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Abstract: In the era of smart agriculture, artificial intelligence (AI) and data-driven technologies have
emerged as transformative tools for optimizing agricultural productivity and sustainability. This paper
presents AGRO-VISION, an Al-driven predictive system designed to monitor crop health, forecast market
prices, and streamline supply chain management. By integrating satellite imagery, environmental sensor
data, and market information, the system leverages machine learning and deep learning models to
provide real-time insights into crop conditions and future price trends. The proposed framework enables
early detection of crop diseases, assists farmers and stakeholders in making informed decisions and
enhances the efficiency of agricultural supply chains. The study demonstrates how the integration of
predictive analytics, image processing and data intelligence can revolutionize precision agriculture and
contribute to sustainable food production.
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I. INTRODUCTION
Agriculture is the foundation of human survival and economic development, providing food security, employment, and
raw materials for numerous industries. However, the sector faces increasing challenges driven by climate variability,
erratic rainfall patterns, rising temperatures and market volatility. These unpredictable factors often lead to crop yield
reduction, post-harvest losses, and unstable market prices, particularly in developing regions where technology
adoption is limited. To sustain agricultural productivity and profitability, the integration of Al-based predictive systems
has become essential in transforming traditional farming into smart, data-driven agriculture.
AGRO-VISION is designed as a comprehensive Al-driven predictive framework that leverages weather data to enhance
decision-making across three critical agricultural domains: crop health monitoring, price forecasting, and supply chain
management. The system’s core principle lies in correlating environmental and meteorological factors such as
temperature, humidity, precipitation, and wind patterns with crop growth conditions, pest emergence, and disease
spread. Weather parameters serve as vital indicators of crop stress and can be predictive of specific issues like fungal
infections, water deficiency, or nutrient imbalance.
AGRO-VISION integrates multiple data sources including satellite weather feeds, IoT-based field sensors, and
historical market datasets. Using this information, it employs machine learning models (such as Random Forest,
Decision Trees, and Gradient Boosting) and deep learning techniques (like CNNs and LSTMs) to perform three major
predictive tasks:

Crop Health Prediction:
By analyzing weather conditions and environmental parameters, the system detects early signs of crop stress, diseases,
or pest infestations. It uses image-based inputs and numerical weather data to classify health status and recommend
corrective actions (e.g., irrigation adjustment, pesticide usage, or nutrient balancing).
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Price Forecasting:

Agricultural markets are influenced by both production and environmental factors. AGRO-VISION applies time-series
forecasting models (ARIMA, LSTM) and regression techniques to predict crop price trends based on weather-driven
yield variations, seasonal patterns, and market supply-demand dynamics. This assists farmers and traders in planning
crop sales and reducing financial uncertainty.

Supply Chain Management:

The system supports real-time tracking of produce from farms to markets, ensuring that logistics align with production
and demand forecasts. Predictive insights help optimize storage, transportation, and distribution while minimizing post-
harvest losses and maintaining market stability.

Despite technological advancements in digital agriculture, existing solutions often remain fragmented focusing solely
on yield prediction or disease detection without integrating weather intelligence or market forecasting. Moreover, many
systems lack real-time adaptability, scalability, and user-centered interfaces. AGRO-VISION addresses these
limitations by developing a unified, Al-powered ecosystem that continuously learns from incoming data, refines its
predictions, and presents results through an intuitive, interactive dashboard.

By merging Al-driven predictive analytics, weather-based intelligence, and decision-support visualization, AGRO-
VISION aims to empower farmers, agronomists, and policymakers with actionable insights that promote sustainable
agriculture. The system’s holistic approach not only enhances operational efficiency but also contributes to food
security, economic resilience, and environmental sustainability paving the way toward the future of precision
agriculture.

II. PROBLEM STATEMENT
The modern agricultural landscape is increasingly shaped by climate variability, weather uncertainty and fluctuating
market conditions, which collectively threaten crop productivity and farmer livelihoods. Agriculture today generates
vast amounts of heterogeneous and unstructured data from weather sensors, satellite imagery, soil reports, and market
databases that contain valuable insights into crop health, yield potential, and price dynamics. However, extracting
actionable intelligence from these complex and interdependent datasets remains a significant challenge.
Traditional agricultural monitoring methods rely heavily on manual field inspections, static historical analysis and
delayed reporting mechanisms. While such methods have been useful in certain contexts, they fail to capture the real-
time environmental and climatic factors that directly affect crop performance. Manual monitoring is also time-
consuming, subjective and prone to human error, limiting its scalability and effectiveness in today’s data-driven
agricultural systems. Consequently, there is an urgent need for automated, intelligent and adaptive systems capable of
processing real-time weather and environmental data to predict potential risks and support timely decision-making.
Existing agricultural prediction systems, though advanced in specific areas, still face several critical challenges:
Real-time Data Integration: Many systems operate primarily on historical or static datasets, making them unsuitable
for real-time crop health prediction or weather-based forecasting. In agriculture, decisions such as irrigation scheduling,
disease prevention, or market timing must be made promptly based on current climatic conditions, which can change
rapidly.
Limited Predictive Scope: Most existing tools focus on either crop health monitoring or price forecasting, rather than
providing an integrated predictive framework that connects environmental conditions, crop performance and market
behavior in a single ecosystem.
Lack of Weather-Driven Insights: Traditional prediction models often ignore meteorological parameters like rainfall,
humidity, and temperature variations, which are critical for detecting early signs of crop stress, disease, or pest
infestations.
Static and Isolated Systems: Current agricultural dashboards and analytics tools often present static reports or charts
that lack interactivity and adaptability. Stakeholders such as farmers, traders and policymakers require dynamic
visualizations that allow them to explore real-time patterns, track weather changes, and visualize crop or price

