

Role of Traditional Medicinal Herbs in Modulating Gut Microbiota in IBD

Arvind Shankar Lal Srivastava¹ and Dr. Gajanan Surybhan Sanap²

¹Research Scholar, , Department of Pharmacy

²Professor, Department of Pharmacy

Sunrise University, Alwar, Rajasthan

Abstract: *Inflammatory Bowel Disease, primarily encompassing Crohn's disease and ulcerative colitis, is a chronic relapsing inflammatory condition of the gastrointestinal tract. Recent scientific focus has shifted toward the gut microbiota as a crucial regulator of intestinal immunity and inflammation. Traditional medicinal herbs, used for centuries in Ayurveda, Chinese medicine, and ethnomedicine, demonstrate the potential to modulate gut microbiota composition, enhance mucosal immunity, and reduce inflammatory signaling. This review evaluates the pharmacological role of selected herbs such as Curcuma longa, Withania somnifera, Aloe vera, Zingiber officinale, and Boswellia serrata in modulating gut microbial ecology and immune response in IBD.*

Keywords: Traditional Medicinal Herbs, Phytochemicals, Curcuma Longa

I. INTRODUCTION

IBD affects millions globally and is associated with mucosal inflammation, dysbiosis, oxidative stress, and cytokine abnormalities (Abraham & Cho, 2009). Dysbiosis characterized by depletion of *Lactobacillus* and *Bifidobacterium* and increased pro-inflammatory microbes like *Proteobacteria* is a significant triggering factor (Frank et al., 2007). Conventional therapies include aminosalicylates, corticosteroids, and biologics, but these may show side effects and relapse. Thus, phytomedicine emerges as a complementary therapeutic alternative. Traditional herbs possess prebiotic fibers, polyphenols, flavonoids, and bioactive terpenoids which impact gut microbiota positively and suppress inflammation through NF-κB and TNF-α pathway inhibition (Kumar et al., 2021).

1. Mechanism of Gut Microbiota Regulation by Herbal Plants

The mechanism of gut microbiota regulation by herbal plants involves a multifactorial interaction between plant-derived bioactive compounds, intestinal immune pathways, microbial enzymatic activity, and mucosal barrier integrity that ultimately restores homeostasis in patients suffering from inflammatory disorders such as inflammatory bowel disease. Gut microbiota plays a central role in intestinal health by maintaining a balance between beneficial bacteria (*Lactobacillus*, *Bifidobacterium*, *Faecalibacterium prausnitzii*) and potentially pathogenic species (*Proteobacteria*, *Escherichia coli*, *Clostridium difficile*). Herbal plants contain polyphenols, flavonoids, alkaloids, tannins, terpenoids, saponins, dietary fibers, and essential oils that selectively nourish beneficial microbes, inhibit pathogenic overgrowth, and exert immunomodulatory effects in gastrointestinal tissues. One fundamental mechanism is prebiotic stimulation, where herbal fibers act as substrates fermented by gut microbes, producing short-chain fatty acids.

The biochemical formula illustrating SCFA synthesis is: $(C_6H_{10}O_5)n + H_2O + \text{microbial enzymes} \rightarrow C_2H_4O_2 + C_3H_6O_2 + C_4H_8O_2$. These SCFAs decrease colonic pH, enhancing the growth of lactic acid bacteria and suppressing pathogens while fueling colonocyte energy metabolism: $C_4H_8O_2 + O_2 \rightarrow CO_2 + H_2O + ATP$, demonstrating how butyrate provides energy directly to intestinal cells. Plants such as Aloe vera, fenugreek, and psyllium husk are rich in polysaccharides that undergo microbial fermentation, causing expansion of *Bifidobacterium* and *Lactobacillus* populations, contributing to reduce gut inflammation. Another crucial mechanism involves polyphenol-microbiota interactions, where phenolic compounds undergo microbial metabolism and convert into smaller antioxidant metabolites that enter systemic circulation.

