
I J A R S C T    

    

 

               International Journal of Advanced Research in Science, Communication and Technology 

                          International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal 

Volume 5, Issue 5, December 2025 

Copyright to IJARSCT DOI: 10.48175/IJARSCT-30642   282 

www.ijarsct.co.in  

 
 

ISSN: 2581-9429 Impact Factor: 7.67 

 

Advanced Signal Processing for Rotor and Stator 

Fault Diagnosis in Induction Motors: A 

Comparative Study of FFT and DWT Techniques 
Shivaji S. Bhosale1 and Dr. Pooja V. Paratwar2 

1Research Scholar, Department of Electrical Engineering 
2Research Guide & Associate Professor, Department of Electrical Engineering 

Mansarovar Global University, Sehore, Madhya Pradesh, India.  

ORCID ID 0009-0007-8452-108X and ORCID ID: 0000-0001-7761-0286 
*Corresponding Email: 9911shivaji.bhosale@gmail.com 

 

Abstract: Induction motors are critical components in industrial applications, and their unexpected 

failures can lead to significant economic losses and safety hazards. This paper presents a comprehensive 

investigation of fault detection methodologies for induction motors using Fast Fourier Transform (FFT) 

and Discrete Wavelet Transform (DWT) analysis. The study focuses on identifying rotor and stator 

anomalies through advanced signal processing techniques applied to motor current and vibration 

signals. FFT provides frequency domain analysis for steady-state fault detection, while DWT offers 

multi-resolution time-frequency analysis for transient fault identification. Experimental results 

demonstrate that the combined approach achieves superior fault detection accuracy compared to 

conventional methods, with detection rates exceeding 95% for common rotor and stator faults. The 

proposed methodology enables early fault diagnosis, facilitating predictive maintenance strategies and 

minimizing unplanned downtime in industrial operations. 

 

Keywords: Induction motor, fault detection, Fast Fourier Transform (FFT), Discrete Wavelet Transform 

(DWT), rotor faults, stator faults, condition monitoring, predictive maintenance 

 

I. INTRODUCTION 

Induction motors constitute approximately 85% of all industrial motor applications due to their robustness, reliability, 

and cost-effectiveness [1]. These motors are fundamental to manufacturing processes, HVAC systems, pumps, 

compressors, and conveyors across various industries. Despite their inherent reliability, induction motors are 

susceptible to various faults that can compromise operational efficiency and lead to catastrophic failures if not detected 

early [2]. Motor failures result in substantial economic losses through production interruptions, repair costs, and 

potential damage to associated equipment. Studies indicate that unplanned motor failures cost industries billions of 

dollars annually [3]. Consequently, implementing effective condition monitoring and fault detection strategies has 

become paramount for modern industrial operations. 

 

A. Common Faults in Induction Motors 

Induction motor faults can be broadly categorized into electrical and mechanical failures. Statistical analysis reveals 

that bearing faults account for approximately 40-50% of all motor failures, followed by stator winding faults (30-40%), 

rotor faults (5-10%), and other miscellaneous faults (10-20%) [4]. The primary fault types include: 

1. Rotor Faults: Broken rotor bars, cracked end rings, rotor eccentricity (static and dynamic), and air-gap 

irregularities. 

2. Stator Faults: Inter-turn short circuits, phase-to-phase faults, phase-to-ground faults, and insulation 

degradation. 

3. Bearing Faults: Inner race defects, outer race defects, ball defects, and cage faults. 
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4. Eccentricity: Static, dynamic, and mixed eccentricity conditions affecting air-gap uniformity. 

 

B. Motivation and Objectives 

Traditional fault detection methods rely on periodic manual inspections and scheduled maintenance, which are often 

inefficient and may fail to identify developing faults. The transition from reactive to predictive maintenance paradigms 

necessitates advanced diagnostic techniques capable of continuous monitoring and early fault detection [5]. This paper 

addresses the critical need for robust fault detection methodologies by investigating the application of FFT and DWT 

analysis for identifying rotor and stator anomalies. The specific objectives are: 

1. To develop a comprehensive fault detection framework utilizing FFT for frequency domain analysis 

2. To implement DWT-based multi-resolution analysis for transient fault identification 

3. To compare the effectiveness of FFT and DWT techniques for different fault types 

4. To propose an integrated approach combining both methodologies for enhanced diagnostic accuracy 

The remainder of this paper is organized as follows: Section II reviews related work in motor fault detection. Section III 

presents the theoretical foundations of FFT and DWT analysis. Section IV describes the experimental methodology. 

Section V presents results and discussion. Section VI concludes the paper with future research directions. 

 

II. LITERATURE REVIEW 

A. Motor Current Signature Analysis 

Motor Current Signature Analysis (MCSA) has emerged as a prominent non-invasive technique for induction motor 

fault detection. MCSA exploits the relationship between motor faults and characteristic frequencies that appear in the 

stator current spectrum [6]. The technique's popularity stems from its ease of implementation, as current sensors are 

readily available and non-intrusive. Thomson and Fenger [7] demonstrated that rotor bar breakage produces sideband 

components around the supply frequency at frequencies given by: 

                                                                                       f_sb = f_s(1 ± 2ks)                                                                  Eq. 1 

where f_s is the supply frequency, s is the slip, and k = 1, 2, 3... Studies by Bellini et al. [8] extended MCSA 

applications to diagnose eccentricity-related faults, identifying characteristic frequencies at: 

                                                                                  f_ecc = f_s[1 ± k(1-s)/p]                                                              Eq. 2 

where p is the number of pole pairs. 

