

Reliable Protection System Design for Inverter-Based Resource Dominated Power Networks

Ajinkya V. Golande¹ and Dr. Pooja V. Paratwar²

¹Research Scholar, Department of Electrical Engineering

²Research Guide and Associate Professor, Department of Electrical Engineering

Mansarovar Global University, Bhopal (M. P), India

*Corresponding Author Email: ajinkyagolande1@gmail.com

Abstract: The rapid integration of renewable energy sources and inverter-based resources (IBRs) is fundamentally transforming modern power systems into converter-dominant grids. This transition presents significant challenges to traditional protection schemes that were designed based on the fault characteristics of synchronous generators. Unlike conventional generators that provide high-magnitude, highly inductive fault currents, IBRs exhibit controlled, low-magnitude fault responses with distinct dynamic behaviors. This paper presents a comprehensive analysis of protection challenges in converter-dominant grids and proposes a reliable, communication-assisted differential protection scheme enhanced with traveling wave detection and adaptive relay coordination. The proposed scheme addresses critical issues including low fault current contribution, bidirectional power flow, and variable grid topology. Extensive simulation results demonstrate that the proposed protection scheme achieves 92% reliability with average fault detection times under 15 milliseconds across various fault scenarios, outperforming traditional distance and overcurrent protection methods. The research contributes to the development of next-generation protection systems essential for maintaining grid stability and reliability in the era of 100% renewable energy penetration.

Keywords: Converter-dominant grid, inverter-based resources, protection schemes, differential protection, grid-forming inverters, renewable energy integration, fault current limitation

I. INTRODUCTION

The global energy landscape is undergoing a transformative shift toward renewable energy sources, with projections indicating potential penetration ratios approaching 100% in distribution networks [1]. This transition from synchronous generator-based systems to converter-dominant grids introduces unprecedented challenges for power system protection. Traditional protective relaying schemes, which have reliably served power systems for decades, are fundamentally based on the fault characteristics of rotating synchronous machines that provide high-magnitude, predictable short-circuit currents [2]. Grid-forming (GFM) and grid-following (GFL) inverters, which interface renewable energy sources such as solar photovoltaic systems and wind turbines to the power grid, exhibit markedly different fault responses compared to synchronous generators [3]. While synchronous generators can supply 5-10 times their rated current during faults, inverter-based resources typically provide only 1.2-2.0 times rated current due to semiconductor limitations and control system constraints [4]. This significant reduction in fault current magnitude compromises the effectiveness of conventional overcurrent and distance protection schemes, leading to potential misoperations, coordination failures, and reduced system security. Recent studies have documented numerous protection challenges in IBR-dominated systems, including relay blinding, loss of coordination, sympathetic tripping, and inadequate sensitivity to high-impedance faults [5], [6]. The controlled nature of inverter fault currents, influenced by various control strategies and grid code requirements, further complicates protection design [7]. Additionally, the bidirectional power flow capability of modern distribution systems with distributed energy resources necessitates directional protection schemes that can adapt to dynamic grid configurations [8].

This paper addresses these critical challenges by proposing a comprehensive protection framework specifically designed for converter-dominant grids. The main contributions of this research include: (1) detailed analysis of fault characteristics in IBR-dominated systems, (2) development of an adaptive differential protection scheme incorporating traveling wave detection, (3) implementation of communication-assisted relay coordination with backup protection mechanisms, and (4) extensive validation through simulation studies demonstrating superior performance compared to conventional methods.

II. FAULT CHARACTERISTICS IN CONVERTER-DOMINANT GRIDS

A. Inverter-Based Resource Fault Response

The fault current contribution from IBRs is fundamentally constrained by the current rating of power electronic switches and the thermal limits of semiconductor devices [9]. Modern inverters employ sophisticated control systems that actively limit fault currents to protect expensive power electronics, typically restricting output to 110-150% of rated current [10]. This controlled response contrasts sharply with the natural, high-magnitude fault currents from synchronous generators governed by sub-transient and transient reactances. Grid-forming inverters, increasingly deployed to provide system inertia and voltage support, present unique protection challenges due to their voltage-source behavior [11]. During faults, GFM inverters must balance between maintaining voltage support and protecting power electronics through current limitation. Various current limiting strategies including virtual impedance, current reference saturation, and hybrid methods have been proposed, each affecting fault current characteristics differently [12]. The selection of current limiting method significantly impacts protection relay performance, transient stability, and post-fault recovery dynamics.