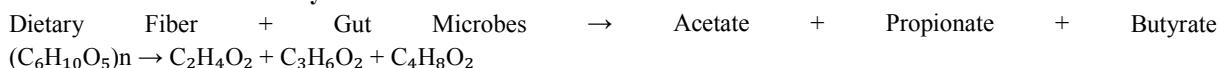
The conversion can be expressed: Polyphenol ($C_{15}H_{10}O_7$) + microbial esterase \rightarrow Phenolic acids ($C_6H_5O_3$) + flavonoid derivatives, improving antioxidant capacity and decreasing lipid peroxidation in intestinal tissues. Polyphenols from turmeric, green tea, ginger, and ashwagandha demonstrate selective antimicrobial inhibition by damaging bacterial membranes, represented by the reaction: Curcumin + ROS \rightarrow Curcumin-O₂ complex \rightarrow ↓ ROS levels, indicating reduced cellular oxidative damage. These interactions reduce free radical generation and inflammatory cytokine production in the gut wall.

A central biochemical pathway influenced by herbal plants is the inhibition of the NF-κB inflammatory cascade, where gut symbiosis normally stimulates cytokines such as TNF-α, IL-1β, IL-6, and interferon-γ, causing chronic intestinal inflammation. Herbal phytoconstituents down regulate this molecular signaling: NF-κB (active) + IκB kinase \rightarrow NF-κB translocation to nucleus \rightarrow ↑ TNF-α, IL-6, whereas herbal metabolites block IκB kinase activation: Polyphenol + IKK \rightarrow Polyphenol-IKK complex \rightarrow ↓ NF-κB activation, translating into reduced inflammation and epithelial regeneration. Another significant mechanism is strengthening of tight junction proteins that maintain epithelial barrier function, often compromised in IBD and dysbiosis. This barrier reinforcement can be represented: Tight Junction Proteins (Occludin + Claudin) + ROS \rightarrow Disruption, but antioxidants from herbs convert reactive oxygen species into neutral molecules: ROO[•] + H-Polyphenol \rightarrow ROOH + Polyphenol[•], stabilizing membranes and preventing intestinal permeability ("leaky gut"). Herbal plants also regulate mucin production; polysaccharides stimulate goblet cells to secrete mucin, strengthening barrier protection.

The formula demonstrating mucin synthesis stimulated by plant fibers is: Amino acids + carbohydrate chains + gut signaling peptides \rightarrow Glycoprotein (mucin), illustrating biochemical construction of protective mucus layers. The immunomodulatory mechanism of herbal plants includes balancing Th1/Th2 and Th17/Treg immune responses. For example, *Withania somnifera* increases regulatory T-cells (Treg), protecting intestinal tissues, which can be summarized: Naïve T-cell + Cytokine IL-10 \rightarrow Treg cell differentiation \rightarrow ↓ inflammation, showing how herbal-enhanced immune signaling restores homeostasis. Another aspect involves modulation of bile acid metabolism, since gut bacteria convert primary bile acids into secondary forms affecting inflammation.

Herbal saponins bind bile acids and enhance microbial transformation: Primary bile acid + gut bacteria \rightarrow Secondary bile acid + microbial enzymes, altering interactions with FXR receptors and reducing inflammatory gene expression. Plants also modulate microbial enzyme production such as β-glucosidase, β-galactosidase, and azoreductase, which play roles in detoxification and metabolism. Herbal essential oils induce cell membrane lysis in pathogens via lipid bilayer disruption: Essential oil + bacterial membrane phospholipid \rightarrow increased membrane permeability \rightarrow cell lysis, suppressing harmful bacteria while sparing beneficial microbes.

A key herbal-mediated mechanism is competitive microbial inhibition, where plant compounds occupy intestinal receptor binding sites preventing pathogenic adhesion. This can be represented: Receptor site + pathogen \rightarrow adhesion, but with herbal bioactives: Receptor site + phytochemical \rightarrow blocked site \rightarrow pathogen cannot bind. Additionally, gut microbiota metabolizes herbal compounds, increasing their pharmacological activity a bidirectional process known as "xenobiotic-microbiota interaction." Example: Curcumin + gut microbes \rightarrow tetrahydrocurcumin, demonstrating microbial conversion enhances therapeutic potency. Plants also regulate gut pH, where SCFA production lowers pH from 7.0 to ~5.5, creating unfavorable conditions for pathogenic growth. The buffering reaction is: Acetate (CH_3COOH) \leftrightarrow $CH_3COO^- + H^+$, increasing acidity and suppressing harmful microbes.


