

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, November 2025

Telmisartan: A Comprehensive Review of Its Pharmacological Profile and Therapeutic Applications

Tejas Bapu Fatangade, Kawade Kartik D, Kondhare Karan S, Prof. Kuldeep P. Waidya Sahakar Maharshi Kisanrao Varal Patil College of Pharmacy, Nighoj

Abstract: Telmisartan, a long-acting angiotensin II receptor blocker (ARB), has emerged as a cornerstone in the management of hypertension and related cardiovascular disorders. Beyond its primary antihypertensive action, Telmisartan exhibits unique pharmacological characteristics, including high lipophilicity, prolonged receptor binding, and partial activation of peroxisome proliferatoractivated receptor-gamma (PPAR-y), which collectively distinguish it from other agents in its class. These properties contribute to additional therapeutic benefits such as improved insulin sensitivity, favorable lipid modulation, and protection against metabolic syndrome. The present review provides a comprehensive overview of Telmisartan's pharmacokinetic and pharmacodynamic profile, mechanisms of action, and clinical efficacy across various disease conditions, including hypertension, heart failure, diabetic nephropathy, and atherosclerosis. Furthermore, it highlights recent findings on Telmisartan's potential role in metabolic and inflammatory disorders, emphasizing its pleiotropic effects and emerging therapeutic perspectives. Overall, Telmisartan represents a multifaceted agent with broad clinical utility, warranting continued research into its expanding therapeutic applications.

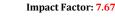
Keywords: Telmisartan, angiotensin II receptor blocker, hypertension, PPAR-γ activation, cardiovascular diseases, metabolic syndrome

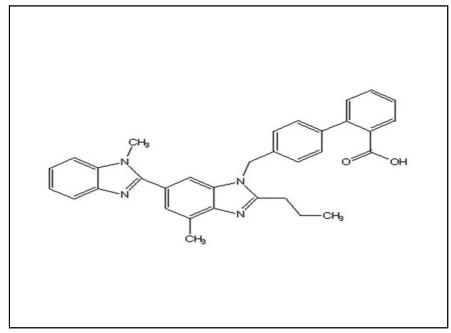
I. INTRODUCTION

Telmisartan, chemically known as 4'-[[4-methyl-6-(1-methyl-1H-benzimidazol-2-yl)-2-propyl-1H-benzimidazol-1-yl]methyl]biphenyl-2-carboxylic acid, is a potent angiotensin II receptor blocker (ARB) that has emerged as a versatile therapeutic agent with diverse pharmacological actions extending beyond its primary indication for essential hypertension.[1] The molecular formula of telmisartan is $C_{33}H_{30}N_4O_2$ with a molecular weight of 514.63.[2] Since its approval in 1999, telmisartan has demonstrated unique pharmacological properties that distinguish it from other ARBs, including the longest plasma half-life, highest lipophilicity, and strongest receptor binding affinity in its class.[3] Telmisartan was patented in 1991 and came into medical use in 1999, and it is now available as a generic medication.[4]

Chemical and Physical Properties of Telmisartan

Telmisartan is characterized as a white or slightly yellowish crystalline powder that is odorless and tasteless. The compound exhibits polymorphism and is practically insoluble in water, slightly soluble in methanol, sparingly soluble in methylene chloride, and dissolves readily in 0.1 mol/L sodium hydroxide.




International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, November 2025

Structure 1. Telmisartan

The partition coefficient of telmisartan is log 3.2 (n-octanol/buffer at pH 7.4), making it the most lipophilic of all ARBs.[5] This high lipophilicity facilitates oral absorption, permits tissue and cell penetration, and results in a high volume of distribution of approximately 500 L (7 L/kg). The molar volume is 414.9 cm³, with a surface tension of 48.7 dyne/cm and density of 1.24 g/cm³.[6]

Mechanism of Action

Angiotensin II Type 1 Receptor Blockade

Telmisartan functions primarily as a highly selective angiotensin II type 1 (AT_1) receptor antagonist, blocking the vasoconstrictor and aldosterone-secreting effects of angiotensin II by selectively binding to AT_1 receptors in vascular smooth muscle and the adrenal gland. The drug has much greater affinity (>3,000-fold) for the AT_1 receptor compared to the AT_2 receptor.[7] Unlike angiotensin-converting enzyme (ACE) inhibitors, telmisartan does not inhibit the biosynthesis of angiotensin II and does not interfere with other hormone receptors or ion channels. Telmisartan exhibits insurmountable antagonism at the AT_1 receptor with a dissociation half-life that has been reported variably in different in vitro studies.[8]

Telmisartan interferes with the binding of angiotensin II to the angiotensin II AT1-receptor by binding reversibly and selectively to the receptors in vascular smooth muscle and the adrenal gland. As angiotensin II is a vasoconstrictor, which also stimulates the synthesis and release of aldosterone, blockage of its effects results in decreases in systemic vascular resistance. Telmisartan does not inhibit the angiotensin converting enzyme, other hormone receptors, or ion channels.5 Studies also suggest that telmisartan is a partial agonist of $PPAR\gamma$, which is an established target for antidiabetic drugs. This suggests that telmisartan can improve carbohydrate and lipid metabolism, as well as control insulin resistance without causing the side effects that are associated with full $PPAR\gamma$ activators.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, November 2025

Impact Factor: 7.67

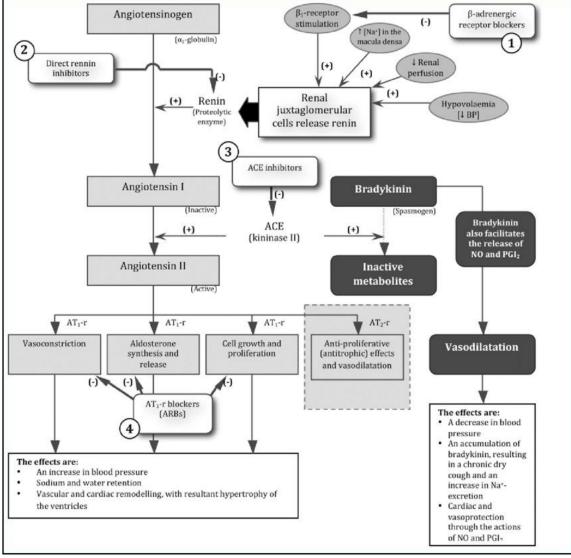


Fig 1. Renin Angiotensin Aldesterone System (RAAS System)

Peroxisome Proliferator-Activated Receptor Gamma (PPARy) Agonism

A distinctive feature of telmