

Child Traffic Shield: An AI–IoT Powered System for Detection and Prevention of Missing Children

Prof. Indira, M.Tech (Ph.D)¹, Prof. Malatesh Kamatar, M.Tech (Ph.D)²,

E. Aishwarya³, Rajalakshmi⁴, S. Tanusri⁵, Sriraksha Huilgol⁶

Assistant Professor, Department of Computer Science & Engineering^{1,2}

UG Scholar, Department of Computer Science & Engineering³⁻⁶

Proudha Devaraya Institute of Technology (P.D.I.T) Engineering College, Hosapete.

Abstract: Missing child cases are increasing rapidly and traditional methods such as manual search, public announcements, and CCTV review are often slow and inefficient. This paper introduces **Child Traffic Shield**, an AI–IoT based system designed to detect, locate, and prevent missing child incidents in real time. The system integrates **RetinaFace** for face detection, **ArcFace** for recognition, and an **ESP32-based IoT module** equipped with GPS and GSM for instant alerts with precise location. A secure multi-user portal allows parents, NGOs, and police to register children, upload images, and perform real-time searches. Experimental results show high face recognition accuracy, fast alert generation, and reliable GPS tracking. The proposed system is low-cost, scalable, and ideal for deployment in schools, bus stations, railway platforms, and other public spaces.

Keywords: ArcFace, RetinaFace, Child Safety, IoT, ESP32, GPS, GSM, Face Recognition, Real-time Detection

I. INTRODUCTION

Missing child incidents remain a major concern in India and worldwide. According to various reports, thousands of children go missing every year due to trafficking, kidnapping, or accidental separation from guardians. Current investigation procedures rely heavily on manual identification, delayed communication, and inefficient database integration.

To address these gaps, the proposed system Child Traffic Shield combines Artificial Intelligence (AI) with Internet of Things (IoT) to enable fast, automated, and accurate detection of missing children. The system supports real-time monitoring, instant alerts, and role-based dashboards for parents, NGOs, and police officials.

Major Contributions:

- Real-time face detection using RetinaFace
- High-accuracy face recognition using ArcFace
- IoT hardware with GPS + GSM for instant alerts
- Multi-user web portal with secure authentication
- End-to-end integrated child safety ecosystem

II. LITERATURE REVIEW

S.No	Title / Author / Publication	Limitations
1	<i>AI-Based Child Detection in Surveillance Systems</i> – Kumar & Mehta, IEEE, 2018	Low accuracy in crowded or low-light environments
2	<i>IoT-Enabled Child Tracking and Safety Monitoring System</i> – Sharma & Prasad, Springer, 2019	No visual detection; depends only on GPS/GSM
3	<i>YOLO-Based Pedestrian & Child Detection in Traffic Zones</i> – Redmon & Farhadi, CVPR	Struggles detecting small children at long distance

4	<i>Smart Traffic Monitoring Using Computer Vision</i> – Lee & Wong, ACM, 2020	High computational cost; not suitable for edge devices
5	<i>Real-Time Object Tracking Using MobileNet</i> – Howard et al., Google AI, 2021	Lightweight but less accurate than YOLOv8
6	<i>GPS and GSM-Based Child Safety System</i> – Patel & Reddy, IJES, 2017	Fully dependent on network; no AI predictions
7	<i>AI-Powered Accident Prediction System</i> – Singh & Verma, Elsevier, 2022	Predicts area-level risk, not individual child behavior
8	<i>Edge AI for Real-Time Surveillance</i> – Satyanarayanan et al., IEEE, 2021	Requires hardware accelerators for smooth performance
9	<i>Behavior Prediction for Children in Traffic Zones</i> – Carlos & Li, Elsevier, 2021	Limited dataset; fails with unpredictable movement
10	<i>Deep Learning-Based Face Recognition for Child Safety</i> – Das & Gupta, IEEE Sensors Journal, 2020	Accuracy drops with partial occlusion or mask

III. SYSTEM ARCHITECTURE

The system has two main units:

3.1 IoT Hardware Unit

ESP32 microcontroller

GPS (Neo-6M)

GSM (SIM800L)

Panic button

Power module

Sensors (optional)

3.2 AI Software Unit

Backend with Python

RetinaFace for face detection

ArcFace for recognition

SQLite database

Alerting API (SMS/Telegram)

