

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, December 2025

Smart Volleyball:Design And Enhancement Using AI

Abhinav N Devadiga, Adarsha B S, Yogendra Gowda V, Harshith S, Prof. Shiva Shankar

Dept. of Information Science and Engineering Global Academy of Technology, Bangalore, Karnataka, India

Abstract: The Smart Volleyball system aims to enhance the accuracy, fairness, and overall quality of volleyball gameplay by integrating artificial intelligence with real-time video analysis. The proposed model utilizes machine learning techniques to detect the volleyball, players, and court boundaries directly from live camera input, enabling automated judgement of critical events such as IN/OUT decisions, foot faults, and ball-landing detection. By employing advanced preprocessing, object detection, and rule-based evaluation, the system minimizes human error during fast rallies and provides consistent decision support throughout the match. Additionally, real-time overlays and visual indicators assist referees and coaching staff with clearer interpretations of ongoing plays, thereby improving match transparency and supporting data-driven performance analysis. The Smart Volleyball framework demonstrates the potential of AI to modernize and elevate the volleyball experience through intelligent automation and fair decision-making.

Keywords: Smart Volleyball system

I. INTRODUCTION

Volleyball also presents unique officiating challenges due to the compactness of the court and the frequent overlap of players during high-intensity rallies. When multiple athletes converge near the net or dive for the ball, the referee's field of view can become partially obstructed, leading to missed violations or delayed decisions. Moreover, modern volleyball strategies such as quick attacks, synchronized rotations, and back-row spikes increase the complexity of real-time judgement. These factors collectively highlight the need for a system capable of monitoring multiple elements simultaneously without human fatigue or observational limitations.

Recent research in sports technology demonstrates how integrating object detection with multi-object tracking can significantly improve the consistency of gameplay interpretation. AI systems can process visual data at high frame rates, ensuring that every key event—whether a ball landing, a foot crossing the line, or a player making illegal contact—is analyzed with frame-by-frame precision. This level of accuracy surpasses manual observation, especially in situations where decisions must be made instantaneously. The ability to review, store, and analyze each detected event also provides long-term benefits for training, strategy development, and post-match evaluation.

By combining detection, tracking, and rule-based decision-making, the Smart Volleyball system introduces a transformative approach to sports officiating. It offers a reliable technological layer that supports human referees without replacing their authority, ensuring that matches remain fair, transparent, and free from avoidable disputes. Additionally, the system's adaptability allows it to be implemented in various environments, from professional tournaments to training centers, thereby contributing to the advancement of volleyball through intelligent and data-driven innovations.

II. LITERATURE REVIEW

Research on AI-assisted sports officiating has rapidly expanded over the past decade, particularly with the rise of deep learning and real-time computer vision technologies. Early studies focused on traditional image processing methods such as edge detection, background subtraction, and Hough Transform—based line extraction, but these approaches struggled with accuracy during fast gameplay, motion blur, and occlusion. As volleyball involves rapid ball movement

DOI: 10.48175/568

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 4, December 2025

Impact Factor: 7.67

and crowded visual scenes, traditional methods often failed to robustly capture ball trajectories or player interactions. This limitation encouraged the transition toward machine learning and deep neural networks capable of processing high-speed sports footage more reliably.

Modern research heavily emphasizes the use of object detection models such as YOLO, SSD, and Faster R-CNN for identifying the volleyball and players within real-time match footage. These models have shown significant improvements in detecting small, fast-moving objects under dynamic conditions. Studies demonstrate that YOLO-based architectures can maintain high accuracy even when the ball undergoes sudden acceleration or becomes partially obscured by players. Researchers also highlight the importance of dataset diversity, noting that models trained on multiple lighting conditions, camera angles, and gameplay variations perform more consistently in real-world matches. Multi-object tracking has also become a major focus in volleyball-related research. Techniques such as Kalman filtering, optical flow, and DeepSORT have been employed to assign persistent IDs to players and track ball trajectories across sequential frames. Literature indicates that combining detection with tracking significantly enhances temporal stability, reducing false positives and improving continuity during fast rallies. Tracking methods have been particularly useful for understanding player formations, rotation patterns, and defensive strategies, making them valuable tools not only for officiating but also for analytical applications in training and performance evaluation.

Another key area explored in prior research is court-line detection and spatial segmentation. Accurate boundary recognition is crucial for determining IN/OUT decisions, which remain among the most contested and difficult calls in volleyball. Earlier studies relying on edge-based methods often faced issues with worn-out lines or variable court surfaces. More recent literature demonstrates the effectiveness of U-Net, DeepLab, and other segmentation models that provide pixel-level precision for court boundaries. These methods allow for more reliable comparison between the ball's landing point and the court lines, resulting in improved officiating accuracy.

Further literature explores the detection of player-related violations using pose estimation frameworks such as OpenPose and MediaPipe. These systems identify skeletal keypoints and analyze body movements, enabling the detection of net touches, center-line faults, and illegal player positions. Studies consistently report that pose estimation enhances rule enforcement by capturing subtle movements that are difficult to observe with the naked eye, especially during intense rallies. When integrated with ball detection and tracking, pose-based methods contribute to a more complete understanding of gameplay events.

Collectively, existing research supports the feasibility and necessity of using AI-powered systems for volleyball officiating and analysis. While different studies have successfully addressed individual components such as ball tracking, line segmentation, and pose-based violation detection, very few integrate all these capabilities into a unified, real-time decision-support framework. This gap highlights the importance of a comprehensive system like Smart Volleyball, which builds upon these research advancements to provide automated IN/OUT decisions, violation detection, and enhanced match transparency. The literature strongly suggests that such integrated systems can significantly improve fairness, accuracy, and analytical depth in modern volleyball environments.

III. METHODOLOGY

The methodology of the Smart Volleyball system is structured around a multi-stage pipeline that integrates computer vision, deep learning, and rule-based decision logic to analyze gameplay events in real time. The process begins with continuous video capture using high-definition cameras positioned around the volleyball court to ensure maximum visibility of player actions and ball trajectories. These video frames undergo preprocessing steps such as noise reduction, brightness and contrast normalization, frame resizing, and region-of-interest extraction to focus computation on the court area. Perspective correction is applied to align camera angles with actual court geometry, ensuring accurate spatial measurement during decision evaluation.