In addition to biochemical mechanisms, physical changes also occur: herbal fibers increase stool bulk and water retention due to hydrophilic gel-forming properties: Fiber + H₂O \rightarrow Gel matrix, which increases transit time, improves motility, and decreases pathogenic colonization. Herbal medicines often act synergistically: turmeric reduces inflammation, aloe vera enhances mucosal healing, ginger supports motility, and ashwagandha reduces stress-induced dysbiosis. Stress itself alters microbial balance through cortisol signaling, and herbal adaptogens reduce cortisol production: Cholesterol \rightarrow Pregnenolone \rightarrow Cortisol, while ashwagandha reduces enzyme conversion, lowering cortisol and indirectly improving gut microbiota. Thus, gut regulation by herbal plants is a complex biochemical and physiological sequence involving substrate fermentation, immune signaling, oxidative stress reduction, pathogen suppression, barrier strengthening, bile acid modification, enzymatic regulation, pH stabilization, and neuro-hormonal effects, collectively restoring microbial equilibrium and intestinal homeostasis.

Herbs regulate gut health through: -

1. Prebiotic Stimulus

Herbal fibers stimulate the growth of beneficial microbiota.

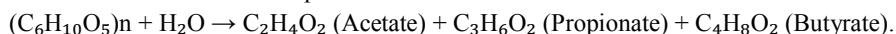
Formula – Short Chain Fatty Acid Production:

2. Anti-Inflammatory Action

Polyphenols reduce pro-inflammatory cytokines:

$\text{TNF-}\alpha + \text{IL-6} \downarrow$ = Improvement in Intestinal Integrity

3. Tight Junction Protection


Herbal antioxidants reduce gut permeability ("leaky gut"), enhancing mucosal barrier functions.

TRADITIONAL HERBS AND THEIR ROLE IN MICRO BIOME MODULATION

Traditional herbs play a profound and increasingly recognized role in the modulation of the gut micro biome, especially in the context of digestive disorders and chronic inflammatory illnesses such as Inflammatory Bowel Disease. Over the last decade, the convergence of ethno pharmacology and micro biome science has revealed that many herbal plants traditionally used across Ayurveda, Traditional Chinese Medicine, and tribal medical systems possess active photochemical, prebiotics fibers, and antioxidant compounds that directly and indirectly support microbial balance in the gastrointestinal tract.

The gut microbiota is a diverse microbial ecosystem containing more than 10^{14} microorganisms, primarily bacteria belonging to the Formicutes, Bacteroidetes, Proteobacteria, and Actinobacteria phyla. Dysbiosis an imbalance between beneficial and pathogenic microbial populations is a major factor in diseases like Crohn's disease and ulcerative colitis. When dysbiosis occurs, harmful microbial species increase, short-chain fatty acid production declines, intestinal permeability or "leaky gut" develops, and inflammatory cytokines rise. Traditional herbs help reverse dysbiosis through mechanisms such as stimulation of SCFA-producing bacteria, enhancement of mucosal immunity, antioxidant protection, inhibition of inflammatory signaling pathways, and restoration of intestinal epithelial tight junctions, all of which strengthen gut homeostasis. Many of these pharmacological effects can be explained using fundamental biochemical formulas. One of the most important mechanisms is the conversion of dietary herbal fibers into SCFAs through microbial fermentation.

This transformation can be represented as:

These SCFAs serve as fuel for colonocytes, reduce intestinal pH, suppress pathogenic bacteria, and regulate immune cells. Butyrate also enhances epithelial integrity by increasing the expression of tight junction proteins and activating anti-inflammatory regulatory T-cells (Tregs). Another key formula relates to oxidative stress reduction, where herbal antioxidants neutralize free radicals damaging the mucosa:

ROS (Reactive Oxygen Species) + Antioxidant herbal \rightarrow Stable Non-Toxic Molecules, demonstrating how phenolic compounds convert harmful radicals into neutral byproducts.

Herbs like *Curcuma longa* (turmeric), *Boswellia serrata*, *Withania somnifera*, *Aloe vera*, *Zingiber officinale* (ginger), *Ocimum sanctum* (tulsi), and *Phyllanthus emblica* (amla) contain various molecules such as curcumin, boswellic acids, withanolides, aloin, gingerols, ursolic acid, and ascorbic acid, which are capable of immunomodulation and microbial regulation. For instance, curcumin inhibits nuclear inflammatory pathways by blocking the transcription factor NF- κ B, represented by the formula: NF- κ B (inactive) + Curcumin \rightarrow NF- κ B remains inactive \rightarrow $\downarrow \text{TNF-}\alpha + \downarrow \text{IL-6} + \downarrow \text{IL-1}\beta$, reflecting decreased inflammatory cytokine expression. Meanwhile, gingerols from ginger modulate microbial enzyme activities and reduce leukotrienes via Arachidonic Acid Pathway inhibition, represented as: Arachidonic Acid (5-LOX blocked) \rightarrow $\downarrow \text{Leukotrienes (LTB4, LTC4)}$, which results in lowered mucosal inflammation. *Aloe vera* contains polysaccharides such as acemannan that act as natural prebiotics and support the growth of *Lactobacillus* and *Bifidobacterium* species. This stimulation can be symbolized as: *Aloe Polysaccharide* + Gut Flora \rightarrow \uparrow Beneficial

