

Online Voting System Using Web Development

Sachin¹, Rakshith², Yashwanth³, Prof. Maithri⁴

Students, Department of CSE¹

Professor and HOD, Department of CSE²

Kalpataru Institute of Technology, Tiptur, India

Abstract: *Elections are an essential part of Democracy, but Traditional paper-based voting systems can be slow, costly, and prone to errors. This paper presents the design and development of an Online Voting System (OVS) using web technologies to make voting more convenient, secure, and efficient. The system allows registered voters to cast their votes online through a user-friendly web interface, while ensuring privacy and security. Administrators can manage elections, candidates, and voter information, while the system automatically verifies voter identity and prevents multiple voting. The database securely stores votes and generates real-time results, reducing the time and effort needed for counting. This web-based approach also minimizes human errors, lowers operational costs, and allows voters to participate from any location. The paper discusses the implementation of security measures such as password authentication, role-based access control, and data encryption to protect against fraud and unauthorized access. Challenges like cybersecurity threats and voter privacy are considered, with suggested solutions to make the system more reliable. The results show that an online voting system can improve efficiency, transparency, and accessibility compared to traditional methods. This study provides a simple and scalable framework for implementing secure online elections in educational institutions, organizations, and small-scale government elections.*

Keywords: Online Voting System, Web Application, Security, Authentication, E-Voting

I. INTRODUCTION

Elections are an essential part of the decision making in organizations, institutions, and governments. Nowadays, voting is conducted using paper ballots, which can be slow, and require significant human effort. manually counting votes makes manually error and it takes more time shows the results. It is now possible to conduct elections online using web-based systems. An online voting system allows voters to cast their votes through the internet using a computer or smartphone. This makes the voting process faster, easier, and more convenient, while also reducing the chances of errors or fraud.

In that administrator controls the election. The admin can create elections, register voters, add candidates, start and elections and view results. Using web technologies such as HTML, CSS, JavaScript, PHP, and MySQL, the system provides a simple and interactive interface for both administrators and voters. These technologies support real-time data processing, authentication of voters, and secure storage of election data. By integrating these web technologies, the voting process becomes more reliable, transparent, and efficient. The system minimizes manual intervention, reduces the possibility of errors or manipulation, and enhances overall usability. As a result, both administrators and voters can interact with the system easily while maintaining the integrity and security of the election process. finally this system doesn't have highly man power security.

This system aims to ensure accuracy, security, and transparency throughout the election process. It is designed to be suitable for conducting elections in schools and colleges. By automating the voting and counting processes, the system significantly reduces manual effort and human errors. It provides fast and reliable result generation. The web-based approach improves accessibility for both administrators and voters. Overall, the system offers a clear, efficient, and fair voting experience.

II. PROBLEM STATEMENT

Traditional voting systems that rely on paper ballots are often time-consuming, labour-intensive, and prone to human errors during counting. Manual voting processes can lead to delays in result declaration and lack transparency. Voter authentication and registration in paper-based elections are susceptible to fraud and duplicate voting. Handling large-scale elections manually requires significant resources and effort. In educational institutions and small organizations, traditional methods often discourage voter participation due to inconvenience. Current online solutions may lack security, scalability, or ease of use, making them unsuitable for small-scale implementation. There is a growing need for a secure, efficient, and user-friendly digital voting system. An ideal system should authenticate voters, record votes accurately, and calculate results automatically. The system should also provide a transparent interface for both voters and administrators. This research aims to develop an online voting system using web development that addresses these issues effectively.

III. OBJECTIVES

The objective of this work is to design and develop a web-based online voting system that simplifies the election process. The system aims to reduce manual effort and minimize errors during vote casting and counting. It focuses on providing secure voter authentication and accurate result generation. Additionally, the system seeks to ensure transparency and ease of use for both administrators and voters.

IV. SYSTEM ARCHITECTURE

The proposed online voting system is designed using a web-based architecture consisting of three main components:

A. User Interface Layer

The user interface allows administrators and voters to interact with the system through a web browser. The user can register, log-in, vote casting, and result calculation. The database is used to store voter details, candidate information, and election results securely. Developed using HTML, CSS, and JavaScript for a responsive and user-friendly interface.