predictions interactively.
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This research seeks to address these challenges by developing a comprehensive Al-driven predictive system AGRO-

VISION that:
e Integrates real-time weather data and environmental parameters to detect early crop health issues and stress
indicators.

Employs machine learning models for accurate crop disease detection and yield forecasting based on climatic
trends.
Utilizes time-series and regression-based algorithms for price forecasting, enabling farmers and traders to
make informed market decisions.
e Provides interactive, dynamic dashboards for real-time monitoring, visualization, and decision support across
the agricultural supply chain.
By bridging the gap between climate analytics, predictive modeling, and agricultural intelligence, this research aims to
empower farmers, agronomists, and policymakers with a scalable, intelligent and data-driven platform that enhances
crop productivity, stabilizes market outcomes and fosters sustainable agricultural development.

I11. OBJECTIVES
The main objective of this research is to design and develop an Al-driven predictive system that enhances agricultural
productivity by detecting crop health issues, forecasting market prices, and optimizing supply chain operations. The
system aims to leverage machine learning, artificial intelligence, and weather-based data analytics to assist farmers,
policymakers, and stakeholders in making timely, data-driven decisions that improve crop yield and profitability.
One of the core objectives is to collect and analyze weather, soil, and environmental data from multiple real-time
sources. Weather conditions such as temperature, rainfall, humidity, and wind patterns play a crucial role in
determining crop health and productivity. By integrating real-time meteorological data with field and satellite
observations, the system will identify potential risks such as drought, pest attacks, or disease outbreaks before they
escalate.
Another major goal is to apply predictive analytics to forecast crop prices based on historical data, market demand,
supply trends, and climatic influences. Accurate price prediction can help farmers plan their cultivation and selling
strategies effectively, minimizing losses and stabilizing income. This component will combine data from agricultural
markets, weather forecasts, and production estimates to generate reliable and region-specific price trends.
The system will also focus on early detection of crop diseases and stress through image processing and Al-based
classification. Using satellite imagery, drone data, or farmer-uploaded images, the system will analyze patterns and
anomalies in vegetation indices, such as NDVI (Normalized Difference Vegetation Index), to detect health deterioration
at an early stage. This will enable farmers to take corrective actions promptly, reducing the risk of large-scale crop loss.
In addition to crop health and price forecasting, the project seeks to enhance supply chain efficiency by analyzing
logistics, storage, and transportation data. Al-driven insights will assist in optimizing routes, predicting post-harvest
losses, and ensuring timely delivery of produce to markets. This will help reduce wastage and improve the overall
profitability of the agricultural ecosystem.
Another objective is to integrate all these analytical modules into a unified platform that provides an intuitive and user-
friendly interface. The system will visualize predictive insights through dynamic dashboards that display weather
patterns, crop health indicators, market price trends, and supply chain alerts. This interface will be designed to support
decision-making at various levels from individual farmers to agricultural agencies.
Lastly, the system aims to evaluate its predictive accuracy and efficiency through continuous performance monitoring.
Various machine learning models will be tested and validated using metrics such as precision, recall, and overall
accuracy to ensure reliable predictions across different crop types and regions.
Overall, the research intends to create a comprehensive Al-based decision-support system that not only predicts crop
health and market conditions but also fosters sustainable agriculture by integrating real-time environmental intelligence,
predictive analytics, and data visualization into a single, accessible framework.
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IV.LITERATURE SURVEY
Agricultural productivity and sustainability have been major global concerns, particularly with the growing challenges
of climate change, unpredictable weather patterns, and increasing demand for food security. Over the past decade,
researchers have explored how Artificial Intelligence (AI), Machine Learning (ML), and data analytics can
revolutionize agriculture through predictive modeling, crop health monitoring, and supply chain optimization. This
section reviews key studies in these areas and highlights the existing research gaps that this project seeks to address.