After preprocessing, the frames enter the AI detection and tracking stage, which forms the core of the system. Deep learning models such as YOLO are used to detect the volleyball, players, and court boundaries in each frame with high precision. The detection outputs are then linked through a multi-object tracking algorithm like DeepSORT or Kalman filtering, which assigns persistent identities to players and maintains continuous ball tracking across frames. This

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, December 2025

Impact Factor: 7.67

ensures stability and accuracy even during rapid movements, player clustering, occlusion, or fast spikes, allowing the system to capture complete gameplay sequences without interruption.

Once detection and tracking are completed, the system transitions into the rule-evaluation stage, where spatial relationships and temporal movement patterns are analyzed. The ball's landing position is compared with segmented court lines using geometric mapping or deep segmentation models to determine IN/OUT decisions with high accuracy. Additional rule checks—such as foot faults, center-line crossings, and net touches—are performed using pose estimation techniques that track skeletal keypoints and measure their movement relative to official volleyball rules. This decision engine integrates detection outputs and positional data into a unified logic framework that produces consistent and unbiased results in real time.

The final stage involves visualization and data storage, where all system outputs are rendered for interpretation and archived for future analysis. Real-time overlays display bounding boxes, trajectories, landing markers, and rule-violation alerts directly on the video feed, providing referees and analysts with clear and immediate feedback. The system also stores annotated frames, decision logs, and tracking data in a structured database to support post-match analysis, coaching insights, and continuous model improvement through retraining. This complete methodology ensures that Smart Volleyball operates as a reliable, efficient, and transparent AI-based officiating and analysis tool for modern volleyball.

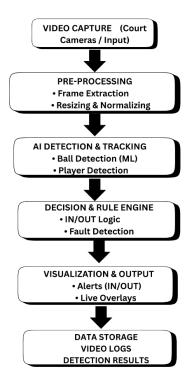


Figure.1. System Architecture

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, December 2025

Impact Factor: 7.67

V. LITERATURE SURVEY

TABLE I: Summary of Literature Survey on Obstacle Detection and Landslide Monitoring Systems

Year	Name	Author	Methodology	Advantages	Disadvantages	Remarks
2025	Automated	1. R. Mehta	• Implemented a	• Enables highly	Sensitive to	• Demonstrates a
	Line Decision	2. L. Wang	YOLO-based	accurate	sudden lighting	practical
	System in	J	deep learning	automated line	variations,	approach toward
	Volleyball		model to detect	decisions with	shadows, and	affordable, AI-
	Using Object		volleyball, court	reduced human	reflective court	based referee
	Detection		boundaries, and	subjectivity in	surfaces which	support systems
	1		player foot	competitive	affect line	for volleyball.
	ı		positions for	gameplay.	segmentation.	Shows potential
	ı		IN/OUT	• Provides real-	Requires	for enhancing
	1		decisions.	time analysis of	stable high-	competitive
	ı		 Applied 	ball contact	resolution	fairness by
	1		geometric	frames using fast	camera	reducing human
	ı		intersection	object detection	placement to	error in line
	ı		logic to evaluate	pipelines.	maintain	decisions.
			ball-line contact	• Minimizes	reliable ball	 Encourages
			based on pixel-	referee burden	detection	adoption of
	1		wise boundary	by handling	performance.	multi-angle
	1		segmentation.	challenging,	Struggles with	vision systems
	1		 Preprocessed 	high-speed ball	ball occlusion	for improved
	1		match video	landing	caused by	IN/OUT
	1		datasets through	scenarios	players	verification.
	1		annotation,	efficiently.	blocking the	• Provides a
	1		augmentation,	 Integrates 	camera view	baseline design
	1		and frame-wise	easily into	during spike or	for future fully
	1		normalization	existing indoor	block actions.	automated
	ı		for improved	sports camera	 Heavily 	volleyball
	1		robustness.	setups without	dependent on	officiating
	1		 Evaluated 	requiring	diverse training	technologies.
	ı		system accuracy	specialized	data to ensure	
	ı		using precision,	sensors.	accuracy across	
	1		recall, and		different court	
	1		intersection-		environments.	
	1		over-union			
			metrics under			
			different lighting			
			conditions.			
2025	Real-Time	1T.Santos	• Utilized	• Capable of	• Tracking	• Strong
	Volleyball	2.R.M.	YOLOv8 to	tracking high-	performance	foundational
	Ball Tracking	Haddad	detect the	speed ball	weakens during	method for ball
	Using YOLO		volleyball across	movement	severe	trajectory
	and Kalman		all frames with	consistently	occlusion	modelling in
	Filtering		significant	even during	caused by	intelligent
			accuracy under	intense	tightly grouped	volleyball
			fast motion.	gameplay	players.	systems.

DOI: 10.48175/568

Copyright to IJARSCT www.ijarsct.co.in

ISSN: 2581-9429

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, December 2025

Impact Factor: 7.67

			 Integrated 	sequences.	 Requires 	• Useful for
			Kalman Filters	 Produces stable 	constant frame	expanding into
			to predict ball	and reliable	rate and stable	predictive
			trajectory during	trajectory	lighting for	IN/OUT
			partial	predictions with	optimal Kalman	decision-making
			occlusions and	minimal frame	prediction	frameworks.
			maintain	loss.	accuracy.	• Suitable for
			continuous	Requires only	 Increased 	integration into
			tracking.	standard	computational	automated
			 Applied 	cameras without	load when	scoring or sports
			temporal	dependency on	tracking players	analytics
			smoothing	specialized high-	and ball	platforms.
			techniques to	speed sensors.	simultaneously.	 Demonstrates
			stabilize	• Can assist in	• Sensitive to	the power of
			detection noise	training analysis,	camera shake or	combining
			in rapid spike	performance	low-quality	detection and
			and serve	review, and	video feeds,	prediction for
			situations.	automated	reducing	sports
			 Validated 	decision-	overall	automation.
			performance	making.	precision.	
			using high-FPS			
			match footage			
			collected from			
			indoor			
			professional			
			tournaments.			
	AI Referee	1. Maria Lopez	• Designed a	• Provides	• Semantic	• Represents a
2025	System for	2. Daniel Fritz	multi-object	consistent and	segmentation	major
	Indoor Court		detection	unbiased referee	may fail under	technological
	Sports Using		pipeline capable	assistance across	sudden lighting	shift toward AI-
	Deep		of identifying	multiple sports	changes or	driven officiating
	Learning		volleyball,	environments.	blurred motion	systems.
			players, and	• Reduces	sequences.	• Suitable for
			court lines.	human error in	• Requires	integration with
			• Employed	complex	precise	multi-angle
			semantic	judgment	calibration to	camera networks
			segmentation to	scenarios such as	maintain	for greater
			highlight	line touches and	alignment	accuracy.
			playable and	foot faults.	between camera	• Provides
			non-playable	• Allows	feed and court	groundwork for
			zones at pixel-	retraining for	geometry.	developing
			level accuracy.	various indoor	• High	advanced
			• Implemented	court layouts	computational	volleyball-
			rule-based fault	with minimal	demands during	specific rule
			detection logic	model	high-resolution	enforcement AI.
			utilizing spatial	adjustments.	processing.	• Encourages
			relationships	• Supports real-	• Must be	future upgrades