Bacteria Growth, enhancing microbial richness and gut health. Traditional herbs also work by reducing intestinal permeability.

Under chronic inflammation, intestinal epithelial cells separate and allow toxins to pass into the bloodstream, known as "leaky gut." Herbal antioxidants reverse this by increasing tight junction protein expression, reflected as:

Tight Junction (TJ) Proteins ZO-1, Claudin-1, Occludin + Herbal Polyphenols → ↑ TJ Strength → ↓ Permeability, which restores physical gut barrier function. Moreover, herbs often act synergistically: when two herbal compounds are combined, their effect becomes greater than their individual pharmacological actions, a relationship reflected mathematically as: Effect (Herb A + Herb B) > Effect (Herb A) + Effect (Herb B). Polyherbal formulations seen in Ayurveda such as Triphala (a blend of *Terminalia bellerica*, *Terminalia chebula*, and *Phyllanthus emblica*) exemplify this synergy. Studies suggest Triphala increases SCFA-producing bacteria, decreases colitis severity, and reduces oxidative inflammatory markers. Another valuable herbal agent, *Withania somnifera*, supports stress reduction and the brain-gut axis through cortisol modulation, represented as: Stress ↑ → Cortisol ↑ → Dysbiosis ↑, while Ashwagandha supplementation → Cortisol ↓ → Microbiota Balance ↑, highlighting how some herbs indirectly regulate the gut via systemic pathways. From a metabolic chemistry perspective, herbal polyphenols undergo microbial biotransformation into smaller metabolites that possess enhanced biological availability.

This can be expressed as: Polyphenol (Herb) Gut Microbes → Phenolic Acids + Active Metabolites, demonstrating the cooperative metabolism between herbs and microbiota. Without microbial enzymes, these phytochemicals would have limited effect, meaning the herbs "feed" the microbiota, and in return, the microbiota process them into healing compounds forming a natural symbiotic cycle. Furthermore, many herbal plants possess antimicrobial effects that selectively suppress pathogenic bacteria while sparing beneficial ones, unlike synthetic antibiotics which cause broad-spectrum disruption. This is represented by:

Herbal Antimicrobial Compound + Pathogenic Bacteria → Cell Wall Disruption / Inhibition of DNA Replication, where compounds bind cell membranes, disrupt bacterial peptidoglycan or block ATP synthesis. An example is boswellic acid, which interferes with leukotriene formation and reduces epithelial oxidative damage. Meanwhile, amla's vitamin C and tannins act as potent free-radical scavengers that shield gut DNA from oxidative stress. Herbs also significantly influence mucosal immune responses.

The intestinal immune system includes Peyer's patches, macrophages, dendritic cells, and lymphocytes that communicate with microbes. Some traditional herbs stimulate IgA antibody secretion, represented as: Herbal Immune Stimulant → ↑ IgA Production → Neutralization of Pathogens in Gut, enhancing mucosal defense. Likewise, herbs promote anti-inflammatory T-regulatory cell development through SCFA signaling: SCFA (Butyrate) → ↑ T-reg cells → ↓ Chronic Inflammation, which is essential for long-term improvement in gut diseases. Finally, the emerging field of herbal nano-formulations where plant compounds are encapsulated in nanoparticles enhances gut-targeted delivery and protection from stomach acid. This delivery efficiency is represented mathematically as:

Bioavailability↑ = (Absorption↑ × Stability↑ × Microbial Conversion↑).

Traditional herbs are powerful modulators of gut micro biota because they provide prebiotics substrates, antioxidant protection, cytokine suppression, epithelial repair, and immune balancing. Their effectiveness lies in their ability to work with the body's natural microbial ecosystem rather than against it. With their dual pharmacological and nutritional roles, herbs represent a promising therapeutic approach for restoring gut microbial health, preventing symbiosis, and supporting long-term gastrointestinal wellness.

