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Abstract: Electrocardiogram (ECG) analysis is a fundamental tool for diagnosing cardiac arrhythmias 

and enabling continuous heart monitoring. Recent advancements in machine learning, particularly deep 

learning, have significantly improved the accuracy and automation of ECG-based arrhythmia 

classification. This survey presents a comprehensive review of recent research focusing on ECG signal 

preprocessing, deep learning architectures, hybrid and ensemble models, data imbalance mitigation 

techniquesand deployment-oriented solutions for wearable and edge devices. Emphasis is placed on 

comparing convolutional neural networks (CNNs), recurrent neural networks (RNNs), CNN–LSTM 

hybrids, generative data augmentation strategies and lightweight models suitable for real-time 

applications. A detailed comparative analysis of representative studies highlights current trends, 

performance metrics and deployment feasibility. The survey also identifies challenges and future 

research directions for robust and clinically reliable ECG arrhythmia detection systems 

 

Keywords: ECG signal processing, Arrhythmia classification, Deep learning, CNN-LSTM, Data 

imbalance, Wearable healthcare 

 

I. INTRODUCTION 

Cardiovascular diseases are among the leading causes of mortality worldwide, with cardiac arrhythmias contributing 

significantly to sudden cardiac deaths. Electrocardiography (ECG) is a widely used, non-invasive diagnostic technique 

that records the electrical activity of the heart and provides critical information for arrhythmia detection. However, 

manual ECG interpretation by clinicians is time-consuming and susceptible to subjective variations, particularly in 

long-term monitoring scenarios. 

To address these challenges, automated ECG analysis systems have been extensively studied. Early approaches relied 

on handcrafted feature extraction combined with traditional classifiers such as support vector machines and decision 

trees [18]. While these methods achieved moderate success, their performance was limited by dependence on domain 

expertise and sensitivity to noise and inter-patient variability [1]. 

Fig. 1 illustrates a typical electrocardiogram (ECG) waveform highlighting the P wave, QRS complex and T wave, 

which correspond to atrial depolarization, ventricular depolarization and ventricular repolarization, respectively. The x-

axis represents time in milliseconds, while the y-axis denotes signal amplitude in millivolts.  

Recent years have witnessed a paradigm shift toward deep learning-based methods, which learn discriminative 

representations directly from raw or minimally processed ECG signals. Convolutional neural networks (CNNs) have 

demonstrated strong capability in capturing morphological features, while recurrent neural networks (RNNs), including 

long short-term memory (LSTM) and bidirectional LSTM (BiLSTM), effectively model temporal dependencies in ECG 

signals [2], [3]. Hybrid architectures combining CNN and LSTM layers have further improved classification accuracy 

by integrating spatial and temporal information [4]. 
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Fig. 1. Typical electrocardiogram (ECG) waveform illustrating the P wave, QRS complex and T wave, representing 

atrial depolarization, ventricular depolarization and ventricular re

In addition to model accuracy, contemporary research increasingly focuses on addressing practical challenges such as 

class imbalance in ECG datasets, real-time inference requirements and deployment on resource

edge devices [5]. Ultra-lightweight and hardware

low power consumption [6]. 

This survey systematically reviews recent ECG arrhythmia classification methods, emphasizing signal preprocessi

deep learning architectures, data augmentation strategies and deployment

of this survey are: 

 A structured taxonomy of modern ECG arrhythmia classification approaches.

 A comparative analysis of deep learning m

 A discussion on edge, wearable and cloud

 Identification of open research challenges and future directions.

Fig. 2 presents a comprehensive taxonomy of ECG arrhythmia classificati

workflow begins with ECG signal acquisition, followed by preprocessing operations such as filtering, denoising and 

normalization. Subsequent stages include data representation, deep learning

cloud, edge or wearable platforms. 

Fig. 2.Taxonomy of ECG arrhythmia classification approaches illustrating the stages from signal acquisition and 

preprocessing to deep learning
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Fig. 1. Typical electrocardiogram (ECG) waveform illustrating the P wave, QRS complex and T wave, representing 

atrial depolarization, ventricular depolarization and ventricular repolarization, respectively.

In addition to model accuracy, contemporary research increasingly focuses on addressing practical challenges such as 

time inference requirements and deployment on resource-constrained wearab

lightweight and hardware-aware models have emerged to enable continuous monitoring with 

This survey systematically reviews recent ECG arrhythmia classification methods, emphasizing signal preprocessi

deep learning architectures, data augmentation strategies and deployment-oriented designs. The primary contributions 

A structured taxonomy of modern ECG arrhythmia classification approaches. 