Al and Machine Learning in Crop Health Monitoring

Patil et al. (2020) developed a system that used Convolutional Neural Networks (CNN) for detecting plant diseases
from leaf images. Their approach demonstrated that deep learning models could achieve high accuracy in identifying
crop diseases, outperforming traditional image processing methods. However, the model required extensive labeled
datasets and was limited to static image-based detection, without considering environmental factors such as
temperature, humidity, and rainfall that significantly affect crop health.

Similarly, Mohanty et al. (2016) applied deep learning models on a large dataset of plant leaves and successfully
identified multiple crop diseases with a classification accuracy exceeding 99%. While this research established the
potential of Al in plant pathology, it primarily relied on laboratory images and did not incorporate real-time field data,
which is essential for practical applications in dynamic agricultural environments.

Other studies, such as those by Fuentes et al. (2017), combined image processing with object detection techniques like
Faster R-CNN for disease localization in crop fields. Although the method enhanced detection accuracy, it still lacked
integration with meteorological and soil data — crucial parameters for identifying early signs of stress or disease
influenced by changing environmental conditions.

Use of Weather and Environmental Data in Agriculture

Weather data plays a pivotal role in determining agricultural success. Ramesh and Vardhan (2018) designed a machine
learning-based crop prediction model that utilized historical weather and soil data to predict optimal crops for specific
regions. The study demonstrated how predictive models could guide farmers in selecting the best crops for given
environmental conditions. However, the approach was limited to static datasets and did not account for real-time
weather updates or dynamic changes in climate conditions.

Zhang et al. (2019) explored the use of Al in weather-based yield prediction, using regression and ensemble methods
like Random Forest and XGBoost. Their research showed that incorporating multiple environmental features improved
yield accuracy, but the absence of disease data and supply chain considerations restricted its overall impact on the
agricultural ecosystem.

Kumar et al. (2021) proposed an loT-integrated system for real-time monitoring of soil moisture, temperature, and
humidity using sensor data. Although the system provided valuable insights for precision farming, it lacked predictive
intelligence — it could monitor conditions but not forecast potential threats or yield outcomes based on those
parameters.

Crop Price Forecasting and Market Analytics

Forecasting crop prices is another critical aspect of agricultural intelligence. Bhardwaj et al. (2020) developed a
predictive model using ARIMA and LSTM (Long Short-Term Memory) networks to forecast the prices of essential
commodities like rice and wheat. Their model successfully captured seasonal trends but was limited by its dependency
on historical data alone, without considering external factors such as weather anomalies or supply chain disruptions.
Likewise, Mehta and Singh (2022) used hybrid time series models to predict crop prices based on demand-supply
dynamics. Their approach improved short-term prediction accuracy but lacked integration with production and
environmental data, which could provide a more holistic price forecast framework.
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Al in Agricultural Supply Chain Optimization

In the domain of supply chain management, Jain et al. (2021) explored how Al can enhance logistics and distribution
efficiency by predicting optimal transportation routes and minimizing post-harvest losses. Their system demonstrated
that intelligent logistics models can significantly reduce food wastage, though the study did not consider integration
with upstream processes like crop yield prediction or disease alerts.

Singh and Rani (2020) focused on blockchain-based agricultural supply chains to ensure transparency and traceability
of produce. While blockchain provided security and traceability, it lacked predictive capabilities that could anticipate
delays, disruptions, or spoilage risks — aspects that Al-driven models can address effectively.

Research Gaps and Limitations

Despite the progress in Al-based agriculture, several research gaps remain unaddressed.

Most existing systems focus on a single problem domain either crop health monitoring, price prediction, or supply
chain management without integrating them into a unified framework. This fragmented approach limits the overall
decision-making capability of farmers and agricultural planners. Additionally, while many studies use weather or soil
data, very few incorporate real-time weather integration for proactive disease or stress prediction.

Another limitation is the lack of context-aware predictive systems that can simultaneously consider multiple
influencing factors such as environmental conditions, crop stages, and historical patterns. Moreover, existing models
often fail to provide user-interactive dashboards or visualization tools that can simplify the interpretation of complex
predictions for end users, especially farmers with limited technical expertise.

Contributions of This Research
This research aims to bridge these gaps by developing an Al-driven predictive system that integrates real-time weather
data, machine learning-based crop health detection, market price forecasting, and supply chain analytics within a
single intelligent platform. The system will enable early detection of crop stress and disease, provide accurate price
forecasts, and optimize the distribution process to reduce post-harvest losses.
By combining multi-source environmental, agricultural, and economic data, the system seeks to deliver a
comprehensive solution that supports precision agriculture, enhances sustainability, and strengthens the overall
agricultural value chain.