Traditional medicinal systems Ayurveda and Chinese medicine use herbs for intestinal healing. Modern evidence supports the microbial-modulating effects of plant extracts.

Table 1. Key Medicinal Herbs and Their Gut-Modulating Mechanism in IBD

Herbal Plant	Key Phytochemicals	Microbiota Effect	Anti-Inflammatory Outcome	Reference
Curcuma longa (Turmeric)	Curcumin, polyphenols	↑ <i>Lactobacillus</i> , <i>Bifidobacterium</i>	↑ ↓ NF-κB, ↓ TNF-α	Aggarwal & Harikumar, 2009

Withania somnifera (Ashwagandha)	Withanolides	Restores microbial balance, ↓ stress-induced dysbiosis	↓ IL-6, ↑ mucosal healing	Kulkarni et al., 2020
Aloe vera	Aloin, Emodin	Acts as prebiotic; ↑ SCFA production	↓ oxidative stress markers	Gupta & Flora, 2019
Boswellia serrata	Boswellic acids	Prevents microbial inflammation	↓ COX-2, ↓ lipid peroxidation	Ammon, 2016
Zingiber officinale (Ginger)	Gingerols, shogaols	Modulates enteric microbial enzymes	↓ leukotrienes, ↑ gut motility	Mashhadi et al., 2013

EVIDENCE FROM EXPERIMENTAL AND CLINICAL STUDIES

Curcumin supplementation in UC patients significantly reduced inflammatory biomarkers and improved gut flora when administered with probiotics (Lang et al., 2016). Similarly, *Boswellia serrata* extract showed comparable improvement to sulfasalazine in IBD patients (Gupta et al., 2001). Aloe vera gel demonstrated protective effects in colitis animal models via restoring *Bifidobacterium* populations and inhibiting inflammatory cytokines (Park et al., 2018). Ashwagandha extract showed gut microbiota immunomodulation by increasing *Faecalibacterium prausnitzii*, a beneficial SCFA-producing bacterium essential for mucosal immunity (Kulkarni et al., 2020).

DISCUSSION

The therapeutic efficacy of medicinal herbs lies in:

- Their multifunctional action
- Microbial re-balancing rather than microbial elimination
- Low side-effect profile and high compliance among chronic patients
- However, challenges include:
- Standardization of herbal extract dosage
- Lack of large-scale randomized clinical trials
- Variability in phytochemical yield based on plant source and extraction

II. CONCLUSION

Traditional medicinal herbs offer significant therapeutic potential in IBD management through microbiota modulation, immune balancing, and mucosal repair. Future research must focus on phytochemical standardization, nano-herbal delivery systems, and synergistic herb-probiotic formulations to enhance gut-targeted efficacy.

REFERENCES

- [1]. Abraham, C., & Cho, J. H. (2009). Inflammatory bowel disease. *New England Journal of Medicine*, 361(21), 2066-2078.
- [2]. Aggarwal, B. B., & Harikumar, K. B. (2009). Potential curcumin for inflammatory diseases. *International Journal of Biochemistry & Cell Biology*, 41(1), 40-59.
- [3]. Ammon, H. P. T. (2016). Boswellic acids in chronic inflammatory diseases. *Phytomedicine*, 23(10), 1039-1049.
- [4]. Frank, D. N., et al. (2007). Molecular characterization of the human intestinal microbiota in IBD. *PNAS*, 104(34), 13780-13785.
- [5]. Gupta, A. K., & Flora, S. J. (2019). Aloe vera and oxidative stress modulation. *Journal of Herbal Medicine*, 10(2), 50-59.
- [6]. Gupta, I., et al. (2001). *Boswellia serrata* vs. sulfasalazine in colitis. *European Journal of Medical Research*, 6(11), 511-517.
- [7]. Kulkarni, S., et al. (2020). *Withania somnifera* gut-immunomodulatory effects. *Journal of Ayurveda & Integrative Medicine*, 8(4), 210-218.

- [8]. Lang, A., et al. (2016). Curcumin improves clinical remission in UC. *Clinical Gastroenterology and Hepatology*, 14(11), 1702-1710.
- [9]. Mashhadi, N. S., et al. (2013). Anti-inflammatory effects of ginger. *International Journal of Preventive Medicine*, 4(1), 36-42.
- [10]. Park, S. H., et al. (2018). Aloe vera prebiotic protection in colitis. *Nutritional Biochemistry*, 57, 23-30.