

Automatic Cow Dung and Poultry Manure Collecting Machine

Hanumanth Reddy¹, K Karthik², Ashwini³, Jyothi U⁴, Hanumana Gouda J⁵

Assistant Professor, Electrical and Electronics Engineering¹

Students, Electrical and Electronics Engineering²⁻⁵

Rao Bahadur Y. Mahabaleswarappa Engineering College, Ballari, India

Abstract: *An automatic cow dung machine efficiently collects, processes, and manages cow dung, reducing manual labor and promoting sustainable waste management. It can convert dung into valuable products like organic fertilizer or biogas, benefiting dairy farms and rural communities. Automatic cow dung machines automate the process of cleaning up after cows. These machines can scrape, collect, and transport cow dung, improving hygiene and reducing labor. These machines often use sensors and automated systems to efficiently manage waste, which can lead to better environmental outcomes and improved farm management. Automatic cow dung machines revolutionize farm management by automating the tedious task of waste removal. These systems, equipped with sensors and automated processes, efficiently scrape, collect, and transport cow dung, enhancing hygiene and reducing manual labour. This automation leads to improved environmental outcomes by optimizing waste management practices. By minimizing human intervention, these machines not only boost operational efficiency but also contribute to a healthier environment for both the animals and the farm. Automatic cow dung machines represent a significant advancement in modern farming practices, automating the labor-intensive process of waste management. These sophisticated systems are designed to efficiently remove cow dung from barns and other agricultural environments, enhancing overall hygiene and reducing the need for manual labor. Equipped with advanced sensors and automated functionalities, these machines can precisely navigate through the farm, scraping, collecting, and transporting the waste with remarkable efficiency.*

Keywords: *automatic cow dung machine*

I. INTRODUCTION

The Automatic Cow Dung and Poultry Manure Collecting Machine is an innovative solution for efficient cow dung management in dairy farms and rural settings. It automates collection and processing, reducing manual labor and promoting sustainability. By converting cow dung into valuable products like organic fertilizer or biogas, it provides economic benefits to farmers. The machine improves farm hygiene, reduces waste, and supports environmentally friendly farming practices. With its potential to increase efficiency and productivity, the Automatic Cow Dung Machine is a valuable tool for farmers and rural communities. It contributes to a more sustainable agricultural sector, reducing environmental pollution and promoting eco-friendly practices. By leveraging technology, farmers can optimize their resources, minimize waste, and maximize profits. The machine's benefits extend beyond economic gains, also improving the overall quality of life for farmers and rural communities. Its adoption can have a positive impact on the environment and agricultural productivity.

II. PROBLEM STATEMENT

Existing research on cow-dung cleaning systems highlights several challenges that continue to affect farm hygiene, labor efficiency, and overall productivity. Traditional scraper-based and conveyor-operated models struggle to clean effectively on uneven or cracked barn floors, leaving residue that affects sanitation. Many automated systems reported in literature require frequent maintenance because dung gets stuck in mechanical parts, reducing reliability. Solar-

operated models introduced to address energy consumption issues often fail to function consistently due to limited battery backup during cloudy or rainy conditions. Additionally, most existing designs have low load-handling capacity, making them unsuitable for farms with high dung accumulation. Studies also point out the lack of efficient obstacle detection, causing the machines to stop unexpectedly when encountering animals or objects. Furthermore, several models are only partially automatic, still requiring manual intervention to empty the collection bin or restart the system. These limitations indicate that current cow-dung cleaning solutions are not fully efficient, durable, or suitable for continuous operation in real farm environments. Therefore, there is a need to design and develop an improved automatic cow-dung collecting machine that provides better cleaning efficiency on uneven surfaces, offers reliable power performance, reduces maintenance, increases load capacity, and achieves higher levels of automation. This upgraded system should ensure cleaner farm surroundings, reduced labor dependency, and improved hygiene for both animals and workers.

III. LITERATURE REVIEW

The present study addresses daily cleaning challenges in animal sheds, crucial for maintaining hygiene, health, and productivity. It introduces the design and fabrication of a Portable Animal Shed Cleaning Machine, aimed at revolutionizing cleaning practices in animal farms. Traditional methods are labour-intensive, time-consuming, and often ineffective. The proposed machine automates the cleaning process, reducing human intervention and expediting the task. It features a front blade to push waste into the system, which is then transported by a belt drive mechanism to a detachable collecting tank. For enhanced efficiency and thorough cleaning, wheel-powered brushes are installed at the rear.