Table 1: Summary of Previous Research

Author(s) & Year Focus Area Method / Technique Key Findings / Limitations
Patil et al. (2020) Crop Disease Detection CNN on leaf images High accuracy; ignored environmental
factors
Mohanty et al. | Crop Health Monitoring Deep learning on leaf | Accurate but not real-time
(2016) datasets
Fuentes et al. (2017) | Disease Localization Faster R-CNN on crop | Good accuracy; no weather data
images
Ramesh & Vardhan | Weather-Based Crop | ML  on historical | Static  predictions; no  real-time
(2018) Prediction weather data integration
Zhang et al. (2019) | Yield Prediction Random Forest & | Accurate; lacked disease/supply data
XGBoost
Kumar et al. (2021) | Smart Farming IoT IoT sensors for soil & | Monitoring only; no predictions
weather
Bhardwaj et al. | Price Forecasting ARIMA & LSTM Captured trends; ignored supply/weather
(2020)
Mehta &  Singh | Market Analytics Hybrid time series | Improved accuracy; no environmental
(2022) models data
Jain et al. (2021) Supply Chain Optimization | Al for logistics Reduced wastage; no upstream prediction
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Singh &  Rani | Blockchain Supply Chain Blockchain Secure; lacked predictive insights
(2020) traceability

V.METHODOLOGY
The methodology for this project is structured to ensure systematic collection, processing, analysis, and visualization of
multi-source agricultural data. It integrates weather, crop health, market, and supply chain information to provide
predictive insights for crop management, price forecasting, and logistics optimization. The methodology consists of
several interrelated phases:

Data Collection
A multi-source data collection strategy is employed to obtain diverse and high-quality inputs for predictive modeling:

e  Weather and Environmental Data: Historical and real-time weather data, including temperature, rainfall,
humidity, wind speed, solar radiation, and soil moisture levels, are collected from APIs provided by
government meteorological departments, private weather services, and loT-based soil sensors. These data
points are crucial for understanding crop growth conditions and environmental stress factors that affect crop
health and yield.

e Crop Health Data: High-resolution images of crops and leaves are collected through field surveys, drones,
and publicly available datasets such as PlantVillage. This visual data helps in detecting disease presence, pest
infestation, nutrient deficiency, and other health-related anomalies in crops.

e Market and Supply Data: Historical crop prices, demand-supply statistics, warehouse inventory levels,
transportation routes, and logistics data are collected from agricultural market databases, commodity
exchanges, and cooperative farming societies. This data is essential for forecasting prices and optimizing
supply chains.

e Soil and Crop Management Data: Soil characteristics such as pH, nutrient content, texture, and moisture
levels are collected from soil testing reports and sensors deployed in fields. Crop management practices,
including irrigation schedules, fertilization, and pesticide use, are also recorded to provide context for
predictive modeling.

Data Preprocessing
Raw data from various sources often contains inconsistencies, missing values, noise, or irrelevant information.
Preprocessing is applied to ensure that the input data is clean, normalized, and suitable for modeling:

e Image Preprocessing: Crop images are resized to uniform dimensions, normalized, and augmented through
rotations, flips, and brightness adjustments to increase model generalization and robustness. Noise removal
techniques are applied to eliminate blurring, shadows, and background artifacts.

e Data Cleaning: Numerical and textual datasets, such as weather, soil, and market data, are checked for
missing values, duplicates, or outliers. Missing data is imputed using statistical methods (mean, median) or
interpolation for time-series datasets.

o Feature Extraction and Engineering: Key features are derived from raw data, such as cumulative rainfall,
temperature fluctuations, soil moisture trends, crop growth stage indices, and historical price volatility. These
features provide predictive power to machine learning models.

e Normalization and Scaling: All numerical features are standardized using min-max scaling or z-score
normalization to prevent model bias and ensure effective training convergence.

e Encoding Categorical Data: Categorical variables, such as crop type, soil type, or region, are converted into
numeric formats using one-hot encoding or label encoding.
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Predictive Modeling

The predictive system employs state-of-the-art AI and machine learning techniques for crop health assessment, price
forecasting, and supply chain optimization:

e  Crop Health Prediction: Convolutional Neural Networks (CNNs) are used to analyze images of leaves and
crops for disease detection. Transfer learning techniques, such as fine-tuning pre-trained models like ResNet or
VGG16, improve classification accuracy with limited labeled data. The model outputs disease labels along
with confidence scores and visual heatmaps to indicate affected regions.

e  Weather-Informed Yield Prediction: Multivariate regression and ensemble machine learning models such as
Random Forests and Gradient Boosting are applied to weather, soil, and crop management data to predict
potential yields. These models capture nonlinear interactions between environmental factors and crop growth.

e Price Forecasting: Time-series forecasting models, including ARIMA, LSTM, and hybrid LSTM-ARIMA
models, are used to predict crop prices based on historical price data, seasonal trends, and environmental
factors. Feature importance analysis helps identify key drivers of price fluctuations.

e Supply Chain Optimization: Al-driven optimization algorithms, such as reinforcement learning and linear
programming, are applied to model logistics networks. The system predicts demand, optimizes transportation
routes, and recommends inventory management strategies to minimize wastage and delivery delays.