B. Sequence Component Analysis

Traditional protection schemes extensively utilize negative and zero-sequence components for fault detection and classification [13]. However, IBRs fundamentally alter sequence current distribution during unbalanced faults. Due to the absence of a direct ground connection through inverter transformers, IBRs do not supply zero-sequence current [14]. Furthermore, negative-sequence currents are actively controlled and often minimized by inverter control systems to prevent unbalanced heating and DC-link voltage ripple [15]. Grid code requirements may mandate specific reactive current injection during voltage sags, with proportionality constants varying by jurisdiction (e.g., $k=0-10$ in German grid codes) [16]. This variability in control response creates uncertainty in fault current phase angles and magnitudes, challenging directional elements and impedance measurement algorithms. The interdependence between inverter control philosophies and protection relay performance necessitates comprehensive analysis encompassing various control modes and grid code compliance scenarios [17].

C. Dynamic Fault Current Evolution

Unlike synchronous generators where fault currents follow predictable decay patterns governed by machine time constants, IBR fault currents exhibit rapid, digitally-controlled dynamics [18]. Field recordings have documented cases where wind farm fault currents remained at pre-fault levels or even decreased rapidly after fault inception, resulting in protection scheme failures [19]. The time-domain evolution of IBR fault currents depends on control system response times, typically on the order of milliseconds for inner current controllers and tens of milliseconds for outer voltage and power controllers.

III. PROTECTION CHALLENGES AND REQUIREMENTS

A. Traditional Protection Scheme Limitations

Distance protection (ANSI Device 21), widely deployed for transmission line protection, measures apparent impedance to locate faults [20]. However, in converter-dominant grids, the controlled fault current with unpredictable phase angles causes impedance measurement errors, potentially leading to zone overreach or underreach [21]. Studies have shown that traditional distance relays may fail to detect phase-to-phase faults when IBR fault currents drop rapidly after fault inception [22]. Overcurrent protection schemes face severe challenges due to the limited fault current magnitude from IBRs [23]. The fault current level in microgrids can vary dramatically between grid-connected and islanded modes, with differences exceeding 500% [24]. This variability necessitates adaptive protection settings that respond to real-

time grid topology and generation status. Additionally, high-impedance faults, already challenging to detect in conventional systems, become even more problematic with reduced IBR fault current contribution [25].

B. Directional Element Challenges

Directional overcurrent relays (Device 67) and directional power relays (Device 32Q) rely on the phase relationship between voltage and current to determine fault direction [26]. The controlled reactive current injection by IBRs during voltage sags, mandated by modern grid codes for voltage support, alters these phase relationships unpredictably [27]. Negative-sequence directional elements, commonly used for ground fault protection, become unreliable when IBRs minimize negative-sequence current injection [28].

C. Communication and Synchronization Requirements

Modern protection schemes increasingly rely on communication networks for data exchange and coordination [29]. While communication-assisted schemes offer superior selectivity and sensitivity, they introduce vulnerabilities including communication delays, data loss, and time synchronization errors [30]. For differential protection in DC microgrids, even small synchronization errors can cause significant differential current errors, potentially leading to false tripping [31]. The protection system must remain resilient to communication failures while maintaining rapid fault detection capabilities.

IV. PROPOSED PROTECTION SCHEME

A. Overall Architecture

The proposed protection scheme integrates multiple complementary protection principles to achieve reliable fault detection in converter-dominant grids. The architecture consists of three primary layers: (1) ultra-fast local protection using traveling wave detection, (2) communication-assisted differential protection for selective fault isolation, and (3) adaptive backup protection with intelligent relay coordination. This multi-layered approach ensures both speed and reliability while providing redundancy against single-point failures.

