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Abstract: Inverse spectral problems constitute a fundamental area of mathematical physics and applied
analysis, focusing on the reconstruction of operators, coefficients, or geometrical structures from
spectral characteristics. While classical inverse spectral theory was initially developed for ordinary
differential operators on intervals, recent decades have witnessed significant extensions to complex
systems such as metric graphs and bounded geometrical domains. These developments are motivated by
applications in quantum mechanics, wave propagation, vibration analysis, and networked physical
systems. This review paper presents a comprehensive overview of inverse spectral problems for
differential operators defined on graphs and geometrical domains. Emphasis is placed on foundational
theories, uniqueness and reconstruction results, analytical methods, and emerging research directions.
The paper highlights how spectral data encode both topological and geometrical information, bridging
operator theory, geometry, and mathematical physics.
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I. INTRODUCTION

Inverse spectral problems form a central and long-standing area of research in mathematical analysis and mathematical
physics, concerned with the reconstruction of operators, coefficients, or underlying structures from spectral data. In
contrast to direct spectral problems, where the spectrum is derived from a known operator, inverse spectral problems
seek to determine unknown properties of a system using information such as eigen-values, eigen-functions, or spectral
measures. These problems arise naturally in diverse scientific fields including quantum mechanics, vibration analysis,
wave propagation, electrical networks, and materials science. Over the past century, inverse spectral theory has evolved
from classical one-dimensional differential operators to encompass complex systems such as operators on graphs and
operators defined on bounded geometrical domains, significantly broadening both its theoretical depth and practical
relevance.

The classical formulation of inverse spectral problems is rooted in the Sturm—Liouville theory, where one considers a

second-order differential operator of the form
2
L =

Ly(z) = ———3 +al@)y(z), z € (ad),

subject to appropriate boundary conditions. The spectral data consist of eigen-values A, and, in some cases, norming
constants or spectral functions. The inverse problem asks whether the potential function q(x) can be uniquely
determined from this spectral information. Early foundational results demonstrated that a single spectrum is often
insufficient for unique reconstruction, while additional spectral data lead to uniqueness and constructive recovery.
These classical developments established analytical tools such as transformation operators, integral equations, and
Weyl-Titchmarsh theory, which continue to influence modern inverse problems in more complex settings.
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In recent decades, growing attention has been directed toward inverse spectral problems for differential operators
defined on graphs, commonly referred to as metric or quantum graphs. A graph consists of vertices connected by edges,
each endowed with a metric structure so that differential equations can be defined along the edges. On each edge e,
typically identified with an interval [0, 1.], a differential operator of Sturm—Liouville type is considered:

d*y.

da?
The global behavior of the operator is governed by vertex matching conditions, such as continuity of functions at
vertices and Kirchhoff-type balance conditions on derivatives. These conditions encode physical conservation laws and
determine the spectral properties of the graph. Inverse spectral problems on graphs aim to reconstruct the edge
potentials q.(x), edge lengths I, or even the topology of the graph itself using spectral data.
The study of inverse problems on graphs introduces challenges not present in classical one-dimensional settings.
Spectral data on graphs reflect not only local properties of differential operators but also global topological and
geometrical characteristics of the underlying network. Unlike interval problems, non-isomorphic graphs may share
identical spectra, indicating inherent non-uniqueness. Nevertheless, under suitable assumptions such as known
topology, additional boundary spectral data, or Weyl functions associated with boundary vertices unique reconstruction
becomes possible. These results highlight the deep interplay between spectral theory, graph topology, and geometry,
and demonstrate how inverse spectral analysis can be used as a tool to probe the internal structure of complex
networked systems.
Parallel to developments on graphs, inverse spectral problems for differential operators on defined geometrical domains
have emerged as a major research direction. In this setting, one typically considers elliptic operators on bounded
domains Q c R", such as

Lu(z) = —Au(z) + g(z)u(z),

with boundary conditions of Dirichlet, Neumann, or Robin type. The spectrum of such operators depends intricately on
both the geometry of the domain and the internal coefficients. Inverse spectral problems seek to determine properties of
the domain shape or the potential function q(x) from spectral data. These problems are closely related to classical
questions in spectral geometry, including the extent to which the geometry of a domain is encoded in its spectrum.
One of the most striking aspects of inverse spectral problems on geometrical domains is the balance between
uniqueness and non-uniqueness. While asymptotic formulas for eigenvalues reveal global geometrical invariants such
as volume and surface area, there exist geometrically distinct domains that are isospectral. This phenomenon
demonstrates that spectral data alone may be insufficient to fully characterize geometry. As a result, inverse problems
in multidimensional domains often rely on enriched data sets, including boundary spectral data or dynamical response
operators. Analytical techniques from microlocal analysis, boundary control methods, and functional analysis play a
crucial role in establishing reconstruction results in these contexts.
A unifying theme across inverse spectral problems on graphs and geometrical domains is the role of Weyl functions and
spectral mappings. These objects generalize classical spectral functions and serve as effective carriers of boundary
information. For a boundary vertex or boundary point, the Weyl function relates boundary values of solutions to
spectral parameters, providing a powerful analytical framework for reconstruction. In many cases, knowledge of Weyl
functions on a suitable set of boundary points uniquely determines the operator coefficients throughout the structure,
whether the structure is a graph or a multidimensional domain.
The motivation for studying inverse spectral problems extends beyond pure mathematics. In quantum mechanics,
operators on graphs model quantum wires and nanostructures, where inverse spectral analysis aids in understanding
internal potentials from observed energy levels. In engineering and applied physics, inverse spectral methods are
employed in vibration analysis, nondestructive testing, and structural identification. In medical imaging and geophysics,
related inverse problems contribute to the reconstruction of internal properties of media from observed wave responses.
Thus, advances in inverse spectral theory have direct implications for both theoretical understanding and practical
applications.
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Inverse spectral problems for differential operators on graphs and defined geometrical domains represent a natural and
significant extension of classical Sturm—Liouville theory. They combine ideas from spectral analysis, geometry,
topology, and mathematical physics, offering deep insights into how spectral data encode structural information. This
review focuses on the theoretical foundations, analytical methods, and conceptual challenges of these problems,
providing a unified perspective on inverse spectral analysis across one-dimensional, networked, and multidimensional
settings.

CLASSICAL INVERSE SPECTRAL PROBLEMS

The classical inverse spectral problem is commonly formulated for the Sturm—Liouville operator
d*y

subject to boundary conditions such as

y(0) =0, y(=x)=0.

The inverse problem asks whether the potential function q(x) can be uniquely reconstructed from spectral data {%n}%

=1, A, are the eigenvalues of L.

Fundamental results demonstrate that a single spectrum is generally insufficient for unique reconstruction, while two
spectra or spectral function data ensure uniqueness (Borg, 1946). Later, comprehensive reconstruction techniques were
developed using transformation operators and integral equations, most notably the Gelfand—Levitan and Marchenko
methods (Marchenko, 1952). These classical results laid the analytical groundwork for inverse problems on more
complex structures.

DIFFERENTIAL OPERATORS ON GRAPHS
1. Metric Graphs and Operators
A metric graph consists of vertices connected by edges, each edge identified with an interval [0, 1.]. On each edge e, a
differential operator of the form
)

d"-yf g . Af
——5 + qe(®)ye = Aye

dax=
is defined, where q.(x) is an edge-dependent potential. The operator becomes global through vertex matching
(boundary) conditions, typically of Kirchhoff type:

ve(v) =y (v), D ke =0

e~

Such operators arise naturally in quantum mechanics, electrical networks, and wave propagation models.

2. Inverse Spectral Problems on Graphs

Inverse spectral problems on graphs involve reconstructing edge lengths, potentials, or vertex conditions from spectral
characteristics. Unlike interval problems, spectral data on graphs encode both topological structure and metric
properties, making the inverse analysis substantially more intricate.

One of the central questions is whether the spectrum uniquely determines the graph. It has been shown that non-
isomorphic graphs may share the same spectrum, indicating non-uniqueness in general. However, under additional
constraints such as known topology or supplementary spectral data unique reconstruction is achievable (Kuchment,
2004).
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Yurko (2010) developed a systematic framework for inverse spectral problems on graphs, extending classical Sturm—
Liouville theory. His approach constructs Weyl functions for boundary vertices and proves that the collection of such
functions uniquely determines the potentials on the graph.

INVERSE PROBLEMS ON DEFINED GEOMETRICAL DOMAINS
1. Spectral Problems in Bounded Domains
Consider a bounded domain Q < R, and the elliptic operator

Lu = —Au + g(z)u,
with Dirichlet boundary conditions
ulagn = 0.

The spectrum {A,} depends on both the geometry of Q and the coefficient q(x). Inverse spectral problems in this setting
aim to determine the domain shape or internal parameters from spectral data.

2. Geometry and Spectral Determination

Early results demonstrated that certain geometrical features, such as volume and boundary area, are encoded in the
asymptotic behavior of eigenvalues. However, isospectral but non-congruent domains exist, revealing limitations of
spectral determination.