 

B. FFT-Based Fault Detection 

Fast Fourier Transform has been extensively employed for motor fault diagnosis due to its computational efficiency and 

clear frequency domain representation [9]. Zhang et al. [10] utilized FFT analysis to detect broken rotor bars by 

monitoring sideband amplitudes. Their research achieved detection accuracies of 92% for severe faults but showed 

limitations in identifying incipient failures. Research by Razik et al. [11] investigated FFT-based detection of stator 

inter-turn faults, demonstrating that short circuits produce negative sequence components detectable through spectral 

analysis. However, FFT's limitation lies in its inability to capture transient phenomena and non-stationary signals, 

which are common during motor startup and load variations [12]. 

 

C. Wavelet Transform Applications 

The Discrete Wavelet Transform addresses FFT's limitations by providing simultaneous time-frequency localization 

[13]. Antonino-Daviu et al. [14] pioneered the application of DWT for transient analysis in motor startup currents, 

successfully detecting rotor asymmetries that were undetectable using steady-state FFT analysis. Wavelet-based 

methodologies have demonstrated particular effectiveness for bearing fault detection. Kankar et al. [15] employed 

various wavelet families (Daubechies, Symlets, Coiflets) to extract bearing fault signatures from vibration signals, 

achieving detection rates exceeding 96%. The study concluded that Daubechies wavelets (db4-db8) provide optimal 

performance for bearing fault diagnosis. 
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D. Hybrid Approaches 

Recent research trends emphasize hybrid approaches combining multiple signal processing techniques with machine 

learning algorithms. Glowacz [16] proposed a methodology integrating FFT, DWT, and neural networks for 

comprehensive fault classification, reporting overall accuracy improvements of 8-12% compared to single-technique 

approaches. Choudhary et al. [17] developed a fusion framework combining MCSA with vibration analysis using both 

FFT and DWT, demonstrating enhanced fault detection capabilities across various operating conditions. Their work 

highlighted that different fault types are optimally detected using different analysis techniques, supporting the case for 

integrated diagnostic systems. 

 

E. Research Gap 

While existing literature demonstrates the individual merits of FFT and DWT techniques, comprehensive comparative 

studies specifically targeting rotor and stator anomalies remain limited. Furthermore, practical implementation 

guidelines for industrial deployment of combined FFT-DWT systems are scarce. This paper addresses these gaps by 

providing detailed performance comparisons and practical implementation frameworks. 

 

III. THEORETICAL FOUNDATIONS 

A. Fast Fourier Transform (FFT) 

The Fourier Transform decomposes a time-domain signal into its constituent frequency components, providing insight 

into the spectral content of the signal. For a discrete-time signal x[n] of length N, the Discrete Fourier Transform (DFT) 

is defined as: 

                                                                              X[k] = Σ(n=0 to N-1) x[n]e^(-j2πkn/N)                                           Eq. 3 

where k = 0, 1, ..., N-1 represents the frequency index. 

The Fast Fourier Transform is an efficient algorithm for computing the DFT, reducing computational complexity from 

O(N²) to O(N log N). The FFT decomposes the DFT computation into smaller DFTs through a divide-and-conquer 

approach, typically using the Cooley-Tukey algorithm [18]. 

 

Advantages of FFT: 

 Excellent frequency resolution for steady-state signals 

 Computationally efficient 

 Well-established mathematical framework 

 Clear interpretation of spectral components 

 

Limitations of FFT: 

 Assumes signal stationarity 

 No temporal information in frequency domain 

 Limited effectiveness for transient phenomena 

 Resolution constrained by window length 

 

B. Discrete Wavelet Transform (DWT) 

The Wavelet Transform provides multi-resolution time-frequency analysis by decomposing signals using scaled and 

translated versions of a mother wavelet function ψ(t). The Continuous Wavelet Transform (CWT) is defined as: 

                                                                           W(a,b) = (1/√a) ∫ x(t)ψ*((t-b)/a)dt                                                      Eq. 4 

where a represents the scale parameter, b is the translation parameter, and ψ* denotes the complex conjugate of the 

mother wavelet. 

The Discrete Wavelet Transform discretizes the scale and translation parameters, typically using dyadic scales (a = 2^j) 

and dyadic positions (b = k2^j), where j and k are integers. The DWT decomposes a signal into approximation 
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coefficients (low-frequency components) and detail coefficients (high-frequency components) through successive 

filtering and downsampling operations [19]. 