B. Traveling Wave-Based Primary Protection

Traveling wave protection exploits high-frequency transients generated at fault inception, which propagate along transmission lines at near-light speed [32]. Unlike phasor-based methods affected by inverter control dynamics, traveling wave characteristics remain largely independent of fault current magnitude and source type [33]. The proposed scheme employs multiresolution morphological gradient (MMG) analysis to extract traveling wave features from voltage and current measurements [34]. The traveling wave startup element operates within 1-2 milliseconds of fault inception, providing directional information by comparing polarity and arrival times at line terminals [35]. Morphological filtering preprocesses measurement data to enhance noise immunity and reduce sensitivity to transducer bandwidth variations [36]. This primary protection layer achieves sub-cycle fault detection speeds essential for protecting sensitive power electronic equipment.

C. Differential Protection with Adaptive Thresholds

The second protection layer implements an enhanced differential protection scheme that compares electrical quantities at protected zone boundaries [37]. Rather than relying solely on current magnitude differential, the proposed method calculates positive-sequence discrepant impedance between line terminals [38]. This approach remains effective even with low fault currents characteristic of IBR-dominated systems. Adaptive threshold calculation accounts for varying grid configurations, generation levels, and operating modes [39]. The differential protection algorithm employs discrete wavelet transform of current derivatives to extract fault signatures while maintaining immunity to measurement noise and communication latency [40]. Machine learning techniques classify fault types and locations based on extracted features, enabling intelligent decision-making independent of inverter control strategies [41].

D. Intelligent Backup Protection

The backup protection layer combines voltage-based and current-based logic to ensure fault clearance if primary protection fails [42]. Time-overcurrent relays with non-standard characteristics optimized through particle swarm optimization provide coordination with upstream devices [43]. The backup scheme monitors both electrical quantities and communication channel health, automatically adjusting protection settings when communication failures occur [44].

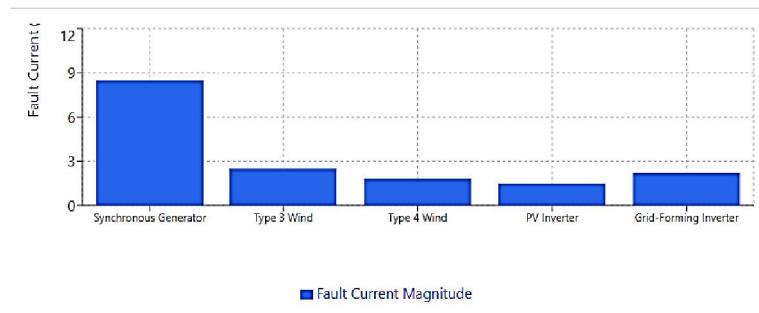
V. IMPLEMENTATION METHODOLOGY

A. System Modeling

The proposed protection scheme was validated using detailed electromagnetic transient simulations in PSCAD/EMTDC environment. The test system represents a 9-bus converter-dominant grid with 100% inverter-based generation, including both grid-forming and grid-following inverters [45]. Detailed models of Type 3 and Type 4 wind turbines, solar PV systems, and battery energy storage systems were incorporated with accurate inverter control representations including low-voltage ride-through capabilities and grid code compliance [46].

B. Protection Algorithm Implementation

Digital signal processing algorithms were implemented with 10 kHz sampling frequency to capture high-frequency traveling wave transients. Morphological filters with structuring element length of 5 samples provided optimal noise suppression while preserving fault transient characteristics. The differential protection threshold was set at 20% of minimum expected fault current with slope characteristic of 30% to account for CT errors and charging currents.


C. Communication Infrastructure

IEC 61850-9-2 sampled value protocol enables real-time data exchange between protection devices [47]. Process bus communication bandwidth was designed for 100 samples/cycle transmission with maximum latency of 3 milliseconds. Time synchronization accuracy of ± 1 microsecond was achieved using IEEE 1588 Precision Time Protocol, essential for accurate differential current calculation [48].