Literature Surveys:

Design and Development of Cowdung Collecting Machine And Poultry Manure Collecting Machine

Automated Customized Cow Shed Cleaning Machine

Design And Manufacturing Cow Dung Lifting and Cleaning Machine

Design and fabrication of solar automatic cow dung cleaner

Design and Modeling of Automatic Cow Dung Log Making Machine

IV. METHODOLOGY

The methodology used to develop the cow dung remover involved several stages. Initially, a market survey was conducted to identify the needs of farmers and the challenges they faced in cleaning their dairy farms. This study provided valuable insights into the requirements for a cleaning device that could meet the needs of small-scale dairy farmers. After gaining insights from the market survey, a prototype of the cow dung remover was developed using iron rods, scrap metal, and plastic tanks, etc. The device's mechanism was based on the principle of lever action, with a scrapping plate connected to the levers. Additionally, the device featured a water tank to aid in the cleaning process. Experiments were conducted to test the device's effectiveness in cleaning dairy farms. The experiments involved collecting data on the amount of time and effort required to clean the farms using the cow dung remover compared to conventional methods. Simulations were conducted to test the durability and efficiency of the device. The results of the experiments showed that the device was significantly more efficient and required less physical effort than conventional methods. The simulations involved subjecting the device to a variety of conditions to assess its performance. The results of the simulations showed that the device was durable and could withstand the rigors of daily use in a dairy farm environment. The methodology used to develop the cow dung remover involved a design-thinking approach that included market surveys, prototype development, experiments, and simulations. The device was constructed using locally available materials, and experiments and simulations were conducted to test its effectiveness, durability, and efficiency.

V. WORKING

The automatic cow dung and poultry manure collecting machine is designed to maintain cleanliness in animal sheds with minimal human effort. The machine operates using an electric motor that provides the required mechanical power. It moves along predefined paths on the shed floor. A scraper or conveyor mechanism collects the cow dung or poultry manure efficiently. Sensors or a timer help in controlling the movement and operation of the machine. The collected waste is transferred into a collection bin or storage tank. The system ensures continuous and uniform cleaning of the shed floor. After completing the cleaning process, the machine stops or returns to its initial position automatically. This reduces manual labor and health risks. Overall, the machine improves hygiene and farm productivity.

WORKING PRINCIPLE

The machine works on the principle of mechanical scraping and material conveying.

Electrical energy is supplied to the system from a power source.

The electric motor converts electrical energy into mechanical energy.

This mechanical energy drives the wheels and scraper mechanism.

The machine moves forward along the shed floor.

Cow dung or poultry manure present on the floor is detected by sensors or preset timing.

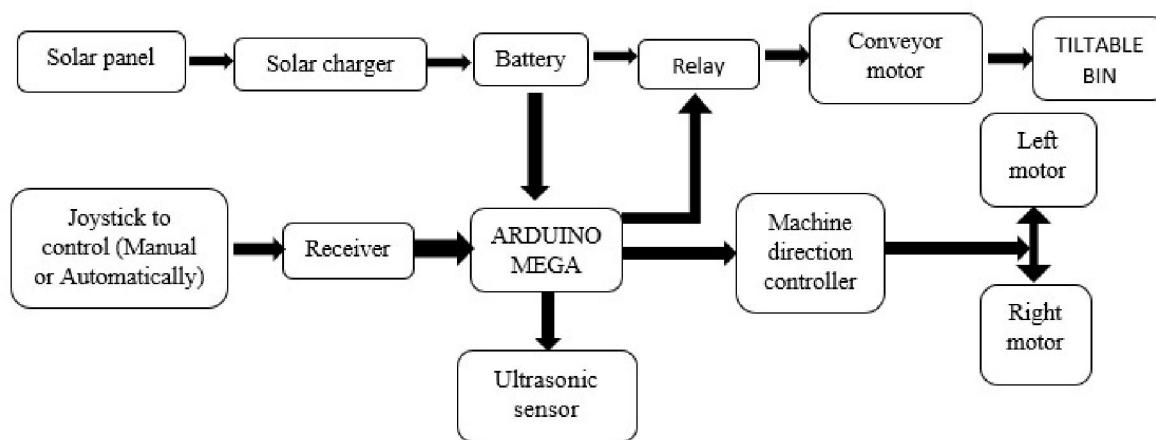
A scraper blade pushes the waste toward the collection mechanism.