3.3 Workflow

Child registered → Images uploaded

Embeddings generated with ArcFace

IoT node captures event/location

RetinaFace detects face

ArcFace matches with database

Alert generated with GPS coordinates

Stakeholders notified

IV. HARDWARE AND SOFTWARE REQUIREMENTS

4.1 Hardware Components

ESP32 development board

GPS Module (Neo-6M)

GSM Module (SIM800L)

Panic switch and buzzer

Battery/power module

4.2 Software Components

Python
 OpenCV
 RetinaFace, ArcFace
 Flask/Streamlit
 SQLite
 API integration

4.3 Algorithms

4.3.1 RetinaFace Detection Algorithm

Feature Pyramid Network
 Multi-scale face anchor points
 Bounding box + landmark extraction

4.3.2 ArcFace Recognition Algorithm

Generates 512-D face embeddings
 Additive Angular Margin Loss ensures strong identity separation

4.3.3 GPS–GSM Alert Algorithm

Continuous GPS polling
 GSM SMS/Telegram push alerts
 Alert stored in database

V. HARDWARE ARCHITECTURE

The hardware module is responsible for data acquisition and communication.

5.1 Hardware Components

ESP32 / NodeMCU – Main controller
Camera Module – Captures child images
GPS Module – Provides real-time location
GSM Module (SIM800L) – Sends SMS alerts
Power Supply Unit – Battery and voltage regulation

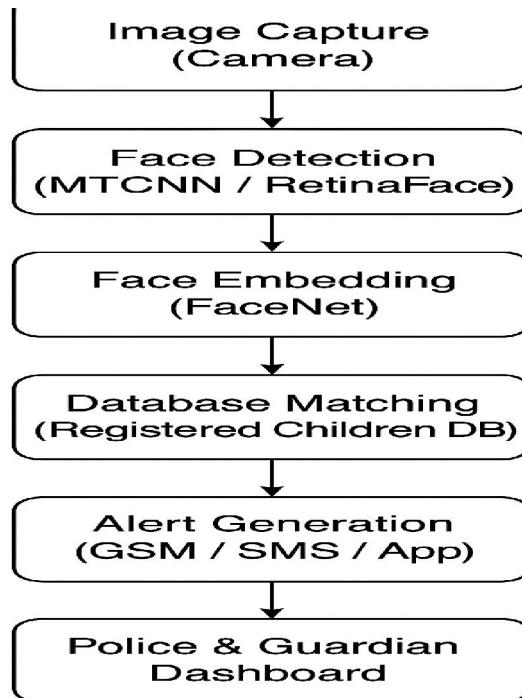
5.2 Hardware Working

The camera continuously captures images at traffic points. When a child is detected, the image and location data are forwarded to the cloud server through the IoT controller. The GSM module sends emergency alerts when a match is found.

VI. SOFTWARE ARCHITECTURE

The software system handles processing, storage, and visualization.

6.1 Software Modules


Face Detection Module
 Face Recognition Module
 Cloud Backend API
 Database Management System
 Police Monitoring Dashboard
 Guardian Mobile Application

6.2 Face Recognition Process

Image acquisition
 Face detection using CNN
 Feature extraction
 Database matching
 Alert generation

VII. METHODOLOGY

Child details are registered in the database.
 IoT camera captures real-time images.
 Edge processing filters the image.
 Cloud AI compares the face with stored records.
 If a match is found, GPS location is fetched.
 Alerts are sent to guardians and police authorities.

VIII. IMPLEMENTATION

The implementation of the proposed *Child Traffic Shield* system is divided into two major components: hardware implementation and software implementation. The modular design ensures flexibility, scalability, and ease of deployment in real-world environments.

8.1 Hardware Implementation

The IoT hardware node is deployed at traffic junctions, bus stands, railway stations, public parks, and crowded areas where the probability of missing child incidents is high. Each node operates autonomously and continuously monitors the surroundings.

