing categories with aggregated target statistics) and 

embedding representations learned through neural networks [31]. 

Temporal Feature Engineering: Temporal attributes such as transaction timestamp can be decomposed into multiple 

informative features including hour of day, day of week, day of month, and month of year, enabling models to capture 

temporal patterns in transaction behavior [32]. Cyclical encoding using sine and cosine transformations can preserve the 

circular nature of temporal features (e.g., hour 23 is close to hour 0) [33]. 
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Machine Learning Algorithms for Credit Card Fraud Detection 

Machine learning has waded into several branches, each of which deals with a different type of learning task. All 

machine learning models automate the process of inductive inference including phenomenon observation, building a 

model based on observed phenomenon and making predictions using a model. Following are the classical machine 

learning algorithms used for fraud detections.  

Logistic Regression: Logistic Regression serves as a fundamental baseline classifier in fraud detection research due to 

its simplicity, computational efficiency, and interpretability. The interpretability of Logistic Regression, where feature 

weights directly indicate the contribution of each attribute to fraud probability, makes it attractive for applications 

requiring model transparency and regulatory compliance. However, Logistic Regression exhibits limitations when 

confronted with complex non-linear relationships and feature interactions that characterize fraud patterns [34]. 

Decision Trees construct hierarchical rule-based models by recursively partitioning the feature space based on attribute 

values that maximize information gain or minimize impurity. Each internal node represents a test on a feature, each 

branch corresponds to a test outcome, and each leaf node assigns a class label. The primary advantages of Decision 

Trees include their interpretability through visualization of decision paths, ability to model non-linear relationships and 

feature interactions, and invariance to feature scaling [35]. However, individual Decision Trees are prone to overfitting, 

particularly when grown to large depths, and exhibit high variance where small changes in training data can result in 

substantially different tree structures [36]. 

Random Forests address the limitations of individual Decision Trees through ensemble learning, constructing multiple 

trees trained on bootstrap samples of the training data and random subsets of features. The final prediction is obtained 

through majority voting (classification) or averaging (regression) across all trees in the forest. Random Forests have 

demonstrated strong performance in fraud detection applications, consistently ranking among the top-performing 

algorithms in comparative studies [37]. Their advantages include robustness to overfitting through ensemble averaging, 

ability to handle high-dimensional data, implicit feature selection through random feature sampling, and natural 

handling of missing values and mixed data types [38]. Research has shown that Random Forests achieve high precision 

and recall on fraud detection benchmarks, with recent studies reporting F1-scores exceeding 0.85 and AUC-ROC 

values above 0.98 on the European cardholders dataset [39]. The algorithm's computational efficiency and scalability 

make it suitable for real-time fraud detection in production systems. 

Support Vector Machines (SVM) construct optimal hyperplanes that maximize the margin between classes in high-

dimensional feature spaces. For non-linearly separable data, SVMs employ kernel functions (polynomial, radial basis 

function, sigmoid) to implicitly map inputs into higher-dimensional spaces where linear separation becomes possible. 

SVMs have demonstrated effectiveness in fraud detection, particularly when combined with appropriate kernel 

selection and parameter tuning [40]. However, SVMs exhibit computational complexity that scales poorly with large 

training datasets, making them less suitable for applications involving millions of transactions [41].  

Gradient Boosting Machines (GBM): including popular implementations such as XGBoost, LightGBM, and CatBoost, 

construct ensemble models by sequentially training weak learners (typically shallow decision trees) that correct errors 

made by previous learners. Each new tree is fitted to the residual errors of the current ensemble, with predictions 

combined through weighted summation. XGBoost (Extreme Gradient Boosting) has emerged as one of the most 

effective algorithms for fraud detection, consistently achieving state-of-the-art performance in competitive benchmarks 

and real-world applications [41], [42]. Key innovations include regularization terms to prevent overfitting, efficient 

handling of sparse data, parallel tree construction, and built-in support for class imbalance through scale_pos_weight 

parameter [43]. 

k-Nearest Neighbors (k-NN) is an instance-based learning algorithm that classifies transactions based on the majority 

class among the k nearest training examples in feature space. Distance metrics such as Euclidean distance, Manhattan 

distance, or Mahalanobis distance determine proximity between instances. While k-NN offers intuitive interpretability 

and requires no explicit training phase, it exhibits significant limitations for fraud detection applications [44]. The 

algorithm's computational complexity during prediction scales linearly with training set size, making it impractical for 

large-scale transaction datasets. Additionally, k-NN is highly sensitive to class imbalance, feature scaling, and the curse 

of dimensionality, where distance metrics become less meaningful in high-dimensional spaces [45]. 
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Deep Learning Techniques in Fraud Detection 

