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Abstract: The rapid proliferation of deep learning-based synthetic media, commonly known as
"deepfakes," poses a critical threat to the integrity of biometric security systems, particularly face
recognition protocols. While early generation deepfakes were easily detectable by the human eye,
modern auto-encoder and diffusion-based models can generate hyper-realistic artifacts that challenge
even sophisticated detection algorithms. Traditional Convolutional Neural Networks (CNNs) often fail to
generalize against these threats because they over-rely on spatial pixel patterns, which are easily masked
by video compression algorithms used on social media platforms. To address this limitation, this paper
introduces the Dual-Stream Spectral-Temporal Attention Network (DS-STAN). This novel architecture
moves beyond simple pixel analysis by exploiting two fundamental weaknesses in synthetic media: the
frequency-level "fingerprints” left by upsampling operations and the subtle physiological inconsistencies
inherent in generated video over time. By fusing a Frequency-based stream with a Video Vision
Transformer (ViT) stream, DS-STAN achieves state-of-the-art performance. Experimental results on
benchmark datasets demonstrate that our model not only detects known attack types with high accuracy
but also generalizes significantly better to unseen deepfake methods compared to single-modality
detectors.
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L. INTRODUCTION
1.1 The Rising Threat of Synthetic Media
Face recognition technology has become a cornerstone of modern digital identity, securing everything from smartphone
unlocking mechanisms to high-stakes banking applications and border control systems. However, the security of these
systems is effectively bypassed by "presentation attacks," specifically deepfakes. Tools that were once restricted to
academic researchers are now available as user-friendly applications, allowing attackers to swap faces or reenact facial
expressions with alarming realism.

1.2 The Generalization Problem
The core technical challenge in detecting deepfakes is generalization. Most current detectors operate like a virus
scanner: they look for specific "signatures" they have seen before. If a detector is trained to spot artifacts from
"DeepFaceLab," it often fails completely when detecting a video made by a newer tool like "NeuralTextures."
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Furthermore, when deepfake videos are uploaded to platforms like WhatsApp or YouTube, the heavy video
compression washes away the subtle pixel-level noise that many detectors rely on, rendering them ineffective.

1.3 The Spectra-Temporal Hypothesis

Our research proposes that while pixels can be deceptive, the underlying signal processing and temporal physics of a
video are much harder to fake. We base our approach on two hypotheses:

The Spectral Hypothesis: Deepfake generators typically create images at a low resolution and then "upscale" them to fit
the target video. This upscaling process leaves behind a distinct, grid-like pattern in the frequency domain (the raw
signal data) that is invisible to the human eye but detectable by algorithms.

The Temporal Hypothesis: Generating a consistent video frame-by-frame is difficult. Deepfake models often struggle to
maintain physiological consistency over time—meaning the blinking patterns, subtle head movements, and pulse-
related skin color changes often exhibit "glitches" or temporal discontinuities.

We present DS-STAN, a unified framework that simultaneously analyzes the frequency "fingerprint" and the temporal
"movement" of a video to make a final decision.

II. RELATED WORK
2.1 Spatial-Based Detectors
The earliest and most common deepfake detectors leverage standard Convolutional Neural Networks (CNNs). These
models look at the video frame by frame, analyzing the pixels to find boundaries where the fake face was pasted onto
the target background. While effective on high-quality, raw video data, these models suffer significant performance
drops on compressed video because the compression artifacts (blockiness) are often confused with deepfake artifacts.

2.2 Frequency-Domain Analysis

More recent research has shifted focus to the frequency domain. Studies have shown that Generative Adversarial
Networks (GANs)—the engines behind most deepfakes—fail to reproduce the natural frequency distribution of real
images. Real photographs have a specific balance of high and low frequencies; GAN-generated images often have an
abundance of high-frequency "noise" caused by their internal upsampling layers. However, existing methods often treat
this as a static image problem, ignoring the rich information contained in the video's motion.

2.3 Temporal Consistency and Transformers

To capture motion, researchers initially used Recurrent Neural Networks (RNNs). However, RNNs struggle to
remember long-term context (e.g., comparing a frame at second 1 to a frame at second 10). The introduction of Vision
Transformers (ViTs) has revolutionized this area. ViTs use a mechanism called "self-attention" to compare every part
of the video with every other part, regardless of how far apart they are in time. This makes them ideal for detecting the
"temporal flickering" often seen in deepfakes.

1. METHODOLOGY: THE DS-STAN ARCHITECTURE
Our proposed DS-STAN architecture is a dual-stream network. This means the input video is split into two separate
paths (streams) that process different types of information before merging for a final decision.

3.1 Preprocessing and Face Extraction

Before analysis, we must isolate the region of interest. We use a standard face detection library to locate and crop the
face from every frame of the video. These face crops are then aligned to ensure the eyes are in a consistent position.
The video is then divided into short, non-overlapping clips to standardize the temporal analysis.
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3.2 Stream 1: The Spectral Residual Stream

This stream is designed to catch the "manufacturing defects" of the deepfake generation process.