A comparative analysis of deep learning models and data imbalance handling techniques. 

A discussion on edge, wearable and cloud-assisted deployment frameworks. 

Identification of open research challenges and future directions. 

Fig. 2 presents a comprehensive taxonomy of ECG arrhythmia classification approaches discussed in this survey. The 

workflow begins with ECG signal acquisition, followed by preprocessing operations such as filtering, denoising and 

normalization. Subsequent stages include data representation, deep learning-based classification 

Fig. 2.Taxonomy of ECG arrhythmia classification approaches illustrating the stages from signal acquisition and 

preprocessing to deep learning-based classification and deployment. 
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Fig. 1. Typical electrocardiogram (ECG) waveform illustrating the P wave, QRS complex and T wave, representing 

polarization, respectively. 

In addition to model accuracy, contemporary research increasingly focuses on addressing practical challenges such as 

constrained wearable or 

aware models have emerged to enable continuous monitoring with 

This survey systematically reviews recent ECG arrhythmia classification methods, emphasizing signal preprocessing, 

oriented designs. The primary contributions 

on approaches discussed in this survey. The 

workflow begins with ECG signal acquisition, followed by preprocessing operations such as filtering, denoising and 

based classification and deployment on 

 
Fig. 2.Taxonomy of ECG arrhythmia classification approaches illustrating the stages from signal acquisition and 
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II. ECG SIGNAL PROCESSING AND DATA REPRESENTATION 

ECG signal preprocessing is a critical stage in automated arrhythmia classification systems, as raw ECG recordings are 

often corrupted by various types of noise such as baseline wander, power-line interference, motion artifactsand 

electromyographic noise. Effective preprocessing improves signal quality and enhances the reliability of subsequent 

classification stages. 

 

A. ECG Signal Preprocessing 

Most studies employ band-pass filtering to suppress low-frequency baseline drift and high-frequency noise. Typical 

cutoff frequencies range from 0.5 Hz to 40 Hz, preserving clinically relevant ECG components while reducing artifacts 

[1]. Wavelet-based denoising methods are also widely adopted due to their ability to localize noise in both time and 

frequency domains [8]. 

R-peak detection and beat segmentation form the foundation for heartbeat-level analysis. Accurate localization of the 

QRS complex enables extraction of meaningful cardiac cycles and temporal features such as RR intervals, which are 

essential for arrhythmia discrimination [9]. Some recent approaches avoid explicit segmentation by feeding fixed-length 

ECG windows directly into deep learning models, reducing preprocessing complexity [10],[12]. 

 

B. ECG Data Representation 

Two dominant ECG data representations are observed in recent literature: 

1) One-Dimensional Time-Domain Representation 

In this approach, raw or filtered ECG signals are directly used as one-dimensional sequences. CNN-based models 

exploit local convolutional filters to learn morphological patterns such as QRS shape variations, while LSTM and 

BiLSTM layers capture long-term temporal dependencies between heartbeats [2], [15]. This representation preserves 

the original signal characteristics and is computationally efficient, making it suitable for real-time and embedded 

implementations [6]. 

2) Time–Frequency Representation 

To capture both temporal and spectral characteristics of ECG signals, several studies convert ECG data into two-

dimensional representations using short-time Fourier transform (STFT), continuous wavelet transform (CWT), or 

scalogram images. These representations are particularly effective when combined with CNN architectures, as they 

allow the network to learn discriminative frequency-domain features associated with different arrhythmias [13],[14]. 

Stacked time–frequency scalogram images generated from multi-lead ECG signals further enhance spatial feature 

learning by integrating information across multiple leads. Such approaches have demonstrated improved robustness and 

classification performance, especially for complex arrhythmia classes [14]. 

 

C. Multi-Lead and Data Standardization Considerations 

While single-lead ECG is commonly used in wearable devices, multi-lead ECG recordings provide richer spatial 

information and improve diagnostic accuracy. Twelve-lead ECG configurations are frequently employed in clinical 

datasets and research benchmarks, although they impose higher computational and storage requirements [15]. 

Standardization of ECG signal length, sampling frequency and normalization techniques remains a challenge across 

studies. Differences in preprocessing pipelines and labelling strategies often hinder direct comparison between 

methods, highlighting the need for unified benchmarking protocols [16]. 