 

Multi-Resolution Analysis: 

The DWT implements multi-resolution decomposition through quadrature mirror filter banks: 

 Low-pass filter (scaling function): produces approximation coefficients 

 High-pass filter (wavelet function): produces detail coefficients 

At each decomposition level j, the signal is split into: 

 Approximation: A_j = Downsampling[LPF(A_(j-1))] 

 Detail: D_j = Downsampling[HPF(A_(j-1))] 

 

Wavelet Selection: 

Common wavelet families for motor fault detection include: 

1. Daubechies (dbN): Compact support, orthogonal, good for discontinuities 

2. Symlets (symN): Near-symmetric, suitable for feature extraction 

3. Coiflets (coifN): Symmetric, balanced frequency response 

4. Morlet: Excellent time-frequency localization for continuous analysis 

Research indicates that Daubechies wavelets (db4-db8) and Symlets (sym4-sym8) provide optimal performance for 

induction motor fault detection [20]. 

 

C. Fault Signatures in Frequency Domain 

1) Rotor Fault Signatures: 

Broken rotor bars introduce asymmetry in the rotor circuit, producing characteristic sideband frequencies in the stator 

current: 

                                                                           f_brb = f_s(1 ± 2ks)                                                                            Eq. 5 

where typical values of k = 1, 2, 3 correspond to primary, secondary, and tertiary sidebands. The amplitude of these 

sidebands increases with fault severity, providing a quantitative indicator of damage extent [21]. 

Rotor eccentricity generates frequency components at: 

                                                                         f_ecc = f_s[1 ± n(1-s)/p]                                                                       Eq. 6 

where n represents the eccentricity order. Static eccentricity produces components at n = 1, while dynamic eccentricity 

generates a broader spectrum [22]. 

 

2) Stator Fault Signatures: 

Stator winding faults, particularly inter-turn short circuits, create negative sequence currents that manifest as frequency 

components at: 

                                                                           f_stator = f_s(k/p ± 1)(1-s)                                                                 Eq. 7 

Additionally, stator faults introduce harmonic distortions in the current waveform, particularly at the 3rd, 5th, and 7th 

harmonics [23]. 

 

IV. EXPERIMENTAL METHODOLOGY 

A. Experimental Setup 

The experimental investigation was conducted using a comprehensive test bench designed to simulate various fault 

conditions in a controlled environment. The test setup consisted of: 

1) Motor Specifications: 

 3-phase squirrel-cage induction motor 

 Power rating: 5.5 kW 

 Rated voltage: 415 V 
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 Rated current: 11.5 A 

 Frequency: 50 Hz 

 Number of poles: 4 

 Rated speed: 1440 rpm 

2) Data Acquisition System: 

 Three-phase current measurement using Hall-effect sensors (LEM LA-55P) 

 Sampling frequency: 10 kHz 

 Data acquisition card: National Instruments NI-9234 

 Accelerometers for vibration measurement (PCB 352C33) 

 LabVIEW-based data acquisition interface 

3) Loading Mechanism: 

 DC dynamometer for precise load control 

 Load range: 0-100% of rated load 

 Load increments: 25% steps 

 

B. Fault Implementation 

To validate the proposed fault detection methodology, various fault conditions were artificially introduced in the test 

motor: 

1) Rotor Faults: 

 Broken Rotor Bars: One and two adjacent bars were drilled to simulate complete breakage 

 Dynamic Eccentricity: Achieved by machining the rotor shaft to introduce 25% and 50% eccentricity 

 Static Eccentricity: Implemented using bearing spacers to offset the rotor axis 

2) Stator Faults: 

 Inter-turn Short Circuit: Created by removing insulation from adjacent turns in one phase (2%, 5%, and 

10% of winding) 

 Phase Imbalance: Simulated by adding series resistance in one phase 

 Insulation Degradation: Accelerated aging through thermal stress cycling 

3) Test Conditions: 

For each fault condition, data was collected under multiple operating scenarios: 

 Load variations: 0%, 25%, 50%, 75%, 100% of rated load 

 Steady-state operation: 60-second recording duration 

 Transient operation: Startup current recording (0-5 seconds) 

 Temperature variations: Ambient to 80°C 

 Multiple trials: 10 repetitions per condition for statistical validity 

 

C. Signal Processing Implementation 

1) FFT Analysis: 

The FFT analysis was implemented using the following procedure: 

1. Data Preprocessing: 

o DC offset removal 

o Trend elimination using polynomial fitting 

o Application of Hanning window to reduce spectral leakage 

2. FFT Computation: 

o FFT length: 8192 points 

o Frequency resolution: 1.22 Hz 

o Spectrum averaging: 10 consecutive windows with 50% overlap 
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3. Feature Extraction: 

o Identification of fundamental frequency and harmonics 

o Detection of characteristic fault frequencies 

o Calculation of sideband amplitudes 

o Computation of sideband-to-carrier ratios 

 

2) DWT Analysis: 

The wavelet analysis employed the following methodology: 

1. Wavelet Selection: 

o Comparative evaluation of db4, db6, db8, sym4, sym6, and sym8 

o Selection based on correlation with fault signatures 

o Final selection: db6 for rotor faults, sym6 for stator faults 

2. Decomposition: 

o Decomposition levels: 6 levels 

o Frequency bands per level determined by sampling theorem 

o Both approximation and detail coefficients retained 

3. Feature Extraction: 

o Energy calculation for each detail level: E_j = Σ(D_j[n])² 

o Entropy measures: Shannon entropy, Log-energy entropy 

o Statistical moments of wavelet coefficients 

 

D. Performance Metrics 

To quantitatively assess the fault detection performance, the following metrics were employed: 

1) Detection Accuracy: 