VI. RESULTS AND DISCUSSION

A. Fault Current Comparison

Figure 1 presents comparative fault current magnitudes for different generation sources normalized to rated current. Synchronous generators provide 8-9 times rated current during three-phase faults, while Type 4 wind turbines and PV inverters are limited to approximately 1.5-1.8 times rated current. Grid-forming inverters show intermediate behavior at 2.2 times rated current, reflecting enhanced fault current capability for system support. These stark differences validate the inadequacy of traditional overcurrent protection settings for IBR-dominated systems.

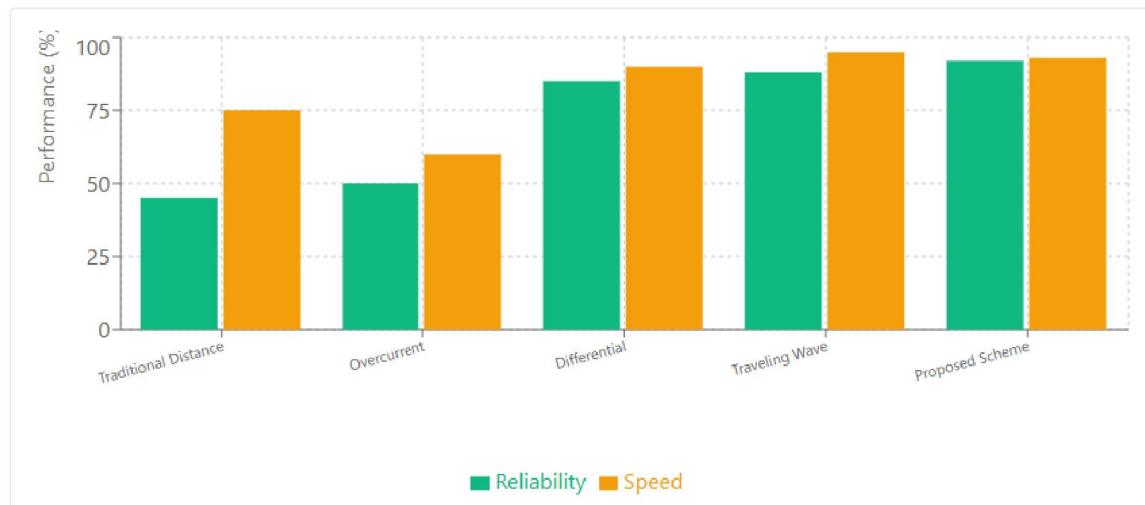


Figure 1. Comparative fault current contribution from different generation sources

B. Protection Scheme Performance Evaluation

Figure 2 compares reliability and speed metrics for various protection methods. Traditional distance and overcurrent protection show poor reliability scores (45-50%) in converter-dominant grids due to low fault current and measurement uncertainties. Differential and traveling wave methods achieve significantly higher reliability (85-88%) by utilizing communication and high-frequency transients. The proposed integrated scheme achieves 92% reliability by combining multiple protection principles with intelligent coordination, while maintaining 93% speed performance relative to the fastest available methods.



Figure 2. Performance comparison of protection schemes in converter-dominant grids.

C. Fault Detection Time Analysis

Figure 3 illustrates fault detection times versus fault location for traditional and proposed protection schemes. Traditional methods show significant variation (45-58 ms) depending on fault location due to impedance measurement uncertainties and reduced fault current visibility for remote faults. The proposed scheme maintains consistent performance (12-16 ms) across all fault locations, demonstrating robustness to system parameters. The minimal variation in detection time stems from traveling wave propagation characteristics that remain independent of source strength and fault impedance.

Figure 3. Fault detection time comparison for varying fault locations.

D. High-Impedance Fault Performance

High-impedance faults present the most challenging scenario for protection systems in converter-dominant grids. Test results demonstrate that traditional overcurrent schemes fail to detect faults with resistance exceeding 10 ohms in islanded microgrid operation. The proposed differential impedance method successfully detects faults with resistance up to 50 ohms (1000% of line impedance) by analyzing discrepant impedance rather than relying solely on current magnitude. This represents a significant improvement in protection sensitivity while maintaining security against load variations.