 

III. DEEP LEARNING ARCHITECTURES FOR ECG ARRHYTHMIA CLASSIFICATION 

Deep learning has emerged as the dominant paradigm for ECG-based arrhythmia classification due to its ability to 

automatically learn discriminative features from raw or minimally processed signals. Unlike traditional machine 

learning approaches that rely on handcrafted features, deep learning models jointly optimize feature extraction and 

classification in an end-to-end manner, resulting in improved robustness and scalability [2], [3]. 
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A. Convolutional Neural Networks (CNNs)

CNNs are widely used for ECG classification because of their effectiveness in capturing local morphological patterns 

such as QRS complex shape, ST-segment variations and waveform distortions. One

convolutional filters directly to ECG time-series data, enabling efficient learning of spatially localized features [8].

Recent studies demonstrate that deep CNN architectures can achieve high classification accuracy when trained on large 

ECG datasets. Lightweight CNN models have also been proposed to reduce computational complexity, making them 

suitable for deployment on resource-constrained platforms [6], [12]. However, CNN

capture long-term temporal dependencies inherent in ECG signals.

 

B. Recurrent Neural Networks (LSTM and BiLSTM)

Recurrent neural networks (RNNs), particularly long short

sequential data and temporal dependencies. LSTM

and temporal variations across cardiac cycles [10].

Bidirectional LSTM (BiLSTM) networks further enhance temporal modelling by processing ECG sequences in both 

forward and backward directions. This allows the 

improved classification performance, especially for complex arrhythmia patterns [11]. Despite their advantages, pure 

RNN-based models typically exhibit higher computational cost compared t

 

C. Hybrid CNN–LSTM Architectures 

To leverage the strengths of both CNNs and LSTMs, hybrid CNN

popular. In these models, CNN layers first extract local morphological features from ECG signals, which are t

into LSTM or BiLSTM layers to learn temporal dependencies [12].

Hybrid models consistently outperform standalone CNN or LSTM architectures across multiple datasets, achieving 

higher accuracy and better generalization [13]. Variants such as CNN

been explored to further improve efficiency and classification performance [14].

Fig. 3 depicts a generic CNN–LSTM hybrid architecture commonly employed for ECG arrhythmia classification. 

Convolutional layers are used for automatic feature extraction from raw ECG signals, while LSTM or BiLSTM layers 

capture temporal dependencies across heartbeats. The extracted features are finally classified using fully connected 

layers and a softmax output. 

Fig. 3.  Generic CNN–LSTM hybrid architecture for ECG arrhythmia classification, combining convolutional feature 

extraction with temporal sequence modelling.
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A. Convolutional Neural Networks (CNNs) 

CNNs are widely used for ECG classification because of their effectiveness in capturing local morphological patterns 

segment variations and waveform distortions. One-dimensiona

series data, enabling efficient learning of spatially localized features [8].

Recent studies demonstrate that deep CNN architectures can achieve high classification accuracy when trained on large 

datasets. Lightweight CNN models have also been proposed to reduce computational complexity, making them 

constrained platforms [6], [12]. However, CNN-only architectures may struggle to 

ncies inherent in ECG signals. 

B. Recurrent Neural Networks (LSTM and BiLSTM) 

Recurrent neural networks (RNNs), particularly long short-term memory (LSTM) networks, are designed to model 

sequential data and temporal dependencies. LSTM-based ECG classifiers effectively capture inter

and temporal variations across cardiac cycles [10]. 

Bidirectional LSTM (BiLSTM) networks further enhance temporal modelling by processing ECG sequences in both 

forward and backward directions. This allows the model to utilize past and future contextual information, leading to 

improved classification performance, especially for complex arrhythmia patterns [11]. Despite their advantages, pure 

based models typically exhibit higher computational cost compared to CNNs. 

To leverage the strengths of both CNNs and LSTMs, hybrid CNN–LSTM architectures have become increasingly 

popular. In these models, CNN layers first extract local morphological features from ECG signals, which are t

into LSTM or BiLSTM layers to learn temporal dependencies [12]. 

Hybrid models consistently outperform standalone CNN or LSTM architectures across multiple datasets, achieving 

higher accuracy and better generalization [13]. Variants such as CNN–BiLSTM and CNN–GRU architectures have also 

been explored to further improve efficiency and classification performance [14]. 