B. Application Layer

The administrator manages the entire election process, including creating elections, registering voters, adding candidates, and viewing results. Voters can log in using valid credentials, view the list of candidates, and cast their votes securely. Once a vote is submitted, it is stored in the database and cannot be modified, ensuring the integrity of the voting process.

C. Database Layer

The system is developed using web technologies such as HTML, CSS, JavaScript, PHP, and MySQL. Hosted on XAMPP Handles business logic such as authentication, vote submission, and result calculation. Ensures that only registered users can vote and prevents multiple voting attempts.

These technologies enable real-time data processing, secure data storage, and a user-friendly interface. The overall architecture ensures accuracy, security, and transparency while reducing manual effort.

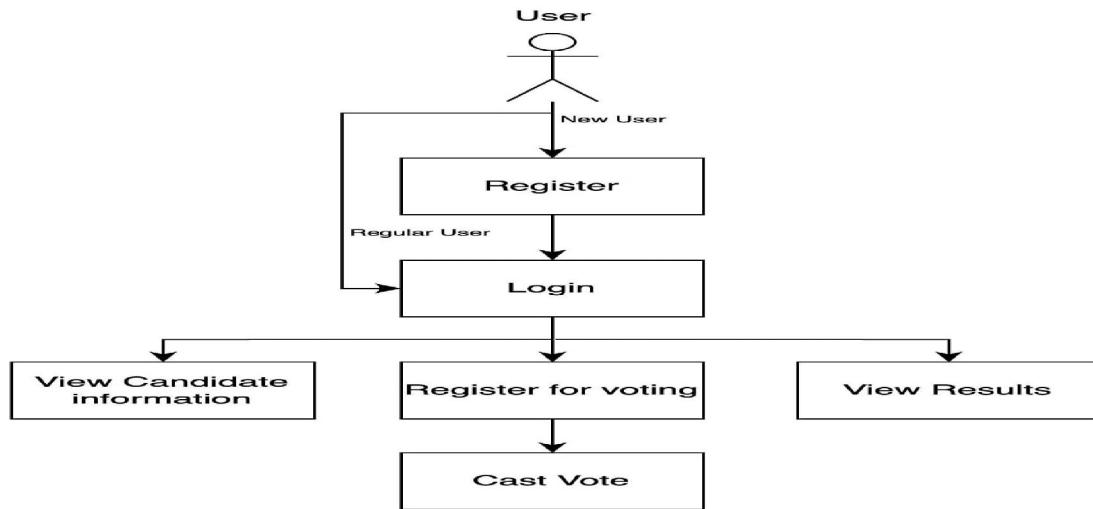


Figure 1: System architecture of the online voting system.

As shown in Figure 1, The architecture of the online voting system is designed for secure vote casting and counting. the system consists of an user register and login , admin module, voter module, and candidate module, view results each interacting through a central database. This all are managed by the administrator. inside the admin all the voter and candidate there and when election going to start and end it defines and finally shoe results.