                                          Accuracy = (TP + TN)/(TP + TN + FP + FN) × 100%                                                       Eq. 8 

where TP = True Positives, TN = True Negatives, FP = False Positives, FN = False Negatives 

2) Sensitivity and Specificity: 

                                     Sensitivity = TP/(TP + FN) × 100% Specificity = TN/(TN + FP) × 100%                          Eq. 9 

3) False Alarm Rate: 

                                       FAR = FP/(FP + TN) × 100%                                                                                            Eq. 10 

4) Fault Severity Index: 

                                       For rotor bar faults: FSI_rotor = 20 log₁₀(I_sideband/I_fundamental)                               Eq. 11 

                                       For stator faults: FSI_stator = (I_negative/I_positive) × 100%                                          Eq. 12 

 

V. RESULTS AND DISCUSSION 

A. Healthy Motor Baseline 

Initial testing established baseline characteristics for the healthy motor under various load conditions. The FFT 

spectrum of the stator current showed a dominant component at 50 Hz (supply frequency) with minimal harmonic 

content. The Total Harmonic Distortion (THD) measured 2.3%, consistent with typical three-phase induction motor 

operation. No significant sideband components were observed within ±10 Hz of the supply frequency. 
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Figure 1. FFT spectrum of healthy motor stator current at 75% load showing dominant fundamental frequency at 50 Hz 

DWT analysis of the healthy motor signal revealed energy distributio

coefficients at level 6 (A6), corresponding to frequencies below 156 Hz. Detail coefficients showed low energy content, 

indicating minimal high-frequency noise or transient disturbances. This baseline profile s

comparative fault analysis. 

Figure 2. Wavelet energy distribution across decomposition levels for healthy motor showing concentration in 

 

B. Rotor Fault Detection 

1) Broken Rotor Bar Detection: 

FFT analysis successfully identified broken rotor bar faults through the emergence of characteristic sidebands at 

f_s(1±2s). For a single broken bar operating at 75% load (slip s = 0.042), prominent sidebands appeared at 45.8 Hz and 

54.2 Hz with amplitudes of -42 dB and -43 dB relative to the fundamental component, respectively.

Figure 3. FFT spectrum comparison between healthy motor (blue) and motor with 2 broken rotor bars (red) at 75% 

load, showing characteristic sidebands at f_s(1±2s).
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FFT spectrum of healthy motor stator current at 75% load showing dominant fundamental frequency at 50 Hz 
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DWT analysis of the healthy motor signal revealed energy distribution primarily concentrated in the approximation 

coefficients at level 6 (A6), corresponding to frequencies below 156 Hz. Detail coefficients showed low energy content, 

frequency noise or transient disturbances. This baseline profile served as the reference for 

Wavelet energy distribution across decomposition levels for healthy motor showing concentration in 

approximation coefficients (A6). 

FFT analysis successfully identified broken rotor bar faults through the emergence of characteristic sidebands at 

broken bar operating at 75% load (slip s = 0.042), prominent sidebands appeared at 45.8 Hz and 

43 dB relative to the fundamental component, respectively. 
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The severity of rotor bar damage correlated strongly with sideband amplitude:

 One broken bar: FSI_rotor = -42 dB

 Two broken bars: FSI_rotor = -34 dB

 Three broken bars: FSI_rotor = -28 dB

Figure 4. Relationship between fault severity index and number of broken rotor bars, demonstrating strong linear 

correlation. 

FFT exhibited excellent detection capability for severe rotor bar faults (

97.2%. However, incipient faults (single broken bar at low loads) proved challenging, with detection accuracy dropping 

to 78.5% due to low slip values and reduced 

complementary information. The energy distribution shifted noticeably toward detail coefficients D3

range) for broken bar conditions. Energy ratios E_D4/E_A6 increased from 0.082

providing a quantitative fault indicator. The wavelet approach achieved 94.8% detection accuracy for all fault 

severities, demonstrating superior performance for incipient fault identification.

Figure 5. Comparison of wavelet energy distribution between healthy and faulty motor, showing significant energy 

shift to detail coefficients D4-D5. 

2) Rotor Eccentricity Detection: 

Dynamic eccentricity introduced multiple frequency component

n = 1, 2, 3... For 50% dynamic eccentricity, significant components appeared at 37.9 Hz, 62.1 Hz, 87.9 Hz, and 112.1 

Hz. The amplitude of the principal eccentricity component (n=1) reached 

straightforward detection with 96.7% accuracy.
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The severity of rotor bar damage correlated strongly with sideband amplitude: 

42 dB 

34 dB 

28 dB 

Relationship between fault severity index and number of broken rotor bars, demonstrating strong linear 

detection capability for severe rotor bar faults (≥2 broken bars) with detection accuracy of 

97.2%. However, incipient faults (single broken bar at low loads) proved challenging, with detection accuracy dropping 

to 78.5% due to low slip values and reduced sideband amplitudes. DWT analysis using db6 wavelets provided 

complementary information. The energy distribution shifted noticeably toward detail coefficients D3

range) for broken bar conditions. Energy ratios E_D4/E_A6 increased from 0.082 (healthy) to 0.247 (two broken bars), 

providing a quantitative fault indicator. The wavelet approach achieved 94.8% detection accuracy for all fault 

severities, demonstrating superior performance for incipient fault identification. 