LSTM hybrid architecture commonly employed for ECG arrhythmia classification. 

for automatic feature extraction from raw ECG signals, while LSTM or BiLSTM layers 

capture temporal dependencies across heartbeats. The extracted features are finally classified using fully connected 

 
M hybrid architecture for ECG arrhythmia classification, combining convolutional feature 
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CNNs are widely used for ECG classification because of their effectiveness in capturing local morphological patterns 
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series data, enabling efficient learning of spatially localized features [8]. 

Recent studies demonstrate that deep CNN architectures can achieve high classification accuracy when trained on large 

datasets. Lightweight CNN models have also been proposed to reduce computational complexity, making them 

only architectures may struggle to 
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improved classification performance, especially for complex arrhythmia patterns [11]. Despite their advantages, pure 

LSTM architectures have become increasingly 

popular. In these models, CNN layers first extract local morphological features from ECG signals, which are then fed 

Hybrid models consistently outperform standalone CNN or LSTM architectures across multiple datasets, achieving 

GRU architectures have also 

LSTM hybrid architecture commonly employed for ECG arrhythmia classification. 

for automatic feature extraction from raw ECG signals, while LSTM or BiLSTM layers 

capture temporal dependencies across heartbeats. The extracted features are finally classified using fully connected 

M hybrid architecture for ECG arrhythmia classification, combining convolutional feature 



I J A R S C T    

    

 

               International Journal of Advanced Research in Science, Communication and Technology 

                          International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal 

Volume 6, Issue 4, January 2026 

 Copyright to IJARSCT DOI: 10.48175/IJARSCT-31004   38 

   www.ijarsct.co.in  

 
 

ISSN: 2581-9429 Impact Factor: 7.67 

 
D. Attention Mechanisms and Ensemble Models 

Attention mechanisms enable models to focus on the most informative segments of ECG signals, improving 

interpretability and classification accuracy. Attention-based hybrid models have demonstrated superior performance by 

dynamically weighting relevant temporal features during inference [15]. 

Ensemble learning strategies combine predictions from multiple deep learning models to enhance robustness and reduce 

variance. Multi-model ensembles integrating CNNs, LSTMs and classical features have shown improved sensitivity to 

minority arrhythmia classes, particularly in imbalanced datasets [5], [16]. 

 

IV. DATA IMBALANCE AND AUGMENTATION TECHNIQUES 

One of the major challenges in ECG arrhythmia classification is the severe class imbalance present in most publicly 

available datasets. Normal heartbeats significantly outnumber abnormal and rare arrhythmia classes, leading to biased 

classifiers that favour majority classes. Addressing this imbalance is essential for achieving reliable clinical 

performance, particularly for detecting life-threatening arrhythmias. 

 

A. Conventional Oversampling and Reweighting Methods 

Traditional techniques such as random oversampling and class-weighted loss functions have been widely used to 

mitigate data imbalance in ECG datasets [11]. Cost-sensitive learning approaches modify the loss function by assigning 

higher penalties to misclassification of minority classes. Several deep learning-based ECG classifiers incorporate 

weighted cross-entropy or focal loss to improve minority class recognition without altering the data distribution [16]. 

 

B. Generative Adversarial Network (GAN)-Based Augmentation 

Recent research increasingly adopts generative adversarial networks (GANs) to address ECG data imbalance. GANs 

consist of a generator that synthesizes realistic ECG signals and a discriminator that distinguishes between real and 

generated samples. By training these networks, GANs can produce high-quality synthetic ECG signals that closely 

resemble real data [7]. 

GAN-based ECG synthesis has been shown to significantly improve arrhythmia classification performance, particularly 

for underrepresented classes. Studies demonstrate that classifiers trained with GAN-augmented datasets achieve higher 

sensitivity and F1-scores compared to traditional oversampling techniques [6], [11]. Conditional GAN variants further 

enable class-specific ECG generation, enhancing control over synthesized data quality. 

 

C. Impact of Augmentation on Model Generalization 

While data augmentation improves performance on imbalanced datasets, excessive or poorly controlled augmentation 

may lead to overfitting or reduced generalization. Some studies emphasize the importance of combining GAN-

generated data with real samples in controlled proportions to maintain physiological plausibility [18]. 