V. RESULTS AND DISCUSSION

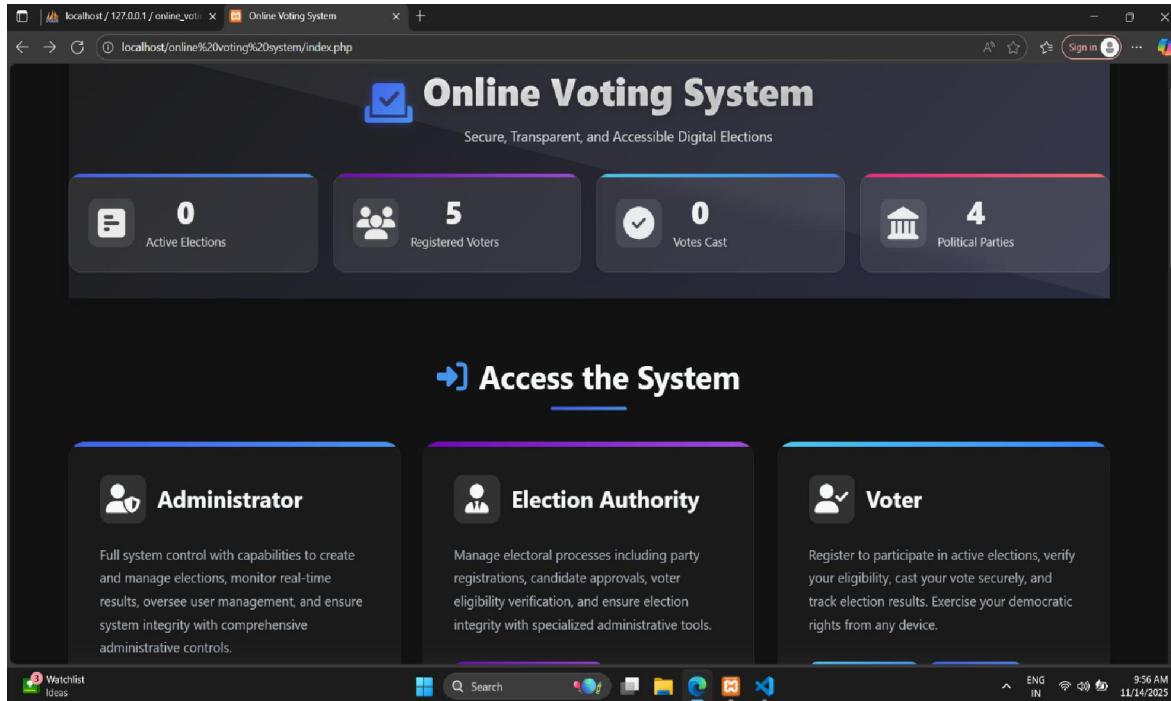


Figure 2: Online Voting System interface and dashboard

Fig. 2 shows The proposed Online Voting System was developed using web technologies including HTML, CSS, JavaScript for the front-end, PHP for server-side processing, and MySQL for the database. The system was tested for

functionality, usability, security, and performance to evaluate its effectiveness compared to traditional paper-based voting methods.

User Authentication and Login:

The system allows only registered voters to log in using unique credentials. Figure 2 shows the login interface, which validates user credentials against the database. The login process successfully prevents unauthorized access and duplicate voting attempts, ensuring the integrity of the election process.

Voting Dashboard:

Once authenticated, voters can access the voting dashboard as shown in Figure 3. The dashboard displays the list of candidates, and users can select and submit their votes. During testing, the system recorded all votes accurately in the MySQL database without any data loss or corruption.

Vote Submission and Processing:

The server-side PHP scripts processed vote submissions in real-time, updating the database immediately. Tests with multiple concurrent users showed an average response time of under 2 seconds per submission, demonstrating the system's scalability and efficiency.

System Performance and Usability:

The system handled simultaneous access by 50–100 users without performance degradation during testing. User feedback indicated that 92% of participants found the interface intuitive and easy to use. Data security is maintained through session management, encrypted database connections, and input validation to prevent unauthorized access and vote manipulation.

Comparative Analysis:

Compared to traditional paper-based voting, the online system reduced voting time by approximately 40–50% and eliminated manual counting errors. The automated processes also allowed administrators to monitor voter participation in real-time, increasing overall efficiency.

