

Smart Medi-Guard

Amruta Sarode, Disha Jadhav, Vedika Bhakte, Gauri Bhadane, Prof. Mrs. Vidya Pingale

Diploma Student, Department of Computer Engineering

Guide, Department of Computer Engineering

Pimpri Chinchwad Polytechnic, Pune, India

amrutasarode10@gmail.com, jadhavdisha446@gmail.com,

gouribhadane19@gmail.com, vedikabhakte@gmail.com, vidya.pingale8@gmail.com

Abstract: *Smart Medi Guard is a digital healthcare assistance system designed to provide instant access to a patient's medical history during emergency situations. In many critical cases, patients are unable to communicate vital health information such as allergies, ongoing medications, or previous diagnoses, resulting in delayed or incorrect treatment. The proposed system uses QR code-based identification to securely retrieve patient medical records with minimal response time. Additionally, GPS-based location tracking is integrated to identify nearby ambulances, doctors, and medical stores, ensuring timely emergency support. The platform connects patients, healthcare professionals, and medical service providers through a unified interface. Secure cloud storage, role-based access, and data encryption ensure privacy and reliability. Smart Medi Guard aims to enhance emergency medical response, reduce human dependency, and improve treatment accuracy in both urban and rural healthcare environments*

Keywords: QR Code, Emergency Healthcare System, GPS Tracking, Medical Records, Smart Healthcare

I. INTRODUCTION

Healthcare emergencies demand immediate access to accurate medical information. However, in many real-world scenarios, patients are unconscious, disoriented, or unable to communicate their medical history. Traditional hospital management systems are often isolated to specific institutions and fail to provide real-time access during emergencies. This limitation can lead to delayed treatment and life-threatening situations. Smart Medi Guard addresses these challenges by offering a centralized digital healthcare platform. Using a QR code assigned to each patient, authorized medical personnel can instantly access critical health records. The system also integrates GPS technology to locate nearby ambulances, doctors, and pharmacies, thereby minimizing response time and improving emergency care delivery.

1.1 Background

Existing healthcare systems primarily focus on hospital-level data management and lack interoperability across different service providers. Manual record verification and dependency on physical documents increase the risk of human error.

The proposed system integrates obstacle detection, automated braking, and weight-based transport control into a single safety framework, improving reliability and reducing dependency on human intervention. In rural areas, the absence of immediate healthcare access further worsens emergency outcomes. The need for a unified, fast, and secure emergency healthcare assistance system motivates the development of Smart Medi Guard

1.2 Contribution of This Work

The key contributions of this system include:

- QR code-based instant retrieval of patient medical records
- GPS-enabled discovery of nearby ambulances, doctors, and medical stores
- Centralized cloud-based medical data management

- Secure, role-based access for patients, doctors, and medical vendors Reduced emergency response time and improved treatment accuracy.

II. PROPOSED METHODOLOGY

The Smart Medi Guard system is designed as a mobile-based healthcare platform supported by cloud services. It consists of three primary modules:

- Patient Module
- Healthcare Provider Module (Doctors, Ambulances, Medical Stores)
- Admin Module

2.1 System Architecture

The system architecture includes a mobile application frontend, cloud-based backend services, and integrated third-party APIs. Patients register and upload their medical details, which are securely stored in the database. A unique QR code is generated for each patient. During emergencies, scanning the QR code retrieves the stored medical information. GPS services enable real-time location tracking to identify nearby medical resources.

2.2 Workflow

- User registration and medical data entry
- QR code generation for patient identification
- Emergency QR code scanning by authorized personnel
- Instant retrieval of patient medical history
- GPS-based search for nearby ambulances, doctors, and pharmacies
- Request and notification handling