Moreover, evaluation across multiple datasets remains limited and most studies report results on a single benchmark 

dataset. This highlights the need for standardized evaluation protocols to assess the true generalization capability of 

augmentation-based approaches[16], [19]. 

Fig. 4 illustrates a GAN-based ECG data augmentation framework used to address class imbalance in arrhythmia 

datasets. The generator synthesizes realistic ECG samples from random noise and class labels, while the discriminator 

distinguishes between real and synthetic signals. The generated ECG samples are subsequently used to enhance 

classification model performance. 
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Fig. 4. GAN-based ECG data augmentation framework showing the generation of synthetic ECG samples and their 

evaluation using a discriminator alongside real ECG signals.

 

V. ENSEMBLE MODELS ,

As ECG arrhythmia classification systems move closer to real

beyond standalone classifiers toward ensemble learning frameworks and integrated decision support s

approaches aim to improve diagnostic reliability, interpretability and scalability in clinical environments.

 

A. Ensemble Learning for ECG Arrhythmia Classification

Ensemble learning combines predictions from multiple models to enhance classi

variance. In ECG analysis, ensembles typically integrate CNN, LSTM and hybrid CNN

complementary strengths of different architectures .

Bagging and stacking-based ensembles have demonstrated improved se

compared to single-model systems. By aggregating outputs from diverse learners, ensemble methods mitigate 

overfitting and improve generalization, particularly in imbalanced datasets [16], [20]. However, ensemble mo

generally incur higher computational cost, which may limit their suitability for resource

 

B. Intelligent Decision Support Systems (IDSS)

Intelligent Decision Support Systems integrate ECG classification algorithms with 

physicians in diagnosis and treatment planning. Such systems typically include modules for signal preprocessing, 

automated classification, risk assessmentand result visualization [15], [18].

Recent IDSS frameworks employ deep l

insights such as arrhythmia type, severity level and suggested clinical interventions. These systems aim to reduce 

clinician workload while improving diagnostic consistency and response
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based ECG data augmentation framework showing the generation of synthetic ECG samples and their 

evaluation using a discriminator alongside real ECG signals. 

V. ENSEMBLE MODELS , DECISION SUPPORT AND CLOUD BASED SYSTEMS

As ECG arrhythmia classification systems move closer to real-world clinical adoption, recent research has expanded 

beyond standalone classifiers toward ensemble learning frameworks and integrated decision support s

approaches aim to improve diagnostic reliability, interpretability and scalability in clinical environments.

A. Ensemble Learning for ECG Arrhythmia Classification 

Ensemble learning combines predictions from multiple models to enhance classification robustness and reduce 

variance. In ECG analysis, ensembles typically integrate CNN, LSTM and hybrid CNN–LSTM models, leveraging 

complementary strengths of different architectures . 

based ensembles have demonstrated improved sensitivity for minority arrhythmia classes 

model systems. By aggregating outputs from diverse learners, ensemble methods mitigate 

overfitting and improve generalization, particularly in imbalanced datasets [16], [20]. However, ensemble mo

generally incur higher computational cost, which may limit their suitability for resource-constrained environments.

B. Intelligent Decision Support Systems (IDSS) 

Intelligent Decision Support Systems integrate ECG classification algorithms with clinical workflows to assist 

physicians in diagnosis and treatment planning. Such systems typically include modules for signal preprocessing, 

automated classification, risk assessmentand result visualization [15], [18]. 

Recent IDSS frameworks employ deep learning models to analyse ECG data in real time and provide actionable 

insights such as arrhythmia type, severity level and suggested clinical interventions. These systems aim to reduce 

clinician workload while improving diagnostic consistency and response time [18]. 
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C. Cloud-Based ECG Analysis Platforms

Cloud-based ECG analysis platforms enable scalable storage, processing and analysis of large volumes of ECG data. In 

these systems, ECG signals collected from wearable or bedside devices are transmitted to 

learning models perform classification and analytics [15].

Cloud integration facilitates continuous model updates, centralized data management and remote access to diagnostic 

results. Hybrid architectures combining local inference

latency, privacyand computational load [17]. However, concerns related to data security, patient privacy and network 

reliability remain critical challenges. 

Fig. 5 illustrates a cloud-assisted ECG decision support system integrating deep learning

visualization. 

 Fig. 5. Cloud-assisted ECG decision support system demonstrating ECG data acquisition, cloud

analysis and clinical visualization. 