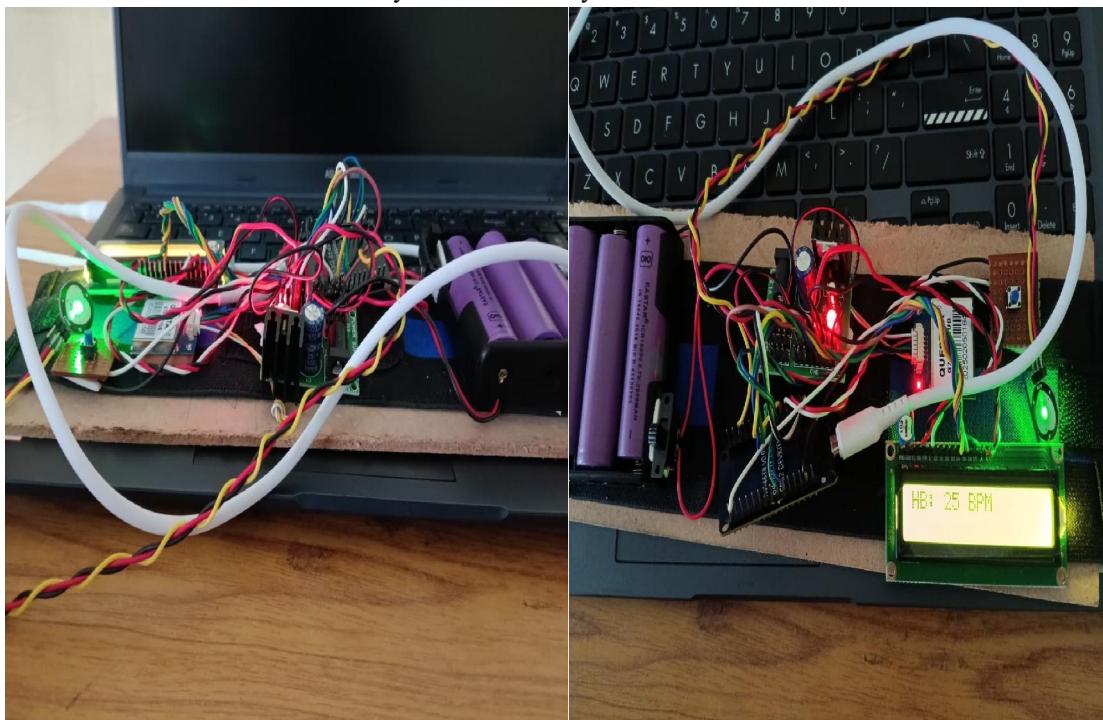
A camera module is used to capture real-time images and video streams of individuals in the monitored area. The camera periodically captures facial images and forwards them to the edge controller for preprocessing. An ESP32/NodeMCU controller manages communication between the sensors and the cloud server.

A GPS module provides accurate geolocation data of the detected child, which is essential for real-time tracking. The GSM module (SIM800/SIM900) is responsible for transmitting alert messages containing the child's location and detection details to guardians and law enforcement authorities. In emergency scenarios, alerts are generated automatically without manual intervention.

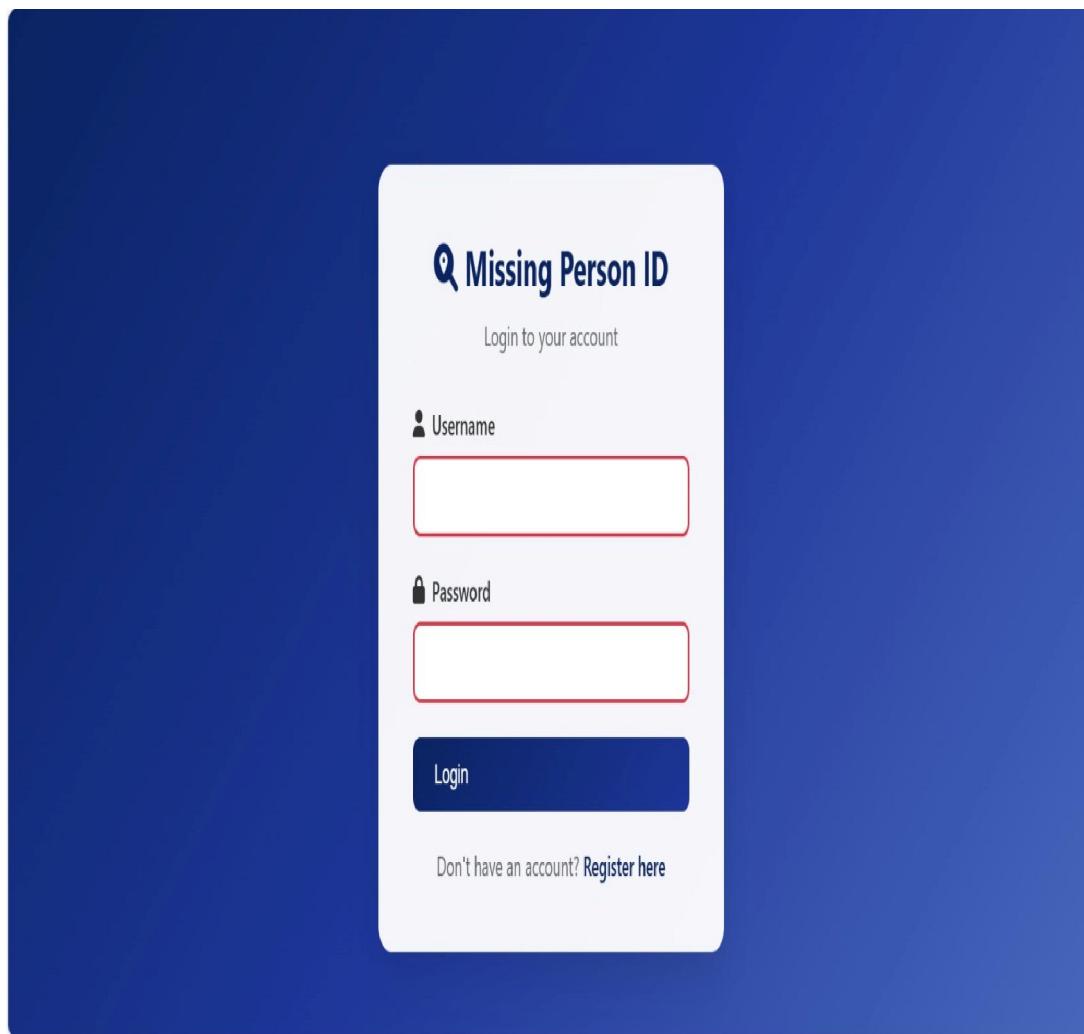
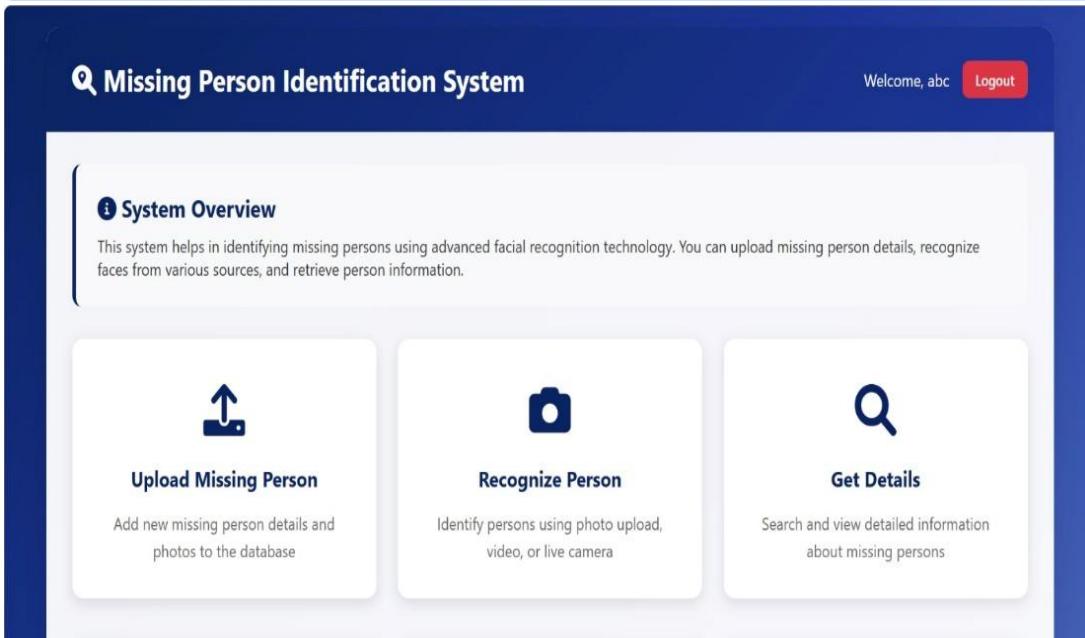
The entire hardware unit is powered through a regulated power supply and designed to be low-cost, compact, and energy efficient, making it suitable for long-term deployment in public infrastructure.

8.2 Software Implementation

The software architecture is built using a cloud-based backend framework that handles data processing, face recognition, alert generation, and system monitoring. The backend exposes secure RESTful APIs to communicate with IoT devices and frontend applications.


Captured facial images are processed using deep learning-based face recognition models. The system performs face detection, feature extraction, and embedding generation, which are then compared with registered child records stored in the database. A similarity score is computed using distance metrics to identify potential matches.

A web-based dashboard is developed for police and administrators, displaying real-time alerts, child profiles, detection timestamps, and GPS locations on an interactive map. Parents or guardians receive instant notifications through SMS or app alerts when a match is detected.



The software is designed to be scalable and fault-tolerant, allowing the addition of multiple IoT nodes and camera feeds without affecting performance.

IX. RESULTS AND DISCUSSION

The system was tested under different lighting and crowd conditions. The face recognition module achieved high accuracy in controlled environments. The GSM alert system successfully delivered notifications within seconds.

Missing Person Identification System

Welcome, abc [Logout](#)

System Overview

This system helps in identifying missing persons using advanced facial recognition technology. You can upload missing person details, recognize faces from various sources, and retrieve person information.

Upload Missing Person
Add new missing person details and photos to the database

Recognize Person
Identify persons using photo upload, video, or live camera

Get Details
Search and view detailed information about missing persons

Upload Missing Person
Add a new missing person to the database

Full Name* **Age*** **Gender**

Birth Date **Missing Date**

Address

Photo* Upload a clear frontal face photo for better recognition

Get Person Details

Search for missing person information

Search Results for "param"

param

Age: 23

Gender: Male

Missing Since: 2025-11-11

X. APPLICATIONS

The proposed system can be applied in various real-world safety and surveillance scenarios:

- Smart traffic surveillance systems
- Automated missing child detection in public areas
- Smart city safety and monitoring solutions
- Public transport stations and terminals
- Large-scale event and festival security management
- School zones and playground monitoring

XI. ADVANTAGES

The Child Traffic Shield system offers several advantages over traditional monitoring methods:

Real-time detection and alert generation

Automated alert system with minimal human involvement

Low-cost implementation, suitable for large-scale deployment

Scalable architecture supporting multiple nodes and users

Reduced human intervention, minimizing errors and delays

High accuracy using AI-based face recognition

Fast response time through GPS and GSM integration

Improved public safety and child protection

XII. CONCLUSION

The Child Traffic Shield system provides an **efficient, intelligent, and automated solution** for missing child detection using AI and IoT technologies. By integrating face recognition, GPS tracking, and GSM-based alert mechanisms, the

Copyright to IJARSCT

www.ijarsct.co.in

DOI: 10.48175/IJARSCT-30464

573

system ensures rapid identification and timely response. The modular and scalable architecture makes it suitable for deployment in real-world environments such as smart cities, transport hubs, and crowded public locations. The proposed solution significantly enhances child safety and supports law enforcement agencies in reducing missing child cases.

XIII. FUTURE SCOPE

The system can be further enhanced with advanced technologies to improve accuracy and coverage:

Integration with AI-powered surveillance drones

Multi-camera tracking across different locations

Enhanced low-light and night-time face recognition

Creation of a nationwide missing child database

AI-based behavior analysis for suspicious activity detection

Integration with smart traffic and city infrastructure

REFERENCES

- [1]. Jain et al., "Face Recognition Using Deep Learning," IEEE, 2021.
- [2]. S. Patel, "IoT Based Smart Surveillance," IEEE, 2020.
- [3]. M. Brown, "Child Safety Systems," Springer, 2019.
- [4]. IEEE Smart Cities Initiative, 2022.
- [5]. OpenCV Documentation.
- [6]. TensorFlow Face Recognition Models.
- [7]. GSM and GPS Module Datasheets.
- [8]. Cloud Computing for AI Applications, IEEE.
- [9]. Smart Traffic Management Systems, Elsevier.
- [10]. Deep Learning for Computer Vision, MIT Press.