Scoring and Evaluation
All predictive models are rigorously evaluated to ensure accuracy and reliability:
e Crop Health Models: Metrics such as accuracy, precision, recall, F1-score, and confusion matrices are used
to assess disease detection performance. ROC-AUC curves are plotted for multi-class classification problems.
e Price Forecasting Models: Evaluation metrics include Mean Absolute Error (MAE), Root Mean Squared
Error (RMSE), and Mean Absolute Percentage Error (MAPE) to quantify forecasting accuracy. Cross-
validation and walk-forward validation are employed for robust evaluation.
e  Supply Chain Optimization: Performance is measured in terms of delivery efficiency, reduced wastage, cost
savings, and inventory turnover rates. Simulated scenarios are used to validate model recommendations.

Visualization and Dashboard
A dynamic and interactive user interface is developed to make predictions accessible to farmers, agronomists, and
supply chain stakeholders:
e Interactive Graphs: Time-series plots visualize predicted crop yields, price trends, and disease occurrences.
e Heatmaps: Crop health maps highlight areas affected by disease or nutrient deficiency.
e  Supply Chain Insights: Dashboards provide visualizations of inventory levels, demand forecasts, and optimal
delivery routes.
e User Interaction: Users can filter data by crop type, region, time period, and predicted risk levels.
Notifications and alerts are provided for critical conditions such as disease outbreaks or predicted price drops.

Tools and Frameworks
The project utilizes a combination of modern programming languages, Al frameworks, and visualization libraries:
e  Programming Language: Python
e  Machine Learning Libraries: TensorFlow, Keras, PyTorch, Scikit-learn, XGBoost
e Data Processing Libraries: Pandas, NumPy, OpenCV, Pillow
e Visualization Libraries: Matplotlib, Seaborn, Plotly, Dash, Chart.js
e Backend Framework: Flask for API and dashboard integration
e Frontend Technologies: HTML, CSS, JavaScript, Bootstrap
e Database: SQLite or MySQL for structured storage of weather, crop, market, and prediction data
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System Architecture

The system follows a modular and layered architecture that integrates multi-source data acquisition, Al-based
predictive modeling, and interactive visualization. Each component is designed to perform specific tasks, ensuring
scalability, maintainability, and real-time performance.

The system is composed of the following main components:

Data Sources

e  Weather and Environmental Data: Collected from APIs (government meteorological services, IoT sensors,
satellite imagery) to capture temperature, rainfall, humidity, soil moisture, and sunlight data.

e Crop Health Data: Includes images of crops and leaves collected from drones, field surveys, and publicly
available datasets such as PlantVillage.

e Market and Supply Chain Data: Historical crop prices, demand-supply statistics, warehouse inventory
levels, and logistics data are obtained from commodity exchanges, agricultural market portals, and cooperative
farming societies.
Soil and Crop Management Data: Includes soil quality parameters, fertilization schedules, irrigation
patterns, and crop management practices.

Data Collection Module
e  Extracts data from APIs, IoT sensors, and external databases using RESTful calls or scheduled batch jobs.
e Filters data based on crop type, region, time period, and specific environmental or market parameters.

Preprocessing Engine
e Cleans raw datasets by handling missing values, removing duplicates, and normalizing numerical features.
e Image preprocessing includes resizing, normalization, and augmentation.
e Feature extraction from weather, soil, crop, and market data generates inputs for predictive models.
e Encodes categorical data and applies scaling techniques for uniform model input.

Predictive Modeling Engine

e Crop Health Prediction: Uses Convolutional Neural Networks (CNNs) on crop images to detect diseases,
nutrient deficiencies, and pest infestations. Transfer learning techniques are employed for enhanced accuracy.

e Price Forecasting: Employs time-series models like LSTM, ARIMA, and hybrid LSTM-ARIMA models for
crop price

e prediction based on historical and environmental data.

e Supply Chain Optimization: Applies Al algorithms, including reinforcement learning and optimization
methods, to forecast demand, optimize inventory, and recommend efficient delivery routes.

Scoring and Evaluation Module
e Aggregates model outputs to provide actionable insights:
e  Crop health scores indicating disease probability.
e Predicted yield and expected price trends.
e  Supply chain efficiency metrics such as optimized inventory and route recommendations.
e Evaluation metrics include accuracy, precision, recall, F1-score, RMSE, and MAE depending on the task.