  

VI. EDGE, WEARABLE AND LIGHTWEIGHT DEPLOYMENT STRATEGIES

For continuous cardiac monitoring and early arrhythmia detection, ECG classification systems must operate under strict 

constraints on power consumption, latencyand hardware resources. As a result, recen

oriented designs targeting edge devices such as wearable sensors, microcontrollers and field

(FPGAs). 

A. FPGA-Based ECG Processing Systems 

FPGAs offer a balance between computational performance and

ECG signal processing. FPGA-based implementations exploit parallelism to accelerate preprocessing, feature 

extractionand classification tasks [13]. Studies demonstrate that FPGA implementations can ach

reduced power consumption compared to general

Several works implement arrhythmia detection pipelines entirely on FPGA, integrating signal conditioning, feature 

extraction and classification into a single hardware
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Based ECG Analysis Platforms 

based ECG analysis platforms enable scalable storage, processing and analysis of large volumes of ECG data. In 

these systems, ECG signals collected from wearable or bedside devices are transmitted to cloud servers, where deep 

learning models perform classification and analytics [15]. 

Cloud integration facilitates continuous model updates, centralized data management and remote access to diagnostic 

results. Hybrid architectures combining local inference with cloud-based analytics have also been proposed to balance 

latency, privacyand computational load [17]. However, concerns related to data security, patient privacy and network 

ECG decision support system integrating deep learning-based analysis with clinical 

assisted ECG decision support system demonstrating ECG data acquisition, cloud-based deep learning 

EDGE, WEARABLE AND LIGHTWEIGHT DEPLOYMENT STRATEGIES

For continuous cardiac monitoring and early arrhythmia detection, ECG classification systems must operate under strict 

constraints on power consumption, latencyand hardware resources. As a result, recent research emphasizes deployment

oriented designs targeting edge devices such as wearable sensors, microcontrollers and field-programmable gate arrays 

 

FPGAs offer a balance between computational performance and energy efficiency, making them suitable for real

based implementations exploit parallelism to accelerate preprocessing, feature 

extractionand classification tasks [13]. Studies demonstrate that FPGA implementations can achieve low latency and 

reduced power consumption compared to general-purpose CPUs and GPUs. 

Several works implement arrhythmia detection pipelines entirely on FPGA, integrating signal conditioning, feature 

extraction and classification into a single hardware architecture. These systems are particularly well suited for wearable 
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healthcare devices requiring continuous real

development complexity and limited flexibility when updating models.

 

B. Microcontroller and Ultra-Lightweight Neural Networks

Microcontroller-based implementations have gained significant attention due to their low cost, low power 

consumptionand programmability. Ultra-lightweight neural networks are specifically designed t

count and arithmetic operations, enabling real

Recent research demonstrates that carefully optimized end

while operating within the memory and energy constraints of microcontroller units (MCUs). Such approaches eliminate 

the need for external accelerators and are well suited for long

An edge-based ECG arrhythmia classification system designed f

Fig. 6. Edge-based ECG arrhythmia classification system highlighting on

learning models for real

 

C. Algorithm–Hardware Co-Design Considerations

Effective deployment of ECG classifiers requires close coordination between algorithm design and hardware 

architecture. Techniques such as model quantization, parameter pruningand fixed

employed to reduce memory footprint and 

Algorithm–hardware co-design ensures that deep learning models maintain acceptable accuracy while meeting real

time and power constraints. Trade-offs between flexibility and efficiency remain a key consideration, particularly when

comparing FPGA, MCU and application-specific integrated circuit (ASIC) solutions [18], [19].

 

VII. COMPARATIVE ANALYSIS

This section presents a comparative analysis of recent ECG arrhythmia classification studies reviewed in this survey. 

The comparison focuses on model architecture, data representation, dataset usage, data imbalance handling, 

performance metrics and deployment feasibility. The objective is to highlight trends, strengths and limitations across 

different methodological choices. 
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healthcare devices requiring continuous real-time monitoring [13]. However, FPGA-based solutions may involve higher 

development complexity and limited flexibility when updating models. 

Lightweight Neural Networks 

based implementations have gained significant attention due to their low cost, low power 

lightweight neural networks are specifically designed to minimize parameter 

count and arithmetic operations, enabling real-time inference on low-power microcontrollers [6]. 

Recent research demonstrates that carefully optimized end-to-end ECG classifiers can achieve competitive accuracy 

he memory and energy constraints of microcontroller units (MCUs). Such approaches eliminate 

the need for external accelerators and are well suited for long-term wearable ECG monitoring [6], [8].

based ECG arrhythmia classification system designed for real-time wearable monitoring is shown in Fig. 6.

based ECG arrhythmia classification system highlighting on-device inference using lightweight deep 

learning models for real-time monitoring. 

Design Considerations 

Effective deployment of ECG classifiers requires close coordination between algorithm design and hardware 

architecture. Techniques such as model quantization, parameter pruningand fixed-point arithmetic are commonly 

 computational load [13]. 

design ensures that deep learning models maintain acceptable accuracy while meeting real

offs between flexibility and efficiency remain a key consideration, particularly when

specific integrated circuit (ASIC) solutions [18], [19]. 
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[1] A. Comparison of Learning Architectures 

Table I summarizes the deep learning architectures adopted in recent studies. It can be observed that hybrid CNN–

LSTM architectures dominate recent literature due to their ability to jointly model morphological and temporal ECG 

features. 

TABLE I: Summary of Representative ECG Arrhythmia Classification Methods 

Authors / Paper Title Model / Technique Dataset Key Contribution 

Pan & Tompkins, A real-time QRS detection 

algorithm[1] 

Rule-based signal 

processing 

MIT-BIH Foundational real-time QRS 

detection algorithm 

Acharya et al., A deep convolutional neural 

network model to classify heartbeats[2] 

1D CNN MIT-BIH Automatic feature extraction 

from ECG signals 

Rajpurkar et al., Cardiologist-level 

arrhythmia detection with CNNs[3] 

Deep CNN Large-scale 

ECG 

dataset 

Achieved cardiologist-level 

classification accuracy 

Kiranyaz et al., Patient-specific ECG 

classification using CNNs[4] 

1D CNN MIT-BIH Real-time patient-specific 

learning 

Essa & Xie, Multi-model deep learning 

ensemble[5] 

Ensemble CNN 

models 

MIT-BIH Improved robustness using 

ensemble learning 

Zhang et al., Hybrid CNN–BiLSTM 

model[15] 

CNN–BiLSTM MIT-BIH Captures spatial and temporal 

ECG features 

Reddy et al., Multi-scale CNN–LSTM–

Dense network[19] 

Multi-scale CNN–

LSTM 

MIT-BIH Improved performance via 

multi-scale feature learning 

 

[2] B. Data Imbalance Handling Comparison 

Handling data imbalance is essential for clinically reliable arrhythmia detection. Table II compares imbalance 

mitigation strategies adopted in recent works. 

TABLE II: Comparison of Data Imbalance Handling Techniques in ECG Classification 

Authors / Paper Title Technique Used Purpose Outcome 

Shaker et al., CNN generalization using 

GANs[ 6] 

GAN-based 

augmentation 

Handle class 

imbalance 

Improved generalization 

of CNN models 

Wulan et al., Generating ECG signals 

by deep learning[ 8] 

Deep generative 

model 

ECG signal synthesis Enhanced dataset diversity 

Sarkar & Etemad, CardioGAN[9] Conditional GAN ECG synthesis from 

PPG 

Improved arrhythmia 

detection 

Janbhasha et al., GAN-based data 

imbalance techniques[11] 

GAN-based 

oversampling 

Minority class 

enhancement 

Improved classification 

accuracy 

Arjovsky et al., Wasserstein GAN[10] WGAN Stable GAN training Reduced mode collapse 

 

 

[3] C. Performance and Deployment Comparison 

Beyond accuracy, deployment feasibility is a critical factor for real-world adoption. Table III compares performance 

and deployment targets. 

TABLE III: Performance and Deployment-Oriented Comparison of ECG Arrhythmia Classification Systems 

Authors / Paper Title Deployment 

Platform 

Model Type Key Feature 

Xiao et al., ULECGNet[12] Edge / Wearable Lightweight CNN Ultra-low latency ECG 

inference 

Mandal et al., Low-power VLSI FPGA / ASIC Hardware-optimized Energy-efficient ECG 
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architectures[13] models processing 

Li et al., Edge-AI based ECG 

monitoring[14] 

Edge devices CNN-based Real-time wearable 

monitoring 

Zhang et al., Hybrid CNN–

BiLSTM[15] 

Cloud-based CNN–BiLSTM High-accuracy centralized 

analysis 

Bouaziz & Boutana, MLP with 

PSO[17] 