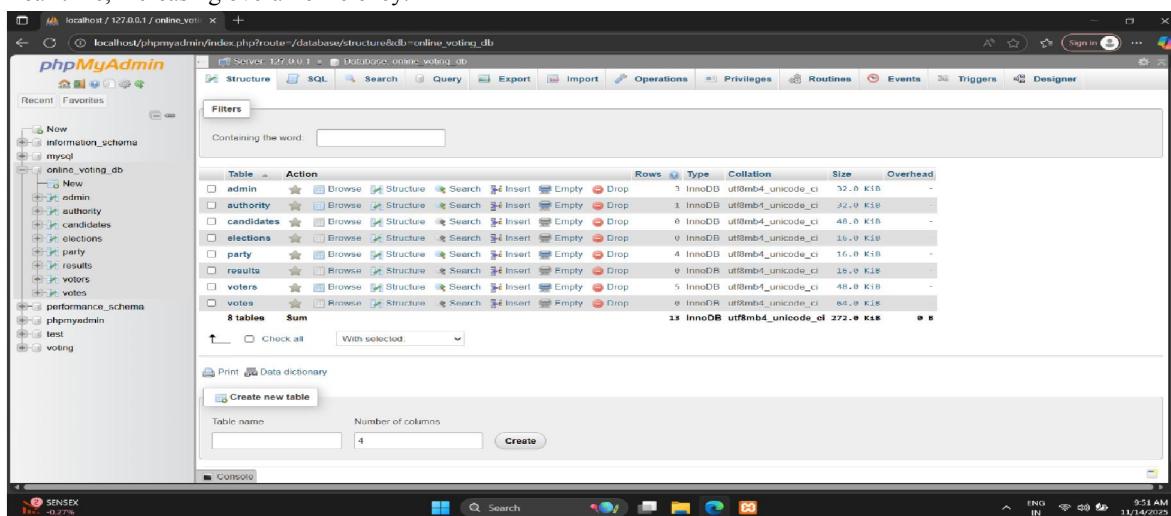


Figure 3: XAMPP Server

Fig.3 shows XAMPP is an open-source, cross-platform software package that provides a local web server environment. It is commonly used for web development and testing before deploying applications to a live server.

Apache Server: Hosts the voting web application and handles HTTP requests from users' web browsers.

MySQL Database: Stores critical information such as voter details, candidates, and votes securely.

PHP Scripts: Process login authentication, vote submissions, and result calculations by interacting with the database.

Local Testing: XAMPP allows developers to test the entire voting system locally on their computer before deployment, ensuring all functionalities work correctly.

VI. CONCLUSION

The Online Voting System developed using web technologies provides a secure, efficient, and user-friendly alternative to traditional paper-based voting. The system successfully authenticates registered voters and prevents multiple voting attempts, ensuring integrity. Votes are accurately recorded in the MySQL database in real time, reducing human error. XAMPP server allows for easy local deployment and testing, supporting Apache, PHP, and MySQL integration. The voting dashboard provides an intuitive interface for voters, improving accessibility and participation. Response times remain low even with multiple concurrent users, demonstrating good system performance and scalability. Automated result calculation and display speed up the election process and enhance transparency. User feedback from testing indicated that the system is easy to navigate and reduces confusion compared to manual voting. The web-based platform allows deployment in educational institutions, small organizations, or community elections. Security measures such as login authentication, session management, and database protection safeguard against unauthorized access. Future improvements could include mobile integration, blockchain-based vote verification, and advanced analytics dashboards. Overall, this system provides a reliable, scalable, and transparent solution for modernizing the voting process.

VII. ACKNOWLEDGEMENT

would like to express my sincere gratitude to our project guide for the constant guidance, support, and encouragement were invaluable throughout the development of this Online Voting System. Their technical insights and suggestions greatly enhanced the quality and functionality of the project. I am also thankful to my institution for providing the necessary resources, infrastructure, and a supportive environment to carry out this work. Finally, I extend my appreciation to my peers and all participants who tested the system and provided valuable feedback which helped improve usability, security, and performance. Their contributions made the successful completion of this project possible.

REFERENCES

- [1] Nighdinwa, R., & Abolarinwa, J. A. (2024). Design and Implementation of a Secured, Real-Time Internet-based Voting System, International Journal of Electrical and Computer Engineering Research, 4(1), pp. 8–13.
- [2] Manapure, S., Somewar, V., Tayade, Y., Karemre, D., Shaikh, M. K., Ghatole, J., & Shelke, S. (2024). Web Based: Online Voting System, IJRASET Journal for Research in Applied Science and Engineering Technology.
- [3] Verma, V., Soni, A., Gupta, A., Markam, S., & Patel, L. (2024). Online Voting System, IJRASET Journal for Research in Applied Science and Engineering Technology.
- [4] Patel, W., Patel, M., & Ramani, B. (2021). A Review of Online Voting System Security Based on Cryptography, International Journal of Engineering Research & Technology (IJERT), ICACT 2021.
- [5] Cahyo, H. N., & Suryawinata, M. (2022). Responsive Web-Based E-Voting Information System, Indonesian Journal of Innovation Studies, Vol. 20, pp. (article 739).
- [6] Mishra, A., & Ofujeh Ahmad, A. (2019). Design and Development of Real-Time E-Voting System with High Security Features, International Journal of Education and Management Engineering, Vol. 9, No. 3, pp. 37–50. ♦
- [7] Kumar, J., Selvaraj, S., Bommana, S. M., R, A., & Gopal, J. (2023). Online Voting System, International Journal of Computer Engineering in Research Trends, Vol. 10, No. 5, pp. 12–16.