Inverse problems for geometrical domains often require enriched data, such as boundary spectral data or response
operators. Techniques from microlocal analysis and boundary control methods have proven effective in establishing
uniqueness results under suitable assumptions.

ANALYTICAL METHODS AND TECHNIQUES

Several analytical tools dominate inverse spectral analysis across graphs and domains:

Weyl-Titchmarsh functions, which generalize classical spectral functions and encapsulate boundary behavior.
Transformation operator methods, enabling constructive recovery of coefficients.

Spectral mappings, relating unknown operators to model operators with known spectra.

Boundary control and variational techniques, particularly relevant for multidimensional domains.

These methods highlight deep connections between operator theory, functional analysis, and geometry.

APPLICATIONS AND PHYSICAL INTERPRETATION

Inverse spectral problems on graphs and domains have wide-ranging applications. In quantum mechanics, they model
electron transport in nanostructures. In engineering, they appear in vibration analysis of networks and structural health
monitoring. In geophysics and medical imaging, inverse spectral ideas contribute to non-destructive testing and
tomography. The interplay between theory and application continues to motivate new mathematical developments.

CHALLENGES AND FUTURE DIRECTIONS

Despite significant progress, many challenges remain. Non-uniqueness issues persist for general graphs and domains.
Stability of reconstruction under noisy data is another open problem. Future research is likely to focus on hybrid
approaches combining spectral data with time-domain information, as well as computational inverse methods for large-
scale networks.

II. CONCLUSION
The review of inverse spectral problems for differential operators on graphs and defined geometrical domains
highlights the depth, complexity, and interdisciplinary significance of this evolving field. Originating from classical
Sturm—Liouville theory, inverse spectral analysis has developed into a powerful framework for understanding how
spectral data encode information about underlying operators, geometries, and topological structures. While early studies
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focused primarily on one-dimensional differential operators, modern research has extended these ideas to far more
intricate systems, including metric graphs and multidimensional geometrical domains, thereby greatly enriching both
theory and application.

For differential operators on graphs, inverse spectral problems reveal a delicate interplay between local operator
coefficients and global structural features. Spectral data on graphs not only reflect the behavior of differential equations
along individual edges but also capture information about vertex connectivity, boundary conditions, and metric
properties. Although non-uniqueness phenomena demonstrate that distinct graphs may share identical spectra,
significant progress has been made in identifying conditions under which unique reconstruction is possible. The use of
additional spectral information, such as Weyl functions or boundary spectral data, has proven essential in overcoming
ambiguities and enabling the recovery of potentials, edge lengths, and other parameters. These advances underscore the
importance of combining analytical rigor with structural insight in addressing inverse problems on complex networks.
In the context of defined geometrical domains, inverse spectral problems emphasize the intricate relationship between
geometry and analysis. Spectral data for elliptic operators contain valuable information about global geometrical
invariants, yet they do not always uniquely determine the shape of a domain. The existence of isospectral but
geometrically distinct domains illustrates fundamental limitations of spectral determination and motivates the use of
enriched data sets and hybrid analytical approaches. Methods such as boundary control techniques, microlocal analysis,
and variational principles have emerged as effective tools for extracting geometrical and physical information from
spectral observations, contributing to a deeper understanding of multidimensional inverse problems.

A unifying feature across inverse spectral problems on graphs and geometrical domains is the central role of boundary
information. Weyl-Titchmarsh functions and related spectral mappings serve as key analytical instruments, translating
boundary measurements into internal structural knowledge. These concepts bridge classical and modern inverse spectral
theory, providing a common language for addressing problems across different mathematical settings. Their
effectiveness highlights the importance of boundary behavior in determining the global properties of differential
operators.

Beyond theoretical significance, inverse spectral problems possess strong practical relevance. Applications in quantum
mechanics, nanotechnology, vibration analysis, and wave propagation demonstrate how spectral data can be used to
infer otherwise inaccessible internal features of physical systems. As technological advances enable more precise
spectral measurements, the demand for robust inverse methods continues to grow, further motivating research in this
area.

Inverse spectral problems for differential operators on graphs and defined geometrical domains represent a vibrant and
challenging area of modern mathematical research. While substantial progress has been achieved in understanding
uniqueness, reconstruction, and analytical methods, many open questions remain, particularly concerning stability,
computational implementation, and generalization to complex and random structures. Continued investigation in this
field is expected to deepen theoretical insights and expand practical applications, reinforcing the fundamental role of
inverse spectral analysis in both mathematics and applied sciences.
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