Transformation: We convert the input face frames from the spatial domain (what we see) to the frequency domain using
a Discrete Fourier Transform. This converts the image into a map of sine waves.

Filtering: In this frequency map, the center represents low-frequency data (general shapes, lighting), while the edges
represent high-frequency data (fine details, noise). Deepfake artifacts hide in the high frequencies. We apply a high-
pass filter to remove the face's structure, leaving behind only the "noise residuals."

Feature Extraction: These residuals are fed into a lightweight neural network (ResNet-18) to create a compact summary
vector of the spectral anomalies.

3.3 Stream 2: The Temporal ViT Stream

This stream is designed to catch behavioral and physical inconsistencies.

Tube Extraction: Instead of processing flat 2D images, the Video Vision Transformer treats the video as a 3D volume.
It divides the video into small 3D cubes or "tubes" that span across both space and time.

Self-Attention: The model applies self-attention to these tubes. It asks questions like: "Is the motion of the left eye
consistent with the motion of the right eye across these 10 frames?" or "Does the skin texture remain stable as the head
turns?" If the answer is no, the model flags this as suspicious.

3.4 Cross-Modal Attention Fusion

The true innovation of DS-STAN lies in how these two streams are combined. We do not simply average their scores.
We use a Cross-Attention Mechanism.

In this step, the network uses the Spectral features to "query" the Temporal features. Essentially, the model says: "I see
a spectral artifact in the eye region; let me check the temporal stream to see if there is also irregular movement in the
eyes.”

This corroboration strategy drastically reduces false alarms because a video is only classified as fake if both the signal
processing traces and the movement patterns indicate manipulation.

IV. EXPERIMENTS
4.1 Datasets Used
We evaluated our model on the two most respected datasets in the field:
FaceForensics++ (FF++): This is a large-scale dataset containing 1,000 original videos and versions manipulated by
four different methods: Deepfakes (auto-encoder based), Face2Face (computer graphics based), FaceSwap (graphics
based), and NeuralTextures (GAN based). We tested on both "High Quality" (light compression) and "Low Quality"
(heavy compression simulating YouTube) versions.
Celeb-DF: This is widely considered the most challenging dataset available. It contains videos of celebrities with
extremely high-quality face swaps that often fool standard detection systems.

4.2 Training Configuration

The model was implemented using the PyTorch framework. To prevent the model from memorizing specific faces, we
used data augmentation techniques, such as randomly rotating the video frames and adjusting brightness during
training. We used the AdamW optimizer, a standard algorithm for training Transformers, to minimize the loss function
and improve accuracy.

4.3 Evaluation Metrics

To objectively measure performance, we relied on three standard metrics:

Accuracy (ACC): The simple percentage of videos correctly classified as real or fake.

Area Under the Curve (AUC): A robust metric that measures how well the model separates real videos from fake ones,

regardless of the threshold used. A score of 100% is perfect; 50% is random guessing.
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Equal Error Rate (EER): The point where the rate of falsely accepting a deepfake equals the rate of falsely rejecting a
real video. Lower is better.

V. RESULTS AND ANALYSIS
5.1 Comparison with State-of-the-Art
On the FaceForensics++ test set, DS-STAN outperformed existing methods. While standard CNN-based approaches
like XceptionNet achieved roughly 92% accuracy, our DS-STAN model achieved 98.4%. This indicates that adding the
temporal and spectral dimensions provides a significant advantage over looking at pixels alone.

5.2 Robustness to Compression (The Real-World Test)

The most critical finding was in the "Low Quality" test, which simulates real-world social media conditions.
Competitor Failure: Standard detectors saw their accuracy plummet to roughly 81% because the compression artifacts
hid the visual signs of the deepfake.

DS-STAN Success: Our model maintained an accuracy of 94.2%. This validates our "Spectral Hypothesis": even when
compression blurs the pixels, the underlying frequency distribution of the deepfake remains disturbed, and the
"Temporal Hypothesis" holds true because compression does not fix unnatural movements.

5.3 Cross-Dataset Generalization

To test if our model could detect "unknown" threats, we trained it on FaceForensics++ and then tested it on Celeb-DF.
Most detectors fail here (dropping to ~60% AUC). DS-STAN achieved an AUC of 86.5%. This proves that our model
is learning fundamental defects in deepfake generation, rather than just memorizing specific dataset quirks.

VI. CONCLUSION AND FUTURE WORK
This paper introduced the Dual-Stream Spectral-Temporal Attention Network (DS-STAN), a robust solution for
securing face recognition systems against deepfake attacks. By moving beyond simple visual inspection and analyzing
the "invisible" frequency artifacts and "temporal" motion inconsistencies, we have created a detector that is resilient to
video compression and capable of spotting unknown attack types.
Our results confirm that deepfakes, while visually convincing, are currently unable to replicate the complex biological
motion and natural frequency statistics of real video.
Future Work: Our next phase of research will focus on two areas:
Mobile Optimization: Distilling the model into a smaller, faster version that can run directly on smartphones without
needing a cloud server.
Audio-Visual Fusion: Integrating voice analysis to detect mismatched lip-syncing, adding a third layer of security to the
system.
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