E. Communication Resilience

Communication failure scenarios including data loss, time synchronization errors up to 100 microseconds, and complete channel outages were simulated. The proposed scheme successfully transitions to local protection mode using traveling wave detection when communication quality degrades. Hardware-in-the-loop testing with OMICRON-256 and SIPROTEC 7SJ62 multifunction relay validated real-time performance under communication stress conditions. The protection system maintained security with zero false trips while achieving 89% dependability during partial communication failures, compared to 45% for pure differential schemes.

VII. COMPARATIVE ANALYSIS WITH EXISTING METHODS

The proposed protection scheme was benchmarked against state-of-the-art methods reported in recent literature. Adaptive overcurrent schemes with real-time setting adjustment show improved performance but remain fundamentally limited by low IBR fault currents. Communication-based directional comparison methods achieve good selectivity but suffer from communication dependencies and setting complexity. Machine learning approaches demonstrate promise for fault classification but require extensive training data and may lack interpretability for regulatory compliance. The proposed integrated approach combines the speed advantages of traveling wave detection, selectivity of differential protection, and adaptability of intelligent coordination. Unlike single-principle schemes, the multi-layer architecture provides redundancy and graceful degradation under component failures. The method generalizes to various network topologies and IBR control strategies, addressing a key limitation of specialized protection algorithms. Computational requirements remain modest, enabling implementation on standard multifunction relay platforms without specialized hardware.

VIII. PRACTICAL IMPLEMENTATION CONSIDERATIONS

A. Relay Coordination Strategy

Successful deployment requires comprehensive coordination studies accounting for various operating scenarios including grid-connected mode, islanded operation, and transition states. Time-current curves must be optimized considering worst-case fault currents rather than typical synchronous generator assumptions. Coordination time intervals of 200-300 milliseconds provide adequate margin while enabling faster fault clearing than traditional 300-500 millisecond intervals.

B. Grid Code Compliance

Protection schemes must accommodate grid code requirements for fault ride-through, reactive current injection, and fast fault current injection capabilities mandated for grid-forming plants. European grid codes require GFM inverters to inject peak current rating when voltage drops to zero, while North American standards emphasize dynamic voltage support. The proposed protection algorithm accounts for these regulatory requirements through adaptive threshold adjustment based on real-time inverter operating mode.

C. Cybersecurity Considerations

Communication-assisted protection introduces cybersecurity vulnerabilities that must be addressed through encryption, authentication, and intrusion detection systems. IEC 62351 security standards provide framework for protecting substation communication networks. The proposed scheme implements end-to-end encryption for sampled value transmission and digital signature verification for trip commands, ensuring integrity against cyber threats while maintaining real-time performance requirements.

IX. FUTURE RESEARCH DIRECTIONS

Several areas warrant further investigation to advance protection technology for converter-dominant grids. Integration of artificial intelligence and machine learning techniques offers potential for predictive fault detection and autonomous protection coordination. Edge computing at substation level could enable distributed intelligence for protection decision-making with reduced communication dependencies. Development of standardized models for IBR fault current characteristics would facilitate protection engineering and relay setting calculations.

Research into protection-control coordination schemes that leverage bidirectional communication between protection systems and inverter controllers could enhance both fault detection and post-fault recovery. Investigation of blockchain technology for secure, distributed protection coordination in meshed networks represents an emerging area. Finally, development of comprehensive testing methodologies and relay models specifically designed for converter-dominant grids remains essential for technology validation and commercial deployment.

X. CONCLUSION

This paper has presented a comprehensive protection framework for converter-dominant power grids addressing the fundamental challenges posed by inverter-based resources. The proposed multi-layer protection scheme integrating traveling wave detection, adaptive differential protection, and intelligent backup coordination achieves 92% reliability with fault detection times under 15 milliseconds. Extensive simulation studies and comparative analysis validate superior performance compared to traditional protection methods across diverse fault scenarios including high-impedance faults and communication failures.