. Comparison of wavelet energy distribution between healthy and faulty motor, showing significant energy 

Dynamic eccentricity introduced multiple frequency components in the FFT spectrum at f_ecc = f_s[1±n(1

= 1, 2, 3... For 50% dynamic eccentricity, significant components appeared at 37.9 Hz, 62.1 Hz, 87.9 Hz, and 112.1 

Hz. The amplitude of the principal eccentricity component (n=1) reached -38 dB for severe eccentricity, facilitating 

straightforward detection with 96.7% accuracy. 
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Figure 6. FFT spectrum of motor with 50% dynamic eccentricity showing multiple characteristic frequency 

components at f_s[1±n(1-s)/p]. 

Static eccentricity produced a distinctly different signature, characterized by slot

f_s × N_rotor/p ± n × f_s, where N_rotor represents the number of rotor slots (28 in the test motor). FFT clearly 

distinguished between static and dynamic eccentricity based on the characteristic frequency patterns, achieving 

classification accuracy of 93.4%. 

DWT analysis revealed that eccentricity primarily affects mid

analysis of detail coefficients provided additional discrimination capability. Shannon entropy values decreased from 

4.82 (healthy) to 3.67 (severe eccentricity), indicating increased signal regularity associated with periodic eccentricity

related perturbations. The combined FFT-D

Figure 7. Shannon entropy of wavelet detail coefficients decreasing with increasing eccentricity severity, providing 

quantitative fault indicator. 

 

C. Stator Fault Detection 

1) Inter-turn Short Circuit Detection: 

Stator winding faults presented unique challenges due to their typically low

FFT analysis identified stator faults through negative sequence current components and harmonic distortions. For a 5% 

inter-turn short circuit, the negative sequence current increased to 4.7% of the positive sequence, compared to 1.2% for 

the healthy condition. 
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FFT spectrum of motor with 50% dynamic eccentricity showing multiple characteristic frequency 

tic eccentricity produced a distinctly different signature, characterized by slot-pass frequency harmonics at f_slot = 

f_s × N_rotor/p ± n × f_s, where N_rotor represents the number of rotor slots (28 in the test motor). FFT clearly 

tatic and dynamic eccentricity based on the characteristic frequency patterns, achieving 

DWT analysis revealed that eccentricity primarily affects mid-frequency bands (D4-D5, 312-

cients provided additional discrimination capability. Shannon entropy values decreased from 

4.82 (healthy) to 3.67 (severe eccentricity), indicating increased signal regularity associated with periodic eccentricity

DWT approach achieved overall eccentricity detection accuracy of 98.3%.

Shannon entropy of wavelet detail coefficients decreasing with increasing eccentricity severity, providing 

Stator winding faults presented unique challenges due to their typically low-magnitude signatures in current spectra. 

identified stator faults through negative sequence current components and harmonic distortions. For a 5% 

turn short circuit, the negative sequence current increased to 4.7% of the positive sequence, compared to 1.2% for 
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FFT spectrum of motor with 50% dynamic eccentricity showing multiple characteristic frequency 

pass frequency harmonics at f_slot = 

f_s × N_rotor/p ± n × f_s, where N_rotor represents the number of rotor slots (28 in the test motor). FFT clearly 

tatic and dynamic eccentricity based on the characteristic frequency patterns, achieving 

-1250 Hz). Entropy 

cients provided additional discrimination capability. Shannon entropy values decreased from 

4.82 (healthy) to 3.67 (severe eccentricity), indicating increased signal regularity associated with periodic eccentricity-

WT approach achieved overall eccentricity detection accuracy of 98.3%. 

 
Shannon entropy of wavelet detail coefficients decreasing with increasing eccentricity severity, providing 

magnitude signatures in current spectra. 

identified stator faults through negative sequence current components and harmonic distortions. For a 5% 

turn short circuit, the negative sequence current increased to 4.7% of the positive sequence, compared to 1.2% for 
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Figure 8. Harmonic content comparison showing increased 3rd and 5th harmonics for 5% inter

healthy motor. 

The fault signature manifested most clearly in the third harmonic (150 Hz), which increased fr

a 5% short circuit. Detection accuracy for stator faults using FFT alone reached 85.3%, with performance degrading 

significantly for minor faults (<3% short circuit) where accuracy dropped to 71.6%. DWT analysis using sym6 

wavelets demonstrated superior performance for stator fault detection. Inter

patterns in detail coefficients D2-D3 (1250

localized heating effects. The energy distribution metric E_total = Σ(j=1 to 6)E_Dj exhibited a 47% increase for 5% 

short circuits compared to healthy conditions.

Figure 9. Wavelet energy distribution showing significant increase in D2

high-frequency partial discharge activity. 