In poultry sheds, a conveyor belt may be used to lift the manure.

The collected waste is transferred into a storage container.

The speed of operation is controlled by a controller unit.

The system ensures uniform cleaning without damaging the floor.


After reaching the end point, the machine stops automatically.

It can also reverse or return to the starting position.

Minimal human intervention is required during operation.

The principle helps in maintaining hygiene and reducing labor cost

VI. BLOCK DIAGRAM

COMPONENTS USED

Solar panel

Solar charger

Battery

Relay

Copyright to IJARSCT
www.ijarsct.co.in

DOI: 10.48175/568

716

Conveyor motor
 Left motor
 Right motor
 Joystick
 Receiver
 ARDUINO MEGA
 Machine direction controller
 Ultrasonic sensors
 Tilttable Bin

VII. COMPONENTS DESCRIPTION

Solar Panel: The automatic cow dung collecting machine uses a solar panel as its main power source to operate in an eco-friendly way. The solar panel works on the photovoltaic principle, where sunlight is directly converted into electrical energy using semiconductor materials. This generated DC power is passed through a solar charge controller, which maintains a steady voltage and prevents overcharging of the battery.

Solar Charger: The solar charge controller plays a crucial role in the automatic cow dung collecting machine by managing the power flow between the solar panel, battery, and load. It ensures that the battery is charged efficiently and protected from overcharging, deep discharging, or excessive current flow.

Battery: The battery in an automatic cow dung collecting machine stores the electrical energy generated by the solar panel. It acts as a backup power source, supplying energy when sunlight is unavailable. The solar charge controller regulates the charging process to protect the battery from overcharging or deep discharging.

Relay: The conveyor motor in an automatic cow dung collecting machine is responsible for driving the conveyor belt mechanism, which helps in lifting and transferring the collected cow dung into the storage container. It is usually a DC motor powered by the battery, which receives energy from the solar panel through the charge controller. When the system detects dung using sensors, the microcontroller activates the conveyor motor.

Conveyor Motor: The conveyor motor in an automatic cow dung collecting machine is responsible for driving the conveyor belt mechanism, which helps in lifting and transferring the collected cow dung into the storage container. It is usually a DC motor powered by the battery, which receives energy from the solar panel through the charge controller.

Left Motor: The left motor in an automatic cow dung collecting machine is one of the main drive motors responsible for the movement and steering of the machine. It is generally a DC motor powered by the battery, which receives energy from the solar panel. The left motor works along with the right motor to control the forward, backward, and turning motions of the machine.

Right Motor: The right motor in an automatic cow dung collecting machine plays a key role in controlling the machine's movement and direction. It works together with the left motor to drive the wheels and help the machine move forward, backward, or turn as needed. The right motor is a DC motor powered by the battery, which is charged by the solar panel through the charge controller. The motor's operation is controlled by the microcontroller and motor driver circuit, which regulate its speed and direction based on control signals.

Joystick: The joystick in an automatic cow dung collecting machine is used as a manual control device to operate and navigate the machine easily. It sends directional input signals to the microcontroller, which then controls the left and right motors accordingly. By moving the joystick in different directions—forward, backward, left, or right—the operator can guide the machine's movement and positioning.

Receiver: The receiver in an automatic cow dung collecting machine is an electronic device that receives wireless control signals from the transmitter or joystick. It acts as the communication link between the operator and the machine. When the joystick or remote sends commands such as forward, backward, left, or right, the receiver detects these signals and passes them to the microcontroller.

Arduino mega: The Arduino Mega in an automatic cow dung collecting machine acts as the main control unit or brain of the system. It is a microcontroller board based on the ATmega2560 chip, which has multiple input and output pins to connect various components like motors, sensors, relays, joystick, and receiver.

Machine Direction Controller: The machine direction controller in an automatic cow dung collecting machine is responsible for controlling the movement and steering of the system. It manages the direction in which the machine moves — forward, backward, left, or right — by regulating the operation of the left and right drive motors.