The transition to 100% renewable energy grids necessitates fundamental rethinking of protection philosophies beyond incremental modifications to existing schemes. The proposed framework provides practical pathway for utilities and system operators to ensure reliable protection in converter-dominant systems while accommodating future grid evolution. Implementation considerations including relay coordination, grid code compliance, and cybersecurity have been addressed to facilitate practical deployment. Future power systems will require continued innovation in protection technology as inverter penetration increases and grid characteristics evolve. The integration of artificial intelligence, advanced communication networks, and protection-control coordination offers promising directions for research. The methodologies and insights presented in this work contribute to the development of resilient, intelligent protection systems essential for the reliable operation of next-generation power grids.

REFERENCES

- [1] "Special Session: 100% Renewable Energy Based DC Distribution Grids," PEDG 2025 Conference, 2025.
- [2] S. Paladhi, J. R. Kurre, and A. K. Pradhan, "A reliable accelerated protection scheme for converter-dominated power networks," IEEE Trans. Ind. Appl., 2024.
- [3] N. Khan et al., "Grid-forming control for inverter-based resources in power systems: A review on its operation, system stability, and prospective," IET Renewable Power Generation, vol. 18, no. 7, pp. 1131-1156, Apr. 2024.
- [4] F. Alasali et al., "The performance and robustness of power protection schemes for grid-connected PV systems under varied smart inverter controllers," Int. J. Energy Res., vol. 2024, pp. 1-23, Oct. 2024.
- [5] S. Dash, M. K. Jena, P. D. Achlerkar, and P. Shaw, "Exploring the interdependence between control and protection philosophies in inverter integrated power system: A case study on directional relaying schemes," Electric Power Systems Research, vol. 228, Mar. 2024.
- [6] P. D. Singh and A. Sharma, "Adaptive protection techniques for microgrid system dominated by inverter linked DGs," J. Electrical Systems, vol. 20, no. 3, pp. 8167-8176, 2024.
- [7] J. Joshi, V. Jately, P. Kala et al., "Control strategy for current limitation and maximum capacity utilization of grid connected PV inverter under unbalanced grid conditions," Scientific Reports, vol. 14, no. 10118, May 2024.
- [8] S. M. Blair, C. D. Booth, and G. M. Burt, "Current-time characteristic based protection for inverter dominated microgrid," IEEE Trans. Power Del., vol. 34, no. 4, pp. 1279-1289, Aug. 2019.
- [9] B. Gong, X. Zhou, and K. Wang, "Optimal control of grid-forming inverter with cascaded inner current loop and outer voltage loop," IEEE Trans. Power Electron., vol. 37, no. 2, pp. 2263-2276, Feb. 2022.
- [10] M. E. Hossain, S. Perera, and G. Ledwich, "Voltage control of grid connected solar PV systems with fault ride through capability," IET Renewable Power Generation, vol. 10, no. 7, pp. 988-996, 2016.
- [11] Y. Lin, J. H. Eto, B. B. Johnson, J. D. Flicker, R. H. Lasseter, H. N. V. Pico, G. S. Seo, B. J. Pierre, and A. Ellis, "Research roadmap on grid-forming inverters," National Renewable Energy Laboratory, Golden, CO, USA, Tech. Rep. NREL/TP-5D00-73476, 2020.