Deep learning techniques have gained prominence due to their capacity to learn hierarchical feature representations and 

capture complex temporal relationships some of them are discussed as follows 

Artificial Neural Networks (ANNs), comprising interconnected layers of neurons with non-linear activation functions, 

provide a flexible framework for learning complex non-linear mappings from transaction features to fraud 

probabilities [46]. Feed-forward neural networks with multiple hidden layers (deep neural networks) can learn 

hierarchical feature representations that capture intricate fraud patterns not easily modeled by classical algorithms. 

Research comparing ANNs with traditional machine learning algorithms has demonstrated that deep neural networks 

achieve superior detection performance, particularly when provided with sufficient training data [47]. Studies report 

that ANNs outperform Logistic Regression, Decision Trees, and k-NN on standard fraud detection benchmarks, with 

accuracy improvements of 2-5% and significant gains in fraud recall [48]. 

Recurrent Neural Networks (RNNs) are specifically designed to process sequential data by maintaining hidden states 

that capture temporal dependencies across transaction sequences [49]. Long Short-Term Memory (LSTM) networks 

address the vanishing gradient problem of standard RNNs through gating mechanisms that regulate information flow, 

enabling the learning of long-range temporal dependencies [50]. 

Long Short-Term Memory LSTMs are particularly well-suited for fraud detection applications where transaction 

sequences contain valuable behavioral information [51]. For example, patterns such as transaction velocity (frequency 

of transactions within a time window), spending trajectory (evolution of transaction amounts over time), and location 

sequences can indicate fraudulent account takeover or card testing behavior [52]. Empirical studies demonstrate that 

LSTM networks achieve superior performance compared to feedforward neural networks and classical machine 

learning algorithms when modeling temporal transaction sequences [53]. Research reports LSTM accuracies exceeding 

96% and AUC-ROC values above 0.97 on fraud detection benchmarks, with particular improvements in detecting 

sophisticated fraud patterns that unfold over multiple transactions [54]. 
Convolutional Neural Networks (CNNs), originally developed for image processing, have been adapted to fraud 

detection through transformation of transaction data into structured representations amenable to convolution operations. 

Approaches include treating transaction sequences as 1D signals, constructing 2D representations from transaction 

attributes and temporal windows, and encoding transaction graphs as adjacency matrices [55]. CNNs employ 

convolutional filters to automatically learn local patterns and hierarchical features from structured transaction data [56]. 

Pooling layers reduce dimensionality while preserving salient features, and fully connected layers perform final 

classification based on learned representations. 

Hybrid CNN-LSTM Architectures leverage the complementary strengths of spatial feature learning and temporal 

sequence modeling [57]. CNNs extract local patterns and high-level features from transaction attributes, while LSTMs 

model temporal dependencies and sequential relationships across transactions [58]. The typical architecture consists of 

convolutional layers for feature extraction, followed by LSTM layers for temporal modeling, and fully connected layers 

for final classification [59]. This hierarchical approach enables the learning of both spatial and temporal fraud patterns 

from transaction sequences. 
 

Feature Engineering and Selection 

Feature engineering plays a pivotal role in fraud detection, as raw transaction attributes rarely provide sufficient 

discriminatory power. Behavioral features derived from transaction histories—such as spending consistency, 

transaction velocity, and location variability—significantly enhance model effectiveness [71]. Feature selection 

methods aim to eliminate redundancy and noise, improving computational efficiency and generalization. 

Filter, wrapper, and embedded techniques are widely used, with genetic algorithm-based selection and recursive feature 

elimination demonstrating notable improvements in recent studies [72]. Adaptive feature selection is increasingly 

recommended to maintain relevance in evolving fraud scenarios. 
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Evaluation Metrics and Performance Analysis 

Given the extreme imbalance inherent in fraud datasets, accuracy alone is inadequate. Precision, recall, F1-score, and 

ROC-AUC are commonly used, with recall being particularly critical to minimize undetected fraud [60]. Precision–

recall curves and AUPRC provide more meaningful insights in highly skewed datasets. 