Database Layer
e  Stores raw and processed data, model predictions, user accounts, and system logs.
e  Uses relational databases such as SQLite or MySQL for structured storage and fast retrieval.
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Visualization Dashboard
e Backend implemented with Flask to handle queries, user sessions, and API integration.
e Frontend uses HTML, CSS, JavaScript, and visualization libraries such as Chart.js and Plotly to display:
e Interactive time-series plots for weather, crop health, and prices.
e Disease heatmaps for crop monitoring.
e  Supply chain insights, including inventory and logistics recommendations.
e Filters allow selection by crop type, region, date, or predicted risk levels.

User Interaction Layer

Provides secure user registration and login.

Users can create personalized dashboards to monitor selected crops, regions, or supply chain routes.

Notifications and alerts for disease outbreaks, predicted price drops, or supply chain bottlenecks.

This architecture ensures end-to-end integration of environmental data, crop health monitoring, price forecasting, and
supply chain management into a unified Al-driven system, delivering real-time, actionable insights for farmers,
agronomists, and stakeholders

Crop production data
Pesticides data
Climate data

l

Preprocessing

Data Analysis

Testing and Evalution
Phase

Feature Engineering

Encoding categorical

Training Phase Testing models
Random Forest
Normalization
Picking best models
based on
performance metrics

GBAL

SV N

Randomly picking 70% of the

data as training set and 30% as
testing set

Estimating crop
vield

New Crop Vield
Data

Figure 1: System Architecture Diagram

VII. EXPERIMENTAL SETUP AND RESULTS
This section describes the environment setup, dataset details, tools, model configurations, evaluation metrics, and
results obtained from experiments conducted for crop health detection, price forecasting, and supply chain optimization.
Table 2: Experimental Environment

Parameter Specification

Programming Language Python 3.10

Libraries & Tools TensorFlow, Keras, PyTorch, scikit-learn, Pandas, NumPy, OpenCV, Pillow
Web Framework Flask

Frontend Tools HTMLS, CSS3, Bootstrap, Chart.js, Plotly

Database SQLite (local), MySQL/PostgreSQL (cloud)
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Deployment Environment | Localhost (development), Render / AWS / Heroku (cloud)

Operating System Windows 11 / Ubuntu 22.04 LTS

Table 3: Dataset Description

Source Data Points | Description

Crop Images 20,000+ Leaf and crop images for disease detection (PlantVillage + field
survey)

Weather Data 10,000+ Temperature, rainfall, humidity, soil moisture from IoT sensors &
APIs

Market Data 5,000+ Historical crop prices and demand-supply data from market portals

Supply Chain / Logistics | 2,000+ Warehouse inventory, transport routes, and delivery data

The datasets cover multiple crops such as wheat, rice, maize, and tomato, collected over a 6-month period. All datasets
are stored with timestamps, crop type, region, and other relevant metadata.

Preprocessing Steps

e Image Preprocessing: Resizing, normalization, noise removal, and augmentation (rotation, flipping,
brightness adjustments).

e  Weather & Market Data: Handling missing values, removing duplicates, normalization, and feature scaling.

o Feature Extraction: Derived features such as cumulative rainfall, temperature trends, soil moisture indices,
past price volatility, and crop growth stage indicators.

e Encoding: One-hot encoding for categorical variables like crop type and region.

Table 4: Models Used and Configuration

Model Type Configuration
CNN (Crop Health) Deep Learning Fine-tuned ResNet50 / VGGI16 for leaf and crop disease
classification

LSTM (Price Forecasting) Time-Series Model | 3 LSTM layers with 64 units, dropout 0.2, trained on historical

price data
ARIMA (Price Forecasting) | Statistical Model Optimized (p,d,q) parameters for seasonal trend modeling
RL / Optimization (Supply) | Al/Optimization Reinforcement learning-based route and inventory optimization

Evaluation Metrics
e  Crop Health Prediction: Accuracy, Precision, Recall, F1-score, Confusion Matrix.
e Price Forecasting: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean Absolute
Percentage Error (MAPE).
e Supply Chain Optimization: Delivery efficiency, reduced wastage, inventory turnover, and cost savings.
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Results
Table 5: Crop Health Prediction
Model Accuracy | Precision | Recall | Fl-score
CNN (ResNet50) | 93% 0.92 0.94 0.93
CNN (VGG16) 91% 0.90 0.92 091

Supply Chain Optimization:

Table 6: Price Forecasting

Model MAE | RMSE MAPE
LSTM 1.45 2.10 4.2%
ARIMA 1.88 2.55 5.7%

Inventory wastage reduced by 15% through demand prediction.
Delivery time improved by 12% with optimized route planning.
Table 7: Crop Disease Distribution (Example: Tomato)
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Key Observations:
e  CNN-based models outperformed traditional image classifiers in detecting crop diseases with high accuracy.
e LSTM captured seasonal price trends better than ARIMA, especially for crops affected by weather variability.
e Real-time supply chain optimization improved resource allocation, reduced wastage, and enhanced delivery
efficiency.
e Integrated visualization of crop health, predicted prices, and logistics data provided actionable insights for
farmers and stakeholders..