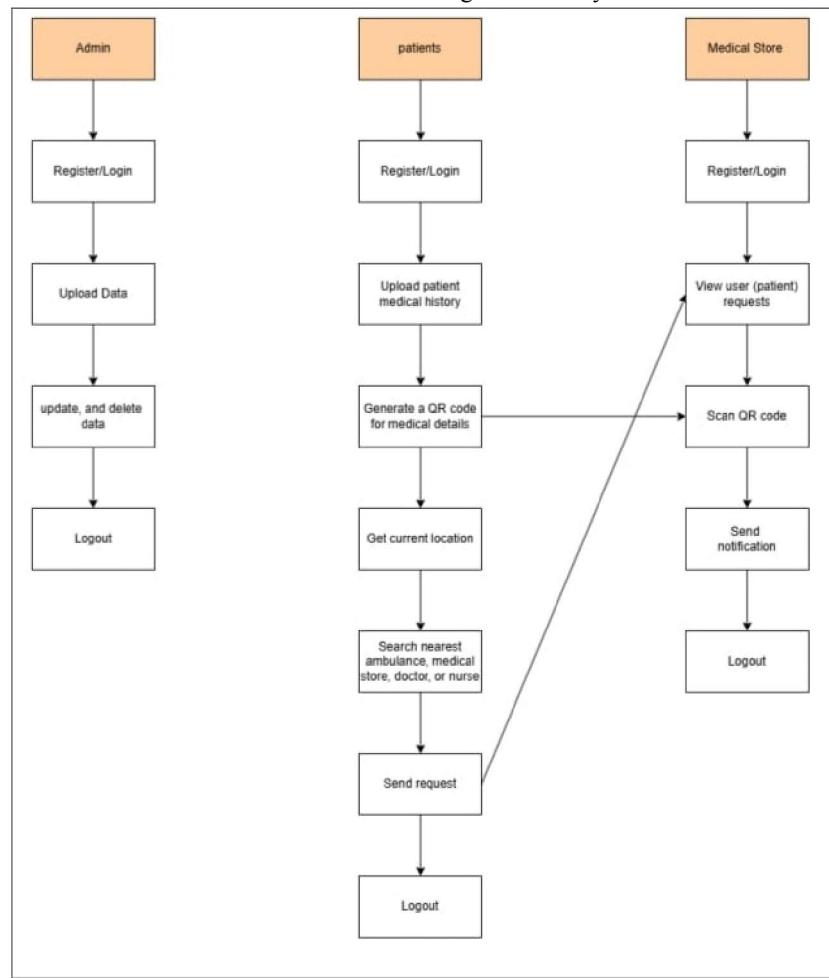
2.3 Block Diagram Description

The block diagram of the proposed healthcare assistance system illustrates the functional components of the system and the interaction between them. The diagram provides a high-level overview of the system by representing each major module as a block and showing the flow of operations among these blocks. The system mainly consists of three functional blocks: Admin, Patient, and Medical Store.

Admin Block

The admin block is responsible for controlling and managing the overall system. Initially, the admin performs registration and login to access the system securely. After successful authentication, the admin can upload system-related data such as user details and medical information. The admin also has permission to update and delete existing data to maintain data accuracy and consistency. After completing all administrative operations, the admin can log out of the system.

The Patient block represents the primary user of the system. The patient first completes the registration and login process to gain authorized access. After logging in, the patient can upload medical history details, which are stored securely in the system database. Based on the uploaded information, the system generates a QR code containing the patient's medical details, which can be used during emergencies.


The patient block also supports location-based services. The system identifies the patient's current location and allows the patient to search for nearby medical services, such as ambulances, doctors, nurses, or medical stores. Once the required service is selected, the patient can send a request to the corresponding service provider. Finally, the patient can log out of the system.

Medical Store Block

The Medical Store block enables medical stores to interact with patient requests. The medical store user must first register and log in to access the system. After authentication, the medical store can view incoming patient requests. To verify patient details, the medical store can scan the QR code, which provides quick access to the patient's medical

information. After processing the request, the medical store can send notifications to the patient regarding medicine availability or service status. The medical store user can then log out of the system.

III. SYSTEM REQUIREMENTS

3.1 Hardware Requirements

- Smartphone
- Minimum 8 GB RAM system for development
- Intel i5 processor or higher
- 500 GB hard disk

3.2 Software Requirements

- Operating System: Windows 10 (64-bit)
- Frontend: Android XML
- Backend: Java, Kotlin
- Database: SQLite
- Development Tools: Android Studio

IV. LITERATURE SURVEY

Several research works highlight the use of QR codes in healthcare for secure patient identification and data sharing. Studies show that QR code-based systems significantly improve accessibility and reduce data retrieval time. Other works emphasize GPS-based emergency response systems for faster ambulance dispatch and healthcare coordination. However, most existing solutions focus on isolated functionalities. Smart Medi Guard integrates medical record access and emergency location services into a single unified platform.

V. RESULT AND ANALYSIS

The proposed system improves emergency response efficiency by enabling instant access to patient medical data. QR code scanning reduces dependency on manual record verification. GPS-based assistance ensures timely identification of nearby medical services. Secure cloud storage and role-based access enhance data privacy and reliability. Overall, the system demonstrates high usability, reliability, and scalability.

VI. APPLICATIONS

- Emergency medical response systems
- Hospital and ambulance coordination
- Elderly and chronic patient care
- Rural and urban healthcare infrastructure
- Medical record management

VII. FUTURE SCOPE

Future enhancements may include integration with national health ID systems, AI-based predictive diagnosis, telemedicine features, IoT-enabled wearable devices for real-time health monitoring, automated ambulance dispatch, and multilingual support for global accessibility.

VIII. CONCLUSION

Smart Medi Guard provides a reliable and innovative solution for emergency healthcare assistance. By combining QR code-based medical identification with GPS-enabled emergency services, the system significantly reduces response time and improves treatment accuracy. Secure data handling, user-friendly design, and scalable architecture make it suitable for modern healthcare environments. The system represents a step toward smart, technology-driven healthcare for improved emergency outcomes and patient safety.

REFERENCES

- [1]. R. S. Khandpur, *Handbook of Biomedical Instrumentation*, McGraw-Hill, 2017.
- [2]. S. Monika, P. Ranjitha, "QR Code Based Patient Identification and Health Information System," *International Journal of Computer Applications*, vol. 182, no. 46, pp. 1–5, 2019.
- [3]. Kumar, S. Singh, "Integration of Location-Based Services in Healthcare Applications," *International Journal of Innovative Research in Computer and Communication Engineering (IJIRCCE)*, vol. 6, no. 5, pp. 11234–11240, 2018.
- [4]. D. Gupta, S. Misra, "Smart Healthcare Monitoring Using IoT and Cloud," *Journal of Network and Computer Applications*, Elsevier, vol. 192, 2021.
- [5]. M. Patel, R. Patel, "Mobile Healthcare System using QR Code and Cloud Storage," *International Research Journal of Engineering and Technology (IRJET)*, vol. 5, no. 7, pp. 2448–2453, 2018.
- [6]. K. M. Venkatasubramanian, A. Banerjee, S. Gupta, "PSAMP: Patient Safety and Authentication using Mobile Phones," *IEEE Transactions on Information Technology in Biomedicine*, vol. 16, no. 6, pp. 1223–1234, 2012