Wavelet-based detection achieved 92.7% accuracy across all stator fault severities, with particular effectiveness for 

incipient faults. The combination of energy distribution analys

achieving 89.4% accuracy even for 2% short circuits

2) Phase Imbalance Detection: 

Phase imbalance resulting from unequal impedances in stator windings

among phases. FFT revealed this condition through enhanced negative sequence components and increased 2nd 

harmonic content (100 Hz). A 10% resistance imbalance in one phase generated a negative sequence current rat

6.3%, facilitating detection with 94.6% accuracy.
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Harmonic content comparison showing increased 3rd and 5th harmonics for 5% inter-turn short circuit versus 

The fault signature manifested most clearly in the third harmonic (150 Hz), which increased from -

a 5% short circuit. Detection accuracy for stator faults using FFT alone reached 85.3%, with performance degrading 

significantly for minor faults (<3% short circuit) where accuracy dropped to 71.6%. DWT analysis using sym6 

demonstrated superior performance for stator fault detection. Inter-turn short circuits generated distinctive 

D3 (1250-5000 Hz range), likely associated with partial discharge activity and 

nergy distribution metric E_total = Σ(j=1 to 6)E_Dj exhibited a 47% increase for 5% 

short circuits compared to healthy conditions. 

Wavelet energy distribution showing significant increase in D2-D3 bands for stator winding faults, indicating 

based detection achieved 92.7% accuracy across all stator fault severities, with particular effectiveness for 

incipient faults. The combination of energy distribution analysis and entropy measures provided robust discrimination, 

achieving 89.4% accuracy even for 2% short circuits—a significant improvement over FFT-only analysis.

Phase imbalance resulting from unequal impedances in stator windings produced asymmetric current distribution 

among phases. FFT revealed this condition through enhanced negative sequence components and increased 2nd 

harmonic content (100 Hz). A 10% resistance imbalance in one phase generated a negative sequence current rat

6.3%, facilitating detection with 94.6% accuracy. 
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Figure 10. Negative sequence current ratio increasing linearly with stator fault severity, providing quantitative 

diagnostic indicator. 

DWT analysis showed that phase imbalance affects energy distribution across all decomposition levels uniformly, 

distinguishing it from localized winding faults. This characteristic enabled discrimination between phase imbalance and 

inter-turn short circuits with 91.8% classificatio

 

D. Comparative Analysis 

1) FFT vs. DWT Performance: 

Comprehensive performance comparison across all fault types revealed complementary strengths of FFT and DWT 

methodologies: 

Figure 11. Comparative detection accuracy of FFT, DWT, and combined approaches across different fault categories 

demonstrating synergistic performance. 

FFT Advantages: 

 Superior for steady-state fault detection (broken bars, eccentricity)

 Clear physical interpretation of frequency components

 Lower computational requirements

 Excellent performance at high fault severity levels

DWT Advantages: 

 Superior for incipient fault detection

 Effective for transient analysis 
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 Better noise immunity through multi

 Higher sensitivity to stator winding faults

Performance Summary: 

 Rotor faults: FFT (94.2%), DWT (94.8%), Combined (97.9%)

 Stator faults: FFT (85.3%), DWT (92.7%), Combined (96.4%)

 Overall accuracy: FFT (91.7%), DWT (93.6%), Combined (97.3%)

Figure 12. Performance improvement analysis showing combined FFT

incipient fault detection. 

2) Load Dependency: 

Load variations significantly influenced fault detection performance. Rotor fault signatures strengthened with 

increasing load due to higher slip values, with optimal detection occurring at 75

bar detection accuracy improved from 82.4% at 25% load

Figure 13. Load dependency of fault detection accuracy showing strong load dependence for rotor faults but minimal 

impact on stator fault detection. 

Conversely, stator fault detection showed les

across the load range. This characteristic makes stator fault diagnosis more reliable under variable operating conditions.

3) Computational Efficiency: 

Processing time analysis revealed distinct computational characteristics:

 FFT processing: 0.34 seconds per 60

 DWT processing: 1.27 seconds per 60

 Combined approach: 1.61 seconds per signal
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noise immunity through multi-resolution decomposition 

Higher sensitivity to stator winding faults 

Rotor faults: FFT (94.2%), DWT (94.8%), Combined (97.9%) 

Stator faults: FFT (85.3%), DWT (92.7%), Combined (96.4%) 

(91.7%), DWT (93.6%), Combined (97.3%) 

Performance improvement analysis showing combined FFT-DWT approach provides greatest benefit for 

ntly influenced fault detection performance. Rotor fault signatures strengthened with 

increasing load due to higher slip values, with optimal detection occurring at 75-100% rated load. FFT

bar detection accuracy improved from 82.4% at 25% load to 98.7% at 100% load. 

Load dependency of fault detection accuracy showing strong load dependence for rotor faults but minimal 

Conversely, stator fault detection showed less load dependency, maintaining relatively consistent accuracy (±3.5%) 

across the load range. This characteristic makes stator fault diagnosis more reliable under variable operating conditions.

distinct computational characteristics: 

FFT processing: 0.34 seconds per 60-second signal (MATLAB R2023b, Intel i7-12700K) 

DWT processing: 1.27 seconds per 60-second signal (6-level decomposition) 

Combined approach: 1.61 seconds per signal 
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Figure 14. Processing time comparison showing all methods suitable for real

computational overhead. 

While DWT requires approximately 3.7× longer processing time 

acceptable for real-time monitoring applications with update intervals of several seconds.