VIII. CONCLUSION
This research presents a comprehensive Al-driven predictive system for crop health monitoring, price forecasting, and
supply chain management. The system integrates heterogencous data sources, including weather parameters, crop
images, historical market prices, soil and crop management data, and supply chain information. By combining these
diverse datasets with advanced machine learning (ML) and deep learning (DL) techniques, the system provides
actionable insights that enable proactive decision-making for farmers, agronomists, and stakeholders in the agricultural
ecosystem.
Crop health monitoring leverages Convolutional Neural Networks (CNNs) trained on large-scale image datasets to
detect diseases, nutrient deficiencies, and pest infestations. Data augmentation and transfer learning techniques improve
model robustness, allowing accurate predictions under varied environmental conditions. Price forecasting utilizes Long
Short-Term Memory (LSTM) networks and ARIMA models to predict market trends, taking into account historical
price fluctuations, seasonal variations, and environmental influences such as rainfall, temperature, and soil moisture.
Optimization algorithms support supply chain management by recommending optimal inventory levels, delivery
schedules, and transportation routes, reducing wastage and operational costs.
The system also features a real-time, interactive dashboard developed using Flask and visualization libraries such as
Plotly and Chart.js. This dashboard provides intuitive visualizations of crop health status, predicted price trends, and
supply chain metrics. Users can personalize their view by selecting specific crops, regions, or warehouses, enabling
tailored insights that support decision-making at multiple levels, from individual farmers to agricultural cooperatives
and market regulators.
Experimental results highlight the effectiveness of the integrated approach. CNN-based models achieved high accuracy
(over 90%) in crop disease detection, outperforming traditional image classification methods. LSTM models captured
complex temporal patterns in crop prices more effectively than ARIMA, achieving lower prediction errors and higher
reliability in volatile market conditions. Supply chain simulations demonstrated a measurable reduction in delivery time
and inventory wastage, confirming the utility of Al-driven optimization for operational efficiency.
By addressing the limitations of prior approaches—such as reliance on static or single-source data, limited
personalization, and lack of real-time analytics—this research establishes a scalable, intelligent framework for
agricultural decision support. The integration of multimodal data sources, predictive modeling, and interactive
visualization not only improves situational awareness but also enhances proactive management capabilities. Farmers
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can identify disease outbreaks early, anticipate price fluctuations, and optimize logistics, while policymakers and
agribusinesses gain insights for strategic planning and resource allocation.

In conclusion, this system demonstrates the transformative potential of Al in modern agriculture. It bridges the gap
between raw agricultural data and actionable insights, enabling sustainable and profitable farming practices. The
research lays the foundation for future improvements, including expanding datasets, incorporating additional crop
types, enhancing predictive model accuracy, and developing more advanced prescriptive analytics for end-to-end
agricultural management.

IX. FUTURE SCOPE
While the proposed system demonstrates promising results in predicting crop health, forecasting prices, and optimizing
the supply chain, several avenues exist for further enhancement:
Integration of Market and Environmental Data
Future iterations could combine crop health predictions with additional quantitative data such as regional crop yields,
historical market prices, and soil fertility indices. This fusion of qualitative and quantitative information would enable
more accurate forecasting and holistic decision-making for farmers and agribusinesses.
Advanced Deep Learning Models
Incorporating state-of-the-art models such as Vision Transformers (ViT) for image analysis or enhanced LSTM/GRU
models for time-series price prediction could improve accuracy. Fine-tuning these models on crop-specific datasets
would help capture subtle patterns in disease progression or price fluctuations.
Expansion to Multiple Crops and Regions
Extending the system to include multiple crop types and geographic regions would broaden its applicability. This would
allow stakeholders to monitor diverse crops, regional market trends, and localized supply chain dynamics, providing
comprehensive agricultural insights.
Event and Risk Detection
Enhancing the system’s capability to detect specific agricultural events—such as pest outbreaks, extreme weather
conditions, or disease spread—and assess their impact on yield and prices would improve proactive risk management.
Real-Time Alerts and Notifications
Implementing automated alerts for early warnings on crop disease, price spikes, or supply chain disruptions would
enable farmers and traders to take timely preventive actions.
Predictive Supply Chain Optimization
Integrating predictive analytics for logistics planning, warehouse management, and demand forecasting could further
reduce wastage, optimize transportation routes, and improve market delivery efficiency.
Enhanced User Personalization
Allowing users to create personalized dashboards based on crop type, farm location, or market interest would improve
usability. Trend forecasting and scenario analysis could be tailored to specific user requirements.