Cloud-based Optimized MLP Improved heartbeat 

classification 

 

TABLE IV: Summary of ECG Arrhythmia Classification Trends 

Aspect Observed Trend 

Model design Shift from CNN-only to CNN–LSTM hybrids 

Data imbalance Growing use of GAN-based augmentation 

Deployment Increased focus on MCU and FPGA 

Clinical focus Integration with cloud and IDSS 

Key limitation Lack of cross-dataset validation 

 

VIII. DISCUSSION 

The comparative analysis reveals several key trends: 

1. Architectural convergence: CNN–LSTM and CNN–BiLSTM hybrids have become the dominant design choice due 

to their balanced performance. 

2. Shift toward deployment-aware design: Recent studies increasingly consider power, memory and latency constraints. 

3. Growing importance of data augmentation: GAN-based approaches are emerging as effective solutions for data 

imbalance. 

4. Limited cross-dataset validation: Most studies evaluate performance on a single dataset, limiting generalization 

claims. 

 

IX. CHALLENGES AND FUTURE DIRECTION 

Despite significant progress in ECG-based arrhythmia classification, several challenges remain that must be addressed 

before these systems can be reliably deployed in large-scale clinical and wearable applications. 

 

A. Generalization Across Datasets and Populations 

Most reviewed studies evaluate performance on a single benchmark dataset, commonly the MIT-BIH Arrhythmia 

Database [8], [12]. While high accuracy is often reported, models trained on one dataset may not generalize well to data 

collected from different populations, devices or clinical settings. Variations in sampling frequency, lead configuration, 

noise characteristics and annotation standards pose significant challenges to model robustness [16], [19]. 

Future research should prioritize cross-dataset evaluation and domain adaptation techniques to improve generalization. 

Federated learning and transfer learning approaches may offer promising solutions by enabling collaborative model 

training across distributed datasets while preserving data privacy. 

 

B. Explainability and Clinical Interpretability 

Deep learning models are often criticized for their black-box nature, which limits trust and adoption in clinical practice. 

Although attention mechanisms and visualization techniques have been introduced to highlight important ECG 

segments, interpretability remains limited in most current systems [15], [18]. 

Future work should focus on integrating explainable artificial intelligence (XAI) methods that provide clinically 

meaningful explanations, such as highlighting waveform segments associated with specific arrhythmias. Improved 

interpretability can enhance clinician confidence and support regulatory approval processes. 
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C. Standardization of Evaluation Protocols 

Lack of standardized evaluation protocols makes it difficult to compare results across studies. Differences in class 

definitions, train -test splits and performance metrics lead to inconsistent reporting [11], [17]. 

Establishing standardized benchmarking frameworks, including unified datasets, class taxonomies and evaluation 

metrics, would significantly improve reproducibility and comparability in ECG arrhythmia research. 

 

D. Deployment and Energy Efficiency 

Although lightweight and edge-oriented models have demonstrated promising results, further optimization is required 

to support long-term continuous monitoring. Balancing classification accuracy with energy efficiency, memory usage 

and latency remains a critical challenge, particularly for battery-powered wearable devices [6], [14]. 

Future research should explore adaptive models that dynamically adjust complexity based on signal quality and clinical 

relevance, as well as co-design methodologies that jointly optimize algorithms and hardware architectures. 

 

X. CONCLUSION 

This survey presented a comprehensive review of recent advancements in ECG-based arrhythmia classification, 

focusing on signal preprocessing, deep learning architectures, data imbalance handling, ensemble strategies and 

deployment-oriented designs. The evolution from handcrafted feature-based methods to hybrid and end-to-end deep 

learning models has significantly improved classification accuracy and automation. 

Comparative analysis of twenty recent studies highlights the effectiveness of CNN–LSTM hybrid architectures, GAN-

based data augmentation techniques and lightweight models designed for edge and wearable platforms. While cloud-

based decision support systems offer scalability and integration with clinical workflows, edge-based solutions provide 

low-latency and privacy-preserving alternatives for continuous monitoring. 

Despite these advances, challenges related to generalization, interpretability, standardization and energy efficiency 

remain. Addressing these issues will be essential for translating research prototypes into reliable clinical and consumer 

healthcare solutions. Continued interdisciplinary efforts combining signal processing, machine learning and hardware 

design are expected to drive the next generation of intelligent ECG monitoring systems. 
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