E. Practical Implementation Considerations

1) Sensor Requirements: 

Successful implementation requires appropriate sensor s

 Current sensors: ±1% accuracy, bandwidth >5 kHz

 Sampling rate: Minimum 5 kHz (10× supply frequency), recommended 10 kHz

 Vibration sensors (optional): Accelerometers with frequency range 2

2) Environmental Factors: 

Field testing revealed several environmental considerations:

 Temperature variations affect baseline current magnitude but minimally impact frequency signatures

 Supply voltage fluctuations require normalization of sideband amplitudes

 Electromagnetic interference necessitates proper shielding and grounding

Figure 15. Impact of environmental factors on detection accuracy showing both FFT and DWT methods maintain 

robust performance under varying conditions.

3) Diagnostic Thresholds: 

Empirically determined diagnostic thresholds for industrial implementation:

Rotor faults: 

 FSI_rotor < -45 dB: Healthy 

 -45 dB ≤ FSI_rotor < -35 dB: Developing fault (monitor)

 -35 dB ≤ FSI_rotor < -28 dB: Moderate fault (schedule maintenance)

 FSI_rotor ≥ -28 dB: Severe fault (immediate action)

Stator faults: 
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Processing time comparison showing all methods suitable for real-time implementation with acceptable 

While DWT requires approximately 3.7× longer processing time than FFT, the computational burden remains 

time monitoring applications with update intervals of several seconds. 

E. Practical Implementation Considerations 

Successful implementation requires appropriate sensor selection and placement: 

Current sensors: ±1% accuracy, bandwidth >5 kHz 

Sampling rate: Minimum 5 kHz (10× supply frequency), recommended 10 kHz 

Vibration sensors (optional): Accelerometers with frequency range 2-10,000 Hz 

sting revealed several environmental considerations: 

Temperature variations affect baseline current magnitude but minimally impact frequency signatures

Supply voltage fluctuations require normalization of sideband amplitudes 

cessitates proper shielding and grounding 

. Impact of environmental factors on detection accuracy showing both FFT and DWT methods maintain 

robust performance under varying conditions. 

Empirically determined diagnostic thresholds for industrial implementation: 

35 dB: Developing fault (monitor) 

28 dB: Moderate fault (schedule maintenance) 

28 dB: Severe fault (immediate action) 
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 FSI_stator < 2%: Healthy 

 2% ≤ FSI_stator < 5%: Minor fault (monitor)

 5% ≤ FSI_stator < 10%: Moderate fault (schedule maintenance)

 FSI_stator ≥ 10%: Severe fault (immediate action)

Figure 16. Receiver Operating Characteristic (ROC) curves demonstrating superior classification performance of 

combined FFT-DWT approach (AUC = 0.98).

VI. INTEGRATED FAULT DIAGNOSIS FRAMEWORK

A. Proposed Diagnostic System 

Based on the experimental findings, an integrated diagnostic framework combining FFT and DWT analysis is 

proposed. The system architecture consists of five primary modules:

1) Data Acquisition Module: 

 Continuous current and vibration monitoring

 Synchronized multi-channel sampling

 Buffer management for real-time processing

2) Preprocessing Module: 

 DC offset removal and detrending

 Outlier detection and rejection 

 Signal conditioning and normalization

3) Feature Extraction Module: 

 Parallel FFT and DWT computation

 Extraction of frequency domain features (sideband amplitudes, harmonic content)

 Extraction of wavelet domain features (energy distribution, entropy measures)

4) Decision Module: 

 Fault detection using multi-threshold criteria

 Fault classification using pattern recogni

 Severity assessment based on feature magnitudes

 Confidence level estimation 

5) Output Module: 

 Real-time diagnostic dashboard 

 Trend analysis and historical tracking

 Automated alarm generation 

 Maintenance recommendation system
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B. Decision Logic 

The integrated diagnostic system employs hierarchical decision logic: 

Level 1 - Fault Detection: IF (FSI_rotor > -45 dB) OR (E_D4/E_A6 > 0.15) OR (FSI_stator > 2%) OR 

(Entropy_change > 15%) THEN fault_detected = TRUE 

Level 2 - Fault Localization: 

 IF dominant frequency components at f_s(1±2s) → Rotor bar fault 

 IF dominant components at f_s[1±n(1-s)/p] → Eccentricity fault 

 IF negative sequence ratio elevated → Stator fault 

 IF wavelet energy concentrated in D2-D3 → Stator winding fault 

 IF wavelet energy concentrated in D4-D5 → Rotor or bearing fault 

Level 3 - Severity Assessment: Fault severity score = α₁×(FFT_severity) + α₂×(DWT_severity) 

where weighting factors α₁ and α₂ are determined through optimization based on fault type: 

 Rotor faults: α₁ = 0.6, α₂ = 0.4 

 Stator faults: α₁ = 0.4, α₂ = 0.6 

C. Implementation Guidelines 

For successful industrial deployment, the following guidelines are recommended: 

1) System Calibration: 

 Establish baseline signatures under various load conditions 

 Characterize motor-specific frequency responses 

 Define facility-specific threshold values 

 Conduct regular calibration verification (quarterly) 

2) Monitoring Strategy: 

 Continuous monitoring for critical motors (>100 HP or critical processes) 

 Periodic monitoring (weekly/monthly) for non-critical applications 

 Increased monitoring frequency after fault detection or during high-stress periods 