Mobile and Cross-Platform Access

Developing mobile applications or web-based interfaces would enable stakeholders to access real-time insights and
predictions on-the-go, increasing adoption and responsiveness.

Explainable AI and Transparency

Incorporating explainable Al techniques would allow users to understand which factors—such as weather conditions,
image features, or historical price trends—contributed to predictions. This improves trust and decision-making
confidence for farmers and supply chain managers.

REFERENCES
[1]. Aijaz, N. (2025). Artificial intelligence in agriculture: Advancing crop management. ScienceDirect.
https://www.sciencedirect.com/science/article/pii/S2666154325001334
Copyright to IJARSCT I DOI: 10.48175/568
www.ijarsct.co.in

673

7 1ssN W)
| 2581-9429 |}

&\ IJARSCT ¥
Q




( IJARSCT

xx International Journal of Advanced Research in Science, Communication and Technology
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 6, Issue 2, January 2026 Impact Factor: 7.67

[2]. Kumari, S., et al. (2024). Al-driven predictive analytics in agricultural supply chains: A review.
ResearchGate. https://www.researchgate.net/publication/378287475

[3]. Dhal, S. B. (2024). Innovations in food security and supply chain optimization. MDPIL
https://www.mdpi.com/2571-9394/6/4/46

[4]. Dionissopoulos, I. (2024). Predicting agricultural product and supplies prices using Al ScitePress.
https://www.scitepress.org/Papers/2024/130716/130716.pdf

[S]. Mohan, R. N. V. J. (2025). Next-gen agriculture: Integrating Al and XAI for precision farming. PMC.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751057

[6]. Sharafat, M. D. S. (2025). An Al system for real-time crop prediction. ScienceDirect.
https://www.sciencedirect.com/science/article/pii/S2772375525004940

[7]. Theofilou, A. (2025). Predicting prices of staple crops using machine learning. MDPL
https://www.mdpi.com/2071-1050/17/12/5456

[8]. Pareek, D. (2024). Artificial intelligence for agricultural price prediction. LinkedIn.
https://www .linkedin.com/pulse/artificial-intelligence-agricultural-price-prediction-deepak-pareek-bdc2f

[9]. Sizan, N. S., et al. (2025). A secured triad of ML, AI, and blockchain for crop forecasting. arXiv.
https://arxiv.org/abs/2505.01196

[10]. Singh, P. K., et al. (2025). AI technology for real-time crop disease detection in Indian farms. Times of India.
https://timesofindia.indiatimes.com/city/allahabad/iiit-a-researchers-develop-ai-tech-for-real-time-crop-
disease-detection-in-indian-farms/articleshow/123370013.cms

[11]. Mohamed-Amine, N. (2024). Al for forecasting sales of agricultural products. ScienceDirect.
https://www.sciencedirect.com/science/article/pii/S2199853123002913

[12]. Nautiyal, M. (2025). Revolutionizing  agriculture: Al  applications  review. PMC.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12274707

[13]. Dhanaraj, R. K. (2025). On-device Al for climate-resilient farming and intelligent irrigation. Nature.
https://www.nature.com/articles/s41598-025-16014-4

[14]. Chen, X., et al. (2024). AI for crop yield and disease prediction: A survey. MDPL
https://www.mdpi.com/2076-3417/14/3/1620

[15]. Li, Q., et al. (2023). Machine learning models for agricultural supply chain optimization. Springer.
https://link.springer.com/article/10.1007/s00500-023-09321-4

[16]. Kumar, R., & Sharma, A. (2024). Predictive analytics for crop prices using deep learning. Elsevier.
https://www.sciencedirect.com/science/article/pii/S0168169924000247

[17]. Zhang, H., et al. (2024). Integrating Al and remote sensing for precision agriculture. MDPIL
https://www.mdpi.com/2072-4292/16/3/512

[18]. Singh, A., & Kaur, H. (2023). Crop yield prediction using hybrid AI models. Springer.
https://link.springer.com/chapter/10.1007/978-981-19-0382-4 12

[19]. Raj, P., et al. (2024). Al-based risk assessment in agricultural supply chains. IEEE Xplore.
https://ieeexplore.ieee.org/document/950114

[20]. Guo, L., et al. (2025). Smart farming and Al-based crop management systems. ScienceDirect.
https://www.sciencedirect.com/science/article/pii/S2666154325001425

Copyright to IJARSCT DOI: 10.48175/568 674

www.ijarsct.co.in

7 1ssN W)
| 2581-9429 |}

&\ IJARSCT ¥
Q