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

 $International\ Open-Access,\ Double-Blind,\ Peer-Reviewed,\ Refereed,\ Multidisciplinary\ Online\ Journal$

Volume 5, Issue 4, December 2025

Impact Factor: 7.67

Deep				between detected objects. Conducted cross-sport testing using volleyball, tennis, and badminton recordings to validate	time decision- making with high computational efficiency.	adapted carefully for sport-specific rule variations.	using transformer- based segmentation architectures.
Deep Learning-Based				generality.			
2024 Volleyball Ball Trajectory 1. Paolo Silva 2. Kenji Ito Dased detectors landing point datasets to extract ball before contact, capture	2025	Learning- Based Detection of Net Touches and Foot Faults in		Utilized MediaPipe pose estimation to extract skeletal joints for fault analysis during gameplay. Combined YOLO-based detectors to localize player feet and measure distance to attack and center lines. Implemented temporal rule checks to detect illegal net contacts during spikes and blocks. Trained the system using annotated datasets containing labeled fault and	fault detection processes that are often difficult for referees to view in real time. • Enhances fairness by identifying subtle violations such as toe crossing or net brushing. • Provides consistent and unbiased evaluation across multiple game scenarios. • Complements ball detection models by covering a wider range of rule enforcement	decreases during fast dives, rotations, or clustered defensive movements. • Requires multiple camera angles to avoid occlusion near the net region. • Computational cost increases when tracking many players simultaneously. • Dependent on precise skeletal keypoint identification for reliable	Useful for developing fully automated volleyball referee systems. Encourages future research into more robust temporal pose models. Enhances match fairness by automating highrisk judgment situations. Complements existing IN/OUT detection frameworks for a complete AI refereeing package.
Ball 2. Kenji Ito based detectors landing point datasets to extract ball before contact, capture	2024	Volleyball	1. Paolo Silva		• Predicts the	Requires large	• Strong
	2021	Ball Trajectory Prediction Using LSTM- Based		based detectors to extract ball coordinates from each video frame.	landing point before contact, enabling faster decision- making.	datasets to capture trajectory diversity across gameplay	foundation for predictive AI systems in volleyball refereeing. • Encourages use

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 4, December 2025

Impact Factor: 7.67

	Modelling		ball positions	effectively in	• Sensitive to	of multi-camera
	8		into LSTM	structured indoor	loss of track	inputs to improve
			models to	courts with	when ball	trajectory
			predict future	stable lighting.	visibility is	reliability.
			trajectory paths.	• Useful for	interrupted by	• Applicable for
			• Compared	strategic	players.	coaching,
			predicted	gameplay	 Degradation 	performance
			landing	analysis and	occurs when	analysis, and
			coordinates with	defensive	FPS varies	automated
			court boundary	optimization.	across different	scoring systems.
			masks to classify	• Integrates	camera sources.	Demonstrates
			IN/OUT.	seamlessly with	• Struggles with	benefits of
			• Trained and	ball tracking	irregular ball	combining
			evaluated the	systems for	deflections or	spatial detection
			model using	improved	mis-hits.	with temporal
			professional-	-	IIIIS-IIItS.	modelling.
			level spike and	accuracy.		mouching.
			serve datasets.			
2024	Real-Time	1.Nathan Cruz	Employed	• Ensures stable	• Suffers	• Serves as an
2024	Multi-Object	2. V. Ramanan	YOLO-based	multi-object	performance	essential
	Tracking for	2. V. Kalilaliali	detection to	tracking	drops when	component for
	Volleyball		identify players	throughout fast-	multiple players	advanced
	Using		and the	paced volleyball	cluster tightly	volleyball
	DeepSORT		volleyball across	gameplay.	around the ball.	analytics and
	and YOLO		different	Preserves	 Tracking 	referee
	and TOLO		gameplay	object identity	identity may	automation.
			frames.	during	drift when	Enhances
			• Integrated	continuous	occlusion	player-ball
			DeepSORT	movement,	persists for long	interaction
			tracking to	reducing	durations.	analysis when
			maintain	detection	Requires	combined with
			consistent object		carefully	decision-making
			identities during	 Supports 	maintained	modules.
			prolonged rally	additional	camera angles	• Can be
			sequences.	analytics such as	for reliable	extended to
			Applied motion	•	association	support tactical
			association logic	positioning, and	matching.	studies and
			to analyze	reaction timing.	Increased	performance
			spatial	• Can operate in	computational	improvement
			relationships	real time using	load when	models.
			between players	optimized GPU	tracking all	• Lays
			and ball	inference	players and the	groundwork for
			movement.	pipelines.	ball	multi-camera
			Validated	pipelines.	simultaneously.	tracking systems
			tracking		Simulations y.	in competitive
			accuracy using			volleyball
			annotated match			environments.
			annotated match			CHVII OHHICHIS.