3) Data Management: 

 Store raw data for 30 days (circular buffer) 

 Archive extracted features and diagnostic results indefinitely 

 Maintain motor history database for trend analysis 

 Implement cloud backup for critical diagnostic data 

4) Personnel Training: 

 Technical staff training on system operation and interpretation 

 Maintenance personnel training on appropriate response actions 

 Management briefings on system capabilities and limitations 

 

VII. CONCLUSION 

This paper presented a comprehensive investigation of fault detection methodologies for induction motors using Fast 

Fourier Transform and Discrete Wavelet Transform analysis. The research systematically examined rotor and stator 

fault detection capabilities, providing both theoretical foundations and practical validation through extensive 

experimental testing. The key findings are as follows: 

1. FFT and DWT techniques exhibit complementary characteristics, with FFT excelling in steady-state analysis 

and clear frequency interpretation, while DWT provides superior performance for incipient fault detection and 

transient analysis. 

2. The integrated FFT-DWT approach achieved overall fault detection accuracy of 97.3%, representing 

improvements of 5.6% over FFT alone and 3.7% over DWT alone. 
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3. Rotor faults are optimally detected using FFT-based sideband analysis, achieving 94.2% accuracy, while stator 

faults benefit more from DWT analysis with 92.7% accuracy. The combined approach achieves ≥96% 

accuracy for both fault categories. 

4. Rotor fault detection accuracy improves significantly with increasing load (82.4% at 25% load vs. 98.7% at 

100% load), while stator fault detection maintains consistent performance across the load range. 

5. Computational requirements for the combined approach remain acceptable for real-time monitoring 

applications, with processing times of approximately 1.6 seconds per 60-second signal segment on standard 

computing hardware. 
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APPENDIX A: MATHEMATICAL DERIVATIONS 

A. Derivation of Rotor Fault Frequencies 

Consider a three-phase induction motor with a broken rotor bar. The broken bar creates an asymmetry in the rotor 

circuit, which produces a pulsating magnetic field rotating at slip frequency. This pulsating field modulates the air-gap 

flux, producing sidebands in the stator current. 

The electromagnetic torque can be expressed as: 

T_em(t) = T_avg + T_oscillating cos(2πf_slip t) 

where f_slip = sf_s is the slip frequency. 

This torque oscillation causes speed variations: 

Δω(t) = (T_oscillating)/(J) × sin(2πf_slip t) 

where J is the rotor inertia. 

The speed variation modulates the back-EMF, producing current components at: 

f_sideband = f_s ± 2f_slip = f_s(1 ± 2s) 

For multiple harmonics, the general expression becomes: 

f_sideband = f_s(1 ± 2ks), k = 1, 2, 3, ... 

B. Wavelet Energy Calculation 

For a signal x(t) decomposed using DWT into J levels, the energy at each level j is: 

E_Aj = Σ(n=1 to N_j)|A_j[n]|² 

E_Dj = Σ(n=1 to N_j)|D_j[n]|² 

where N_j is the number of coefficients at level j. 

The total energy is conserved: 

E_total = E_AJ + Σ(j=1 to J)E_Dj 

The relative energy at level j: 

RE_j = E_Dj / E_total × 100% 

This provides a normalized measure of energy distribution across frequency bands. 

APPENDIX B: EXPERIMENTAL DATA TABLES 

Table I: Motor Specifications. 

Parameter Value 

Rated Power 5.5 kW 

Rated Voltage 415 V 

Rated Current 11.5 A 

Frequency 50 Hz 

Number of Poles 4 

Rated Speed 1440 rpm 

Number of Rotor Bars 28 

Number of Stator Slots 36 

Connection Type Star 

Insulation Class F 
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Table II: Detection Accuracy Summary (%). 

Fault Type FFT DWT Combined 

1 Broken Bar 78.5 89.3 94.2 

2 Broken Bars 97.2 96.8 99.1 

Dynamic Eccentricity (25%) 91.4 92.1 96.7 

Dynamic Eccentricity (50%) 98.3 97.6 99.4 

Static Eccentricity 93.4 94.2 97.8 

Inter-turn Short (2%) 71.6 89.4 93.7 

Inter-turn Short (5%) 85.3 92.7 96.4 

Inter-turn Short (10%) 94.8 96.3 98.9 

Phase Imbalance 94.6 91.2 97.3 

Overall Average 91.7 93.6 97.3 

                                                                   Table III: Computational Performance. 

Method Processing Time (s) Memory Usage (MB) Real-time Capable 

FFT Only 0.34 12.3 Yes 

DWT Only 1.27 28.7 Yes 

Combined 1.61 41 Yes 

                                                                          Table IV: Fault Severity Indices. 

Fault Condition 
FSI_rotor 

(dB) 
FSI_stator (%) E_D4/E_A6 Ratio 

Healthy < -50 1.2 0.082 

1 Broken Bar -42 1.4 0.156 

2 Broken Bars -34 1.5 0.247 

25% Eccentricity -44 1.8 0.189 

50% Eccentricity -38 2.3 0.312 

2% Short Circuit -48 3.2 0.094 

5% Short Circuit -46 4.7 0.128 

10% Short Circuit -43 8.9 0.187 

  

 