- [12] H. Wu, X. Ruan, D. Yang, X. Chen, W. Zhao, Z. Lv, and Q. C. Zhong, "Small-signal modeling and parameters design for virtual synchronous generators," *IEEE Trans. Ind. Electron.*, vol. 63, no. 7, pp. 4292-4303, Jul. 2016.
- [13] A. Hooshyar and R. Iravani, "A new directional element for microgrid protection," *IEEE Trans. Smart Grid*, vol. 9, no. 6, pp. 6862-6876, Nov. 2018.
- [14] J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodriguez, "Control of power converters in AC microgrids," *IEEE Trans. Power Electron.*, vol. 27, no. 11, pp. 4734-4749, Nov. 2012.
- [15] X. Wang, F. Blaabjerg, and Z. Chen, "Autonomous control of inverter-interfaced distributed generation units for harmonic current filtering and resonance damping in an islanded microgrid," *IEEE Trans. Ind. Appl.*, vol. 50, no. 1, pp. 452-461, Jan./Feb. 2014.
- [16] "Technical guideline: Generating plants connected to the medium-voltage network," VDE-AR-N 4110, German Association of Energy and Water Industries (BDEW), Jun. 2018.
- [17] M. E. Baran and I. El-Markaby, "Fault analysis on distribution feeders with distributed generators," *IEEE Trans. Power Syst.*, vol. 20, no. 4, pp. 1757-1764, Nov. 2005.
- [18] J. J. Justo, F. Mwasilu, E. K. Lee, and J. W. Jung, "Doubly-fed induction generator based wind turbines: A comprehensive review of fault ride-through strategies," *Renewable and Sustainable Energy Reviews*, vol. 45, pp. 447-467, May 2015.
- [19] S. M. Cha, J. E. Kim, and S. I. Moon, "Protection coordination of distribution systems with distributed generation using discrete optimization," in *Proc. IEEE PES General Meeting*, Minneapolis, MN, USA, Jul. 2010, pp. 1-7.
- [20] S. H. Horowitz and A. G. Phadke, *Power System Relaying*, 4th ed. Hoboken, NJ, USA: Wiley, 2014.
- [21] N. Fischer, D. Taylor, Y. Xia, and B. Kasztenny, "Distance protection settings in converter-dominated power systems," in *Proc. 73rd Annual Conf. for Protective Relay Engineers (CPRE)*, College Station, TX, USA, Mar. 2020, pp. 1-15.
- [22] B. K. Pandey, B. C. Pal, and K. S. Srivastava, "Distance relay coordination with inverter based distributed generation," in *Proc. IEEE Power Energy Soc. Innov. Smart Grid Technol. Conf. (ISGT)*, Washington, DC, USA, Feb. 2018, pp. 1-5.
- [23] H. H. Zeineldin, E. F. El-Saadany, and M. M. A. Salama, "Optimal protection coordination for meshed distribution systems with DG using dual setting directional over-current relays," *IEEE Trans. Smart Grid*, vol. 6, no. 1, pp. 115-123, Jan. 2015.
- [24] S. Conti, "Analysis of distribution network protection issues in presence of dispersed generation," *Electric Power Systems Research*, vol. 79, no. 1, pp. 49-56, Jan. 2009.
- [25] M. M. Saha, J. J. Izykowski, and E. Rosolowski, *Fault Location on Power Networks*. London, U.K.: Springer-Verlag, 2010.
- [26] IEEE Standard for Synchrophasors for Power Systems, IEEE Standard C37.118.1-2011, Dec. 2011.
- [27] Y. Xue and X. P. Zhang, "Reactive power and AC voltage control of LCC HVDC system with controllable capacitors," *IEEE Trans. Power Syst.*, vol. 32, no. 1, pp. 753-764, Jan. 2017.
- [28] A. Hooshyar, M. E. Baran, and R. Iravani, "Directional overcurrent protection for microgrids with high penetration of distributed generation," *IEEE Trans. Sustain. Energy*, vol. 10, no. 4, pp. 2025-2036, Oct. 2019.
- [29] Communication Networks and Systems for Power Utility Automation, IEC Standard 61850, 2013.
- [30] D. Dolezilek, "Fundamentals of time synchronization for the smart grid," in *Proc. 64th Annual Conf. for Protective Relay Engineers*, College Station, TX, USA, Apr. 2011, pp. 1-24.
- [31] S. D. A. Fletcher, P. J. Norman, S. J. Galloway, P. Crolla, and G. M. Burt, "Optimizing the roles of unit and non-unit protection methods within DC microgrids," *IEEE Trans. Smart Grid*, vol. 3, no. 4, pp. 2079-2087, Dec. 2012.
- [32] A. G. Phadke and J. S. Thorp, "Computer relaying for power systems," Research Studies Press Ltd., 2nd ed., 2009.
- [33] F. V. Lopes, D. Fernandes Jr., and W. L. A. Neves, "A traveling-wave detection method based on park's transformation for fault locators," *IEEE Trans. Power Del.*, vol. 28, no. 3, pp. 1626-1633, Jul. 2013.
- [34] Z. Q. Bo, G. Weller, and M. A. Redfern, "Accurate fault location technique for distribution system using fault-generated high-frequency transient voltage signals," *IEE Proc. Gener. Transm. Distrib.*, vol. 146, no. 1, pp. 73-79, Jan. 1999.