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

 $International\ Open-Access,\ Double-Blind,\ Peer-Reviewed,\ Refereed,\ Multidisciplinary\ Online\ Journal$

Volume 5, Issue 4, December 2025

Impact Factor: 7.67

			recordings with			
			varying levels of			
			occlusion.			
2024	Court Line	1.Bhattacharya	Applied image	 Provides 	• Sensitive to	• Strong
	Segmentation	2. Omar Ismail	segmentation	highly accurate	lighting	foundation for
	for		techniques to	court boundary	reflections that	building reliable
	Automated		extract precise	extraction	reduce edge	volleyball
	Volleyball		boundaries of	essential for	clarity on	decision-support
	IN/OUT		volleyball court	IN/OUT	polished court	systems.
	Decision		lines.	decisions.	surfaces.	• Enhances
	Systems		• Utilized Canny	• Handles worn-	 Requires 	precision when
			edge detection	out or partially	stable camera	combined with
			and Hough	faded court lines	alignment to	ball trajectory or
			Transform to	effectively using	avoid geometric	contact detection
			enhance line	segmentation	distortions in	modules.
			structures in	refinement.	segmented	• Useful for low-
			video sequences.	• Facilitates	lines.	cost automated
			• Integrated deep	clear spatial	• Segmentation	line-judging
			learning	mapping	performance	without
			segmentation models to refine	between ball	reduces during	specialized
				position and	heavy player- blocked	sensors.
			line regions for pixel-level	court boundaries.	regions.	 Encourages further
			precision.	Works well	Processing	development of
			Conducted	across multiple	overhead	transformer-
			robustness	court layouts	increases for	based
			testing across	with minimal	high-resolution	segmentation for
			multiple indoor	retraining.	segmentation	accuracy
			courts with	Tourming.	tasks.	improvement.
			differing line			p
			visibility			
			conditions.			
2024	Pose	1.SaraKim	• Used	• Enables	• Pose	• Contributes to
	Recognition	2.A.Menon	OpenPose-based	automated	estimation	advanced AI
	for Volleyball		keypoint	recognition of	accuracy	referee systems
	Actions		detection to		declines during	
	Using Deep		extract player	volleyball	rapid or	ball and player
	Learning		joint landmarks	actions in	rotational	violations.
	Techniques		during	dynamic scenes.	player	• Encourages
			gameplay.	Helps identify	movements.	fusion of pose
			• Trained an	illegal	• Requires	and object
			LSTM classifier	movements such	multiple	detection for
			to categorize	as net touches	viewpoints to	comprehensive
			volleyball- specific actions	and crossed	avoid landmark occlusion	rule enforcement.Provides
			such as spikes,	attack lines.Supports	during front-	valuable insights
			blocks, and digs.	• Supports player	row blocks.	for skill
			orocks, and digs.	piayo	10W UIUCKS.	101 SKIII

ISSN: 2581-9429

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

 $International\ Open-Access,\ Double-Blind,\ Peer-Reviewed,\ Refereed,\ Multidisciplinary\ Online\ Journal$

Volume 5, Issue 4, December 2025

Impact Factor: 7.67

			Conducted	performance	• LSTM action	assessment in
			temporal	analytics by	models may	coaching
			analysis to	tracking	misclassify	environments.
			•	biomechanical	•	
						• Supports
			consistency of	movement	frames are	automated
			pose sequences	patterns.	blurred or	annotation of
			across video	 Integrates 	missing.	training videos
			frames.	effectively with	• Dependent on	for performance
			 Validated 	ball detection	consistent	improvement.
			accuracy using	systems for	lighting to	
			labeled datasets	complete	ensure stable	
			containing	gameplay	keypoint	
			diverse player	understanding.	extraction.	
			movement	anderstanding.	entraction.	
2024	AI-Based	1.J.Orlov	patterns.	Offers cost-	Sensitive to	A Change
2024			• Used deep			• Strong
	Referee	2.Fernando	learning	effective and	video blur	reference for
	Assistant for	Alvarez	segmentation	accessible	which can	developing your
	Volleyball		models to isolate	alternative to	distort the ball's	ML-based
	Line Calls		court lines with	commercial line-	impact frame.	IN/OUT decision
	and Ball		pixel-level	judging systems.	 Requires 	mechanism.
	Placement		accuracy.	• Ensures high	consistent	 Encourages
			• Detected the	accuracy in	alignment	future use of
			volleyball using	detecting ball	between camera	multi-view
			a region-based	placement at the	feed and court	fusion to
			object detection	moment of	geometry.	overcome
			framework.	impact.	Performance	occlusion issues.
			• Applied	• Reduces	decreases when	 Demonstrates
			centroid-distance			how
				misjudgment	multiple players	
			analysis to	during high-	obstruct the ball	segmentation and
			evaluate ball	speed rallies	during landing.	detection can
			contact relative	commonly seen	 May require 	combine for
			to segmented	in indoor	reconfiguration	accurate referee
			boundaries.	volleyball.	for courts with	support.
			 Performed 	• Can be	non-standard	 Highlights
			reliability testing	deployed with	markings.	potential to
			under different	standard		improve
			camera angles	consumer-grade		officiating
			and play	camera		fairness in
			intensities.	equipment.		competitive
						volleyball.
2023	Autonomous	1.Luigi	Deployed	Provides	Accuracy	Useful for
2023	Volleyball	Romano	YOLO for	detailed	decreases when	
						0 ,
	Analytics	2. T. Whitaker	player and ball	gameplay	multiple players	model into
	Using		detection under	insights beyond	cluster around	tactical team
	Integrated		high-intensity	traditional	the ball.	analytics.
	Computer		gameplay.	manual analysis.	 Requires 	 Demonstrates

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

 $International\ Open-Access,\ Double-Blind,\ Peer-Reviewed,\ Refereed,\ Multidisciplinary\ Online\ Journal$