Robust evaluation protocols employ stratified k-fold cross-validation and, increasingly, temporal validation to reflect 

real-world deployment conditions. Transparent reporting of preprocessing and evaluation strategies is essential to 

ensure reproducibility and fair comparison across studies [73]. 
 

Comparative Analysis of Existing Studies 

This section presents a comprehensive comparative analysis of recent research in credit card fraud detection, 

synthesizing methodologies, datasets, performance metrics, and key contributions from studies published between 2010 

and 2025. The analysis reveals a clear evolution in fraud detection methodologies, progressing from classical machine 

learning models to ensemble, deep learning, and graph-based approaches algorithmic approaches, with ensemble 

methods and deep learning architectures demonstrating superior performance compared to classical machine learning 

algorithms. 

The evolution of fraud detection research over the past five years demonstrates following several notable trends: 

Dominance of Ensemble and Deep Learning Methods: Random Forests, XGBoost, and deep neural networks 

consistently outperform traditional algorithms such as Logistic Regression and Decision Trees across diverse datasets 

and evaluation metrics. 

Increased Focus on Hybrid Architectures: Combining multiple algorithmic paradigms (e.g., CNN-LSTM, CNN-SVM) 

leverages complementary strengths and achieves performance improvements of 2-5% over individual models. 

Emphasis on Class Imbalance Handling: Nearly all high-performing systems incorporate explicit techniques for 

addressing class imbalance, with SMOTE variants and ensemble-based approaches demonstrating particular 

effectiveness. 

Growing Interest in Graph-Based Methods: Graph neural networks that model relationships among transactions, 

cardholders, and merchants represent an emerging paradigm achieving state-of-the-art results. 

Attention to Explainability: Increasing recognition of the importance of model interpretability has led to research on 

explainable AI techniques, attention mechanisms, and rule extraction methods. 

 

Comparative Summary of Credit Card Fraud Detection Studies (2010–2025) 

Year Authors Methodology Dataset Key Contributions 

2014 Gama et al.[60] 
Concept drift 

adaptation 
Streaming data 

Formalized drift handling for 

evolving fraud 

2015 
Dal Pozzolo et al. 

[61] 
Cost-sensitive ML European dataset 

Improved fraud recall under 

imbalance 

2016 
Chen & Guestrin 

[65] 
XGBoost ensemble Large-scale data High scalability and ROC-AUC 

2017 
Dal Pozzolo et al. 

[71] 
Adaptive ML Credit card data Emphasized adaptive learning 

2018 Roy et al. [68] 
Deep neural 

networks 
Public datasets ANN outperformed classical ML 

2019 Carcillo et al. [73] 
Unsupervised 

detection 
European dataset Effective with limited labels 

2020 Bahnsen et al. [63] Cost-sensitive DT Financial data Reduced false negatives 

2021 
Al-Zoubi et al. 

[72] 
Metaheuristic FS Credit card data Improved F1-score 

2022 Chen et al[67]. GA + RF European dataset Optimized feature subsets 
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2023 Xiang et al. [70] 

Graph Neural 

Networks 
IEEE-CIS Captured relational fraud patterns 

2024 
El-Kenawy et al. 

[69] 
CNN–LSTM Public datasets Improved temporal detection 

2024 
Assabil & 

Obagbuwa[74] 
ML comparison MLG-ULB RF achieved best balance 

2024 Zhu et al. [75] NN + SMOTE Imbalanced data Enhanced recall 

2025 Sha et al. [76] 
Attention-based 

GNN 
Transaction graphs State-of-the-art ROC-AUC 

2025 Hafez et al[77]. 
Systematic AI 

review 
Multiple 

Identified DL & ensembles as 

dominant 

 

II. CONCLUSION 

This review has provided a comprehensive analysis of credit card fraud detection using machine learning algorithms, 

highlighting the progression from traditional rule-based and classical ML methods to advanced deep learning and 

graph-based approaches. Ensemble and deep learning models demonstrate superior performance, particularly when 

supported by effective preprocessing, feature engineering, and imbalance handling strategies. 

Despite significant advancements, challenges such as concept drift, interpretability, real-time deployment, and data 

privacy remain unresolved. Emerging research directions—including graph neural networks, semi-supervised learning, 

and adaptive feature selection—offer promising avenues for addressing these limitations. Future fraud detection 

systems must balance predictive accuracy with scalability, transparency, and regulatory compliance to ensure 

sustainable deployment in real-world financial environments. 
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