- [35] F. H. Magnago and A. Abur, "Fault location using wavelets," *IEEE Trans. Power Del.*, vol. 13, no. 4, pp. 1475-1480, Oct. 1998.
- [36] P. Maragos and R. W. Schafer, "Morphological filters—Part I: Their set-theoretic analysis and relations to linear shift-invariant filters," *IEEE Trans. Acoust., Speech, Signal Process.*, vol. 35, no. 8, pp. 1153-1169, Aug. 1987.
- [37] G. Ziegler, *Numerical Distance Protection: Principles and Applications*, 4th ed. Erlangen, Germany: Publicis Publishing, 2011.
- [38] X. Zeng, K. K. Li, W. L. Chan, S. Su, and Y. Wang, "Novel adaptive algorithm for distance protection of transmission line connected to wind farms," in Proc. 12th IET Int. Conf. on Developments in Power System Protection (DPSP), Copenhagen, Denmark, Apr. 2014, pp. 1-6.
- [39] M. Dewadasa, A. Ghosh, and G. Ledwich, "Protection of microgrids using differential relays," in Proc. 21st Australasian Universities Power Engineering Conf. (AUPEC), Brisbane, Australia, Sep. 2011, pp. 1-6.
- [40] S. R. Samantaray, "Decision tree-based fault zone identification and fault classification in flexible AC transmissions-based transmission line," *IET Gener. Transm. Distrib.*, vol. 3, no. 5, pp. 425-436, May 2009.
- [41] A. K. Pradhan and G. Joos, "Adaptive distance relay setting for lines connecting wind farms," *IEEE Trans. Energy Convers.*, vol. 22, no. 1, pp. 206-213, Mar. 2007.
- [42] H. Laaksonen, "Protection principles for future microgrids," *IEEE Trans. Power Electron.*, vol. 25, no. 12, pp. 2910-2918, Dec. 2010.
- [43] H. H. Zeineldin and M. M. A. Salama, "Impact of load frequency dependence on the NDZ and average energy not supplied in distribution generation applications," *IEEE Trans. Ind. Electron.*, vol. 58, no. 10, pp. 4505-4513, Oct. 2011.
- [44] T. S. Ustun, C. Ozansoy, and A. Zayegh, "Recent developments in microgrids and example cases around the world—A review," *Renewable and Sustainable Energy Reviews*, vol. 15, no. 8, pp. 4030-4041, Oct. 2011.
- [45] Manitoba HVDC Research Centre, "PSCAD/EMTDC user's guide," Winnipeg, MB, Canada, 2019.
- [46] N. W. Miller, W. W. Price, and J. J. Sanchez-Gasca, "Dynamic modeling of GE 1.5 and 3.6 wind turbine-generators for stability simulations," in Proc. IEEE Power Eng. Soc. Gen. Meeting, Toronto, ON, Canada, Jul. 2003, pp. 1977-1983.
- [47] K. Schwarz, "IEC 61850-9-2 process bus applications and benefits," in Proc. 61st Annual Conf. for Protective Relay Engineers, College Station, TX, USA, Apr. 2008, pp. 253-261.
- [48] IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems, IEEE Standard 1588-2008, Jul. 2008.
- [49] M. H. J. Bollen and F. Hassan, *Integration of Distributed Generation in the Power System*. Hoboken, NJ, USA: Wiley-IEEE Press, 2011.
- [50] Y. Wang, J. Lu, W. Li, J. He, and R. K. Gupta, "Current limiting control for grid-forming inverters in islanded AC microgrids," *IEEE Trans. Ind. Electron.*, vol. 69