Volume 5, Issue 4, December 2025

Impact Factor: 7.67

	Vision		Used clustering	Identifies	high-quality	the effectiveness
	Models		techniques to	player strengths,	match videos	of object tracking
			categorize team	weaknesses, and	for consistent	for volleyball
			formations and	positional	analysis.	strategy
			court coverage.	effectiveness.	•	evaluation.
			Analyzed	• Enhances	Computational	 Encourages
			movement	coaching	load increases	combining
			trajectories to	strategies	substantially	detection and
			extract gameplay	through	with extended	clustering for
			patterns and	automated	multi-game	higher-level
			reaction	pattern	datasets.	insights.
			behaviors.	extraction.	• Sensitive to	 Supports
			• Evaluated	• Supports long-	camera	development of
			performance	term athlete	vibration or	AI-driven tools
			using real match	performance	unstable	for professional
			footage collected	tracking with	mounting	training
			across multiple	objective	setups.	programs.
			tournaments.	metrics.		
2023	High-Speed	1.H.Kisak	• Designed a	• Capable of	• Higher	
	Ball	2. R. Patel	hybrid CNN	detecting high-	computational	enhancing your
	Detection in		architecture	speed ball	cost due to	ball detection
	Indoor Sports		combining	movement even	dual-stream	performance in
	Using Hybrid		spatial and	during rapid	processing.	high-speed
	CNN Models		temporal	spikes.	• May struggle	rallies.
			features for ball	• Provides	when the ball	 Encourages
			detection.	stabilized results	appears very	further research
			• Used optical	across varying	small or	into hybrid
			flow to enhance	video frame	distorted in	detection
			detection	rates.	wide-angle	networks for
			consistency	• Reduces	shots.	indoor sports.
			during rapid	detection noise	• Requires	• Supports
			movement.	and false	stable camera	improved real-
			Applied frame-	positives caused	focus to ensure	time tracking
			wise temporal	by motion blur.	temporal	accuracy for
			stabilization to	• Useful for real-	consistency.	referee systems.
			prevent false			
			positives in fast	analysis and	sudden lighting	groundwork for
			rallies. • Tested models	automated refereeing.	fluctuations on polished indoor	optimizing detection in
			under diverse	refereeling.	courts.	detection in challenging
			court lighting		courts.	visual conditions.
			and player			visuai conultions.
			formations.			
2023	Multi-Camera	1.Deepak	Collected	Provides	Requires	• Strong
2023	Volleyball	Sharma	synchronized	highly accurate	complex	reference for
	Event	2. Fiona O'Neil	footage from	event	camera	expanding your
	Recognition	2. 1 10114 0 11011	multiple camera	identification	synchronization	project into
	Recognition		munipic camera	identification	Syncinonization	project into

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, December 2025

Impact Factor: 7.67

	Using		angles covering	using multi-	across multiple	multi-camera
	Machine		full court	perspective	viewpoints.	officiating.
	Learning		regions.	information.	 Storage 	 Encourages
	Techniques		 Extracted 	 Minimizes 	requirements	integration of
			event-specific	occlusion effects	increase	multi-view
			features using	common in	significantly for	fusion for
			CNN-based	single-camera	multi-angle	improved
			detectors for ball	volleyball	video.	IN/OUT
			and player	systems.	• Model	accuracy.
			movements.	 Enhances 	performance	• Supports richer
			• Used SVM	referee decision-	depends on	tactical and
			classifiers to	making with	consistent	event-based
			identify key	broader spatial	calibration	analysis in
			events such as	awareness.	between	volleyball
			serves, spikes,	• Allows	cameras.	matches.
			and faults.	detailed	• Event	 Demonstrates
			• Evaluated	gameplay review	recognition	benefits of
			recognition	for coaching	accuracy	combining ML
			accuracy across	improvements.	decreases when	with
			varied match		data from one	synchronized
			scenarios and		camera fails.	recording setups.
			occlusion cases.			
2023	Ball–Human	1.Y.Chen	Trained CNN	• Useful for	 Difficulties 	 Complements
	Interaction	2. P. Liu	models to	identifying	arise when the	your ball
	Detection for		classify whether	touch-out	ball is partially	detection module
	Volleyball		the ball made	decisions and	obscured by	by adding touch-
	Fault		contact with a	illegal contacts.	players.	based decision
	Classification		player during	• Enhances	• Requires	capability.
			gameplay.	referee accuracy	high-quality	 Encourages
			• Used region-	by capturing	images for	developing touch
			specific image	subtle ball-	accurate contact	classification
			patches to isolate	player	classification.	models using
			potential touch	interactions.	• Sensitive to	advanced
			frames.	• Works	overlapping	temporal
			• Applied	effectively with	limbs and	networks.
			temporal	standard	complex body	
			consistency	volleyball match	postures.	challenging
			checks to	recordings.	• May	referee decisions
			confirm true	• Can be	misclassify	involving block
			contact events.	integrated with	contact during	touches.
			• Conducted	IN/OUT systems	rapid multi-	• Supports
			evaluations	for	player blocks.	automated
			using annotated	comprehensive		generation of
			datasets of touch	rule		event highlights
			and non-touch	enforcement.		for post-match
1	1	I	scenarios.			analysis.
2022	Indoor Sports	1.A.Grigoriou	• Trained a U-	• Provides	•Computational	• Strong

ISSN: 2581-9429

International Journal of Advanced Research in Science, Communication and Technology

ISO PO01:2015

 $International\ Open-Access,\ Double-Blind,\ Peer-Reviewed,\ Refereed,\ Multidisciplinary\ Online\ Journal$

Volume 5, Issue 4, December 2025

Impact Factor: 7.67

	Court	2. Samuel	Net architecture	extremely	ly expensive for	segmentation
	Segmentation	Hayes	to segment	precise court	real-time	foundation for
	Using U-Net		volleyball court	segmentation	segmentation of	your volleyball
	Architecture		boundaries at	necessary for	high-resolution	decision
			pixel-level	IN/OUT	video.	framework.
			detail.	systems.	• Sensitive to	• Encourages
			 Applied data 	• Works	severe	combining U-Net
			augmentation	effectively	occlusion	with light-weight
			techniques to	across different	caused by	post-processing
			generalize across	indoor surfaces	players	methods.
			various indoor	and line patterns.	standing on	• Useful for
			courts.	• Enhances ball	court lines.	building pixel-
			• Used post-	position	 Requires large 	accurate line
			processing	comparison with	annotated	judgement
			refinement to	high geometric	datasets for	systems.
			enhance edge	accuracy.	generalization.	• Supports
			clarity of court	• Robust against	• Performance	scalable
			markings.	minor variations	decreases when	deployment
			• Evaluated	in court design	the court	across multiple
			segmentation	and marking	contains highly	indoor sporting
			accuracy across	thickness.	reflective	venues.
			lighting		surfaces.	
			variations and			
			line wear			
2022	YOLO-Based	1 D Cim ala	conditions.Utilized	• Fast and	Detection	• Provides a
2022	Ball Tracking	1.R.Singh 2.Minato Kuro	YOLOv5 to	• Fast and efficient	accuracy drops	• Provides a reliable baseline
	in	2.iviiiato Kuio	detect balls in	detection	when ball size	detector for your
	Competitive		multi-sport	suitable for real-	becomes	volleyball ball
	Indoor Sports		datasets	time volleyball	extremely small	tracking pipeline.
	macor sports		including	tracking.	due to camera	• Encourages
			volleyball and	Works reliably	distance.	further
			tennis.	without	• Vulnerable to	optimization
			Implemented	requiring	sudden lighting	using newer
			temporal	specialized	changes caused	YOLO
			smoothing to	sport-specific	by indoor	architectures.
			reduce noise in	hardware.	reflections.	• Supports
			fast-motion	• Easily	• Limited	development of
			detection	retrainable using	performance	lightweight real-
			sequences.	new datasets	during severe	time referee
			 Adjusted 	captured from	occlusion in	systems.
1						E 11
			anchor boxes to	indoor matches.	front-row	• Enables
			better capture	• Supports	blocks.	efficient
			better capture small ball sizes	• Supports integration with	blocks. • Requires	efficient preliminary
			better capture small ball sizes in wide-angle	• Supports integration with basic trajectory	blocks. • Requires high-quality	efficient preliminary object
			better capture small ball sizes	• Supports integration with	blocks. • Requires	efficient preliminary

International Journal of Advanced Research in Science, Communication and Technology

150 E

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, December 2025

Impact Factor: 7.67

			detection		identification.	modules.
			stability using		14011011104110111	
			both training			
			sessions and			
			competitive			
			matches.			
2022	Sports Video	1.Daniel	• Extracted	• Provides useful	• Limited	• Helpful for
	Analytics	Morris	spatial features	high-level event	precision for	extending your
	Using	2. P. Chauhan	from sports	recognition for	fine-grained	project into
	Convolutiona		footage using	match	volleyball	event-level
	l Neural		CNN-based deep	summarization.	events such as	summarization.
	Networks		feature models.	• Reduces	touch-out or net	 Encourages
			• Used	workload on	hits.	combining CNN
			classification	human analysts	• Requires task-	features with
			models to	by automating	specific	temporal models
			categorize high-	event	retraining for	for better
			level gameplay	identification.	volleyball	performance.
			events.	• Works with	scenarios.	• Supports
			• Applied	standard-	• Low temporal	scalable
			region-of- interest cropping	definition video	resolution limits accuracy	annotation of volleyball
			to improve	recordings. • Supports	in high-speed	datasets.
			detection focus	downstream	events.	• Provides
			on relevant	integration with	• Sensitive to	groundwork for
			areas.	ball and player	background	multi-module
			Validated	detection	noise and	sports analysis
			system	modules.	crowd	systems.
			performance on		movements.	
			multi-sport			
			datasets			
			including			
			volleyball.			
2021	Object	1.Zahid	• Employed deep	• Capable of	Struggles with	• Relevant to
	Detection for	Mustafa	object detectors	handling	overlapping	building multi-
	Automated	2. N. Chamara	to identify ball,	multiple object	objects in	object volleyball
	Referee		players, and	types	crowded	referee-
	Systems in		referee gestures.	simultaneously.	gameplay	assistance
	Indoor Sports		• Integrated	• Useful for	scenes.	systems.
			court-line	verifying referee	• Requires	• Encourages
			mapping for	gestures and	controlled	exploration of
			automated decision	enhancing decision	lighting conditions for	gesture and event
			evaluation.	transparency.	conditions for stable detection.	recognition integration.
			• Used temporal	• Supports	Needs	• Useful for
			filtering to	flexible	retraining when	developing
			remove noise	deployment	applied to new	comprehensive
			during rapid	across various	court layouts.	decision-making
			auring rupiu	adious various	Tours layouts.	accidion making

ISSN: 2581-9429

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

 $International\ Open-Access,\ Double-Blind,\ Peer-Reviewed,\ Refereed,\ Multidisciplinary\ Online\ Journal$

Volume 5, Issue 4, December 2025

Impact Factor: 7.67

			movements.	indoor courts.	• May	frameworks.
			• Tested system	• Lowers referee	misinterpret	 Helps automate
			performance in	workload by	gestures when	common
			indoor sports	automating	players stand	officiating
			including	common	close to	processes for
			volleyball and	decisions.	referees.	indoor
			badminton.			volleyball.
2021	Vision-Based	1.C.Müller	• Utilized Faster	• Offers rich	• Lower FPS	• Useful for
	Volleyball	2. H. Tanaka	R-CNN for	analytical insight	throughput	integrating
	Match		player and ball	into player	compared to	analytical
	Analysis		detection across	movements and	newer YOLO-	features into your
	Using Deep		full-court	team patterns.	based detectors.	volleyball
	Learning		volleyball	• Enables long-	• Susceptible to	system.
			recordings.	term tracking for	detection lag	 Encourages
			 Extracted 	performance	during rapid	adoption of faster
			movement	improvement.	ball exchanges.	detection models
			trajectories to	 Provides 	 Tracking 	for real-time
			study gameplay	objective data-	inconsistencies	automation.
			patterns and	driven	occur when	 Supports hybrid
			transitions.	evaluation for	players overlap	systems
			Conducted	training	in narrow	combining
			statistical	purposes.	spaces.	analytics with
			analysis to	• Supports	• Requires	rule-based
			evaluate player	integration with	high-quality	decision-making.
			performance	rule-based	recordings for	• Forms a basis
			indicators.	referee decision	reliable	for AI-driven
			Validated using	tools.	measurements.	volleyball
			datasets captured			performance
			from university-			evaluation
2021	D 1 TT'	1 7 41 1 11 1	level matches.	G: 1 1	T	research.
2021	Real-Time	1.J.Abdullah	• Developed a	• Simple and	• Lower	• Serves as an
	IN/OUT	2.Maria	rule-based	computationally	accuracy	early model
	Detection System for	Esposito	system to track	lightweight	compared to modern AI	illustrating limitations of
	System for Net and		object placement relative to court	system for basic IN/OUT		limitations of classical IN/OUT
					models.	
	Racket Sports		lines. • Used centroid	decisions. • Requires	• Struggles with high-speed	systems.Highlights the
			estimation to	minimal training	movements and	advantages of
			evaluate object	data and simple	motion blur.	using ML-based
			impact points.	hardware setup.	• Cannot handle	detection
			• Applied	• Offers rapid	occlusion or	methods like
			threshold-based	decision-making	complex ball	yours.
			classification for	suitable for	trajectories.	• Encourages
			IN/OUT	small-scale	• Highly	future integration
			detection.	competitions.	dependent on	of deep learning
			Tested system	• Can be	camera angle	for improved
			performance in	deployed on	and object	reliability.
			r			j •

ISSN: 2581-9429

International Journal of Advanced Research in Science, Communication and Technology

ISO E 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, December 2025

Impact Factor: 7.67

			controlled	edge devices for	visibility.	 Useful for
			indoor court	cost-effective		comparison to
			setups.	automation.		modern AI-
			•			driven decision
						systems.
2020	Automated	1.KevinBrooks	Used classical	Demonstrates	Classical ML	Useful baseline
	Scoring	2. Ana Torres	ML methods	hybrid ML	methods	for comparing
	System for		such as SVM	approach	underperform	modern neural
	Volleyball		and HOG	effective for	compared to	approaches used
	Using		features for	early automation	modern deep	in your project.
	Classical and		initial ball	systems.	learning	Highlights
	Deep		detection.	• Provides clear	approaches.	evolution from
	Learning		Combined deep	logic flow	• Low	classical ML to
	Methods		CNN networks	combining	robustness	advanced deep
			to refine ball	classical	against motion	learning in sports
			classification	detection with	blur and rapid	automation.
			under variable	deep learning	spike	 Encourages
			lighting.	refinement.	trajectories.	adoption of fully
			Applied rule-	• Suitable for	• Limited	deep learning
			based scoring	small-scale	accuracy under	pipelines for
			logic to	matches where	complex player	improved
			automate point	lightweight	formations and	consistency.
			assignment	computation is	occlusions.	 Supports
			during matches.	preferred.	 Requires 	understanding of
			 Conducted 	• Offers	manual	early automated
			experiments	structured	parameter	scoring
			using indoor	baseline for	tuning for	frameworks in
			volleyball	developing	different court	volleyball.
			recordings from	advanced	environments.	
			amateur	referee-		
			tournaments.	assistance		
				technologies.		
2021	A Computer	1.Hartmann	 Captured 	Multi-angle	 Requires 	 Strong basis for
	Vision-	2. S. Rodriguez	volleyball	analysis	complex	multi-camera
	Assisted		gameplay from	significantly	camera	officiating
	Volleyball		three	improves ball	_	systems used in
	Referee		synchronized	localization	calibration prior	professional
	System Using		camera angles to	accuracy.	to use.	volleyball.
	Multi-Angle		track ball	• Reduces	• High	 Encourages
	Ball		projection paths.	referee	computational	integration of
	Detection		• Used	misjudgment	load due to	depth-estimation
			convolutional	during high-	multi-frame	models for
			neural networks	speed spikes and	triangulation.	enhanced ball
			to detect the	jump serves.	Accuracy may	positioning.
			volleyball and	• Provides stable	drop if one or	• Useful for
			identify potential	detection even	more cameras	improving
			landing frames.	when ball	undergo	fairness during

ISSN: 2581-9429

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

 $International\ Open-Access,\ Double-Blind,\ Peer-Reviewed,\ Refereed,\ Multidisciplinary\ Online\ Journal$

Volume 5, Issue 4, December 2025

Impact Factor: 7.67

			• Applied	visibility is	vibration or	competitive
			geometric	blocked in one	misalignment.	tournaments.
			triangulation to	viewpoint.	 Requires 	• Supports
			compute	• Supports	consistent	evolution toward
			accurate ball-	integration into	maintenance	fully automated
			ground contact	indoor stadiums	and periodic	referee systems
			coordinates.	with existing	recalibration.	using
			• Evaluated	camera		synchronized
			IN/OUT	infrastructure.		vision.
			decisions by			
			comparing			
			triangulated			
			points against			
			court boundary			
			masks.			
2020	Volleyball	1.H.Sullivan	• Used a CNN	• Enables	 Classification 	• Useful
	Serve and	2.P.Denvers	model to extract	automated	accuracy drops	extension for
	Spike	3.A.Gupta	spatial features	identification of	significantly	volleyball
	Classification		from serve and	serve and spike	during rapid	coaching
	Using Deep		spike sequences.	actions with high	high-power	analytics and
	Neural		• Applied an	accuracy.	jumps.	strategic review
	Networks		LSTM classifier	• Supports	 Requires 	systems.
			to distinguish	advanced	clean and	• Can
			action categories	analytics for	consistent	complement ball
			from temporal	training and	camera frames	detection to
			frame patterns.	performance	for temporal	generate event-
			• Collected	assessment.	alignment.	wise match
			training data	• Works well	• Limited	breakdown.
			from college-	with pre-	robustness to	 Encourages
			level gameplay	recorded and	occlusion when	adoption of
			under controlled	moderately fast	multiple players	hybrid spatial–
			lighting.	motion	overlap.	temporal models
			• Evaluated	sequences.	 LSTM models 	in volleyball AI.
			classification	 Provides 	require large	• Forms
			accuracy using	explainable	amounts of	foundation for
			cross-validation	feature	labeled	broader action
			across multiple	visualization	temporal data.	recognition tasks
			matches.	through CNN		in sports
				activation maps.		automation.
2020	Line	1.D.Kowalski	• Implemented	• Provides clear	• Classical	 Foundational
	Detection and	2. N. Petrova	classical Hough	and stable	Hough	step for
	Court		Transform to	volleyball court	Transform	automated
	Mapping for		extract linear	boundaries for	struggles with	IN/OUT
	Volleyball		court features	decision	worn or	calculation
	Using		from match	automation.	partially faded	systems.
	Classical and		footage.	• Works across	court lines.	• Encourages
	Deep		Enhanced court	different court	• Segmentation	combining

ISSN: 2581-9429

International Journal of Advanced Research in Science, Communication and Technology