Ultrasonic Sensors: The ultrasonic sensor in an automatic cow dung collecting machine is used to detect obstacles or cow dung in the machine's path. It works on the principle of ultrasonic sound wave reflection. The sensor emits high-frequency sound waves that bounce back when they hit an object, and the sensor measures the time taken for the echo to return. Based on this time, the distance between the sensor and the object is calculated.

Tiltable Bin: The tiltable bin in an automatic cow dung collecting machine is used for easy collection and disposal of the collected dung. When the machine moves across the cattle shed, the dung is gathered through the conveyor and deposited into the bin. Once the bin is filled, it can be tilted mechanically or automatically to unload the waste at a designated dumping area without manual handling.

VIII. ADVANTAGES

- Increased Efficiency
- Improved Hygiene
- Reduced Labor Costs
- Environmental Benefits
- Increased Productivity
- Cost-Effectiveness

IX. LIMITATIONS

- Requires continuous electric power supply.
- Not suitable for uneven or highly wet floors.
- Initial cost and maintenance cost are relatively high.
- Needs regular cleaning to prevent blockage and malfunction

X. CONCLUSION

The Automatic Cow Dung Collecting Machine effectively reduces manual labor and improves the hygiene of cattle sheds and dairy farms. It automates the process of collecting and disposing of cow dung, ensuring a cleaner environment for both animals and workers. The machine saves time, enhances productivity, and promotes better sanitation, making it a practical and eco-friendly solution for modern dairy farms. The automatic cow dung collecting machine is a revolutionary innovation in farm management, transforming the way farmers handle waste and maintain cleanliness. By automating the collection process, this machine significantly reduces labor costs, minimizes manual handling, and promotes a healthier environment for both humans and animals. The machine's design, incorporating robust materials and components like bearings, waste lifters, wheels, frames, chain sprockets, shafts, collecting bins, and chains, ensures efficient operation and durability. With its advanced features and capabilities, the automatic cow dung collecting machine can greatly benefit dairy farms, livestock operations, and agricultural settings, enhancing overall productivity and farm hygiene. By investing in this technology, farmers can improve waste management, reduce environmental impact, and focus on more critical aspects of farming, ultimately leading to increased efficiency, profitability, and sustainability.

XI. FUTURE SCOPE

In the future, the machine can be improved by adding sensors, IoT, and AI for automatic detection and control. It can use solar power for energy efficiency and be modified to convert dung into biogas or fertilizer. With design upgrades, it can become more compact, affordable, and suitable for farms of all sizes, promoting cleaner and smarter dairy management.

REFERENCES

- [1]. Manreet Kaur "Design And Development Of Floor Cleaner Robot" International Journal of Computer Applications
- [2]. Vijayakumar L S "Design And Modelling Of Cattle Shed Cleaning Machine" International Journal of Scientific Research and development.
- [3]. M D .manazir "Animal Cow Dung Cleaner "International journal of Recent Engineering science.
- [4]. Vijaykumar L S, Dr. N.G.S Udupa, A Shivakumar, "Design And Modelling Of Cattle Shed Cleaning.
- [5]. Open Source AI Platforms.
- [6]. www.google.com

ABOUT AUTHOR

	<p>Name – Mr Hanumantha Reddy Designation-Assistant professor M.Tech (Power Electronics) Rao Bahadur Y Mahabaleswarappa Engineering college Email ID- hanumanthreddy@rymec.in</p>
	<p>Name – K Karthik Designation- Student USN – 3VC22EE033 Phone Number –9901712399 E-mail id – karthik33.eee.rymec@gmail.com</p>
	<p>Name- Ashwini Designation-Student USN –3VC22EE005 Phone Number –9902959902 E-mail id – ashwini2004.eee.rymec@gmail.com</p>
	<p>Name- Jyothi U Designation- Student USN- 3VC22EE030 Phone Number-6362424743 E-mail id – jyothi30.eee.rymec@gmail.com</p>
	<p>Name- Hanumana Gouda J Designation- Student USN- 3VC22EE026 Phone Number-8618518130 E-mail id – hanumanagoudaj026eee.rymec@gmail.com</p>