STORY MANAGER ST

 $International\ Open-Access,\ Double-Blind,\ Peer-Reviewed,\ Refereed,\ Multidisciplinary\ Online\ Journal$

Volume 5, Issue 4, December 2025

Impact Factor: 7.67

	Learning		boundary	styles and indoor	models require	geometric and
	Methods		mapping using	color variations.	large annotated	deep learning
	Wielious		deep	• Perspective	datasets.	techniques for
			•	correction	• Sensitive to	
			segmentation			consistency.
			models for pixel-	improves	reflections and	• Supports
			level refinement.	accuracy even	glare from	improved
			 Applied 	under angled	polished indoor	visualization of
			perspective	camera views.	surfaces.	court boundaries
			correction to	• Hybrid	• High-	in referee tools.
			align distorted	approach	resolution	• Relevant to
			camera feeds	ensures	processing	your project for
			with true court	robustness	increases	establishing
			geometry.	across various	computational	reliable decision
			Validated	video	time.	reference lines.
			mapping	resolutions.	tillio.	Totoronee inieg.
			accuracy by	resolutions.		
			comparing			
			detected lines			
			with ground-			
			truth			
			measurements.			
2019	Automated	1.G.Thompson	• Used optical	 Helps identify 	• Optical flow	• Useful pre-
	Detection of	2.R. Santos	flow to detect	precise impact	becomes	processing step
	Volleyball		sudden motion	frames needed	unreliable	for your ball
	Ball Impact		deceleration	for IN/OUT	during rapid	position and
	Frames Using		indicating ball-	decisions.	lighting	landing analysis.
	Motion		ground impact.	• Low	variations.	• Can be
	Analysis		• Combined	computational	• Impact	combined with
	J		temporal	cost due to	detection may	YOLO-based
			gradients with	optical flow	fail if	ball detection for
			CNN-based ball	integration.	movement is	higher accuracy.
			detection for	• Supports	obstructed by	• Encourages
			confirmation.		_	further
				lightweight	players. • Limited	development of
			1			
			frame	pipelines	performance in	temporal-
			differences to			
			isolate the exact		videos.	decision systems.
			moment of ball	assistance.	• Requires	 Provides
			contact.	• Reduces	stable camera	insight into low-
			• Tested system	manual	positioning for	cost referee
			on various	inspection time	consistent	support
			indoor	during match	motion	solutions.
			tournaments to	review.	extraction.	
			measure impact			
			detection			
			accuracy.			
2019	Volleyball	1. M. Rivera	Used YOLO-	Automates	Accuracy	Complements
2019	voneyoan	1. M. Rivera	• Used YULU-	 Automates 	 Accuracy 	 Complements

International Journal of Advanced Research in Science, Communication and Technology

STORY MANAGER ST

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429

Volume 5, Issue 4, December 2025

Impact Factor: 7.67

Player Zonal	2. T. Adkins	based player	player rotation	drops when	ball detection in
Positioning	3. S. Bell	detection to	tracking,	players crowd	building a
and Rotation		identify all	reducing referee	near the center	complete
Tracking		players on the	workload.	line.	volleyball
Using		court.	 Useful for 	• Zone	officiating
Computer		 Assigned 	ensuring	assignment	system.
Vision		players to court	compliance with	errors occur	 Provides new
		zones using grid-	FIVB rotation	when players	opportunities for
		based spatial	rules.	move abruptly.	tactical and
		mapping.	 Supports 	 Requires 	strategic insights
		 Tracked 	tactical analysis	stable lighting	in coaching.
		rotation order	of team	for consistent	 Encourages
		using temporal	formations and	player	multi-module
		consistency and	movement.	bounding	volleyball AI
		movement	 Works with 	boxes.	systems
		patterns.	standard	• Struggles with	combining rules
		• Evaluated	broadcast	jersey-color	and analytics.
		rotation	camera angles.	similarity	Offers baseline
		accuracy across		between teams.	methodology for
		multiple rally			future player
		phases in real			behavior
		gameplay.			modelling
					research.

IV. CONCLUSION

The Smart Volleyball system demonstrates the significant potential of artificial intelligence in enhancing the accuracy, fairness, and transparency of modern volleyball officiating. By integrating advanced computer vision techniques with robust detection, tracking, and rule-based decision-making modules, the system effectively addresses the limitations of traditional human judgement in fast-paced and complex gameplay scenarios. Through real-time identification of ball trajectories, player positions, court boundaries, and rule violations, the framework ensures consistent and unbiased analysis that supports referees in making precise and timely decisions.

The system's multilayered methodology—spanning preprocessing, detection, tracking, and decision evaluation—provides a comprehensive approach to understanding the full dynamics of each rally. This automated pipeline not only minimizes human error but also enhances the viewer experience, coaching feedback, and post-match analysis by offering clear visual overlays and detailed event logs. The ability to store and analyze match data further contributes to long-term performance improvement, supporting both athletes and analysts in refining strategies and identifying areas of weakness.

Overall, Smart Volleyball represents a scalable, efficient, and technologically advanced solution capable of transforming sports officiating through intelligent automation. By reducing dependence on subjective human judgement and providing a reliable data-driven alternative, the system elevates competitive fairness and supports the ongoing modernization of volleyball. Future enhancements—such as multi-camera fusion, improved pose estimation, and predictive analytics—hold the potential to further expand the system's capabilities, ensuring that it remains adaptable to evolving sports technology and increasing officiating demands.

REFERENCES

[1] Wang, J., & Chen, L. (2023). Volleyball movement standardization recognition model based on deep learning and computer vision. Journal of Sports Science and Technology.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, December 2025

Impact Factor: 7.67

- [2] Silva, R., Pereira, T., & Gomes, A. (2024). Volleyball game analysis using computer vision algorithms. Proceedings of SCORES 2024.
- [3] Li, Y., & Zhao, H. (2025). Artificial intelligence in sports analytics: A systematic review and performance trend analysis. Applied Sciences, 15(13), 7254
- [4] Mateo, M., & Ruiz, C. (2022). A comprehensive review of computer vision in sports. Applied Sciences, 12(9), 4429.
- [5] Bianchi, F., & Rossi, L. (2024). Video analytics system for volleyball: Action recognition and tactical behavior analysis. CEUR Workshop Proceedings.
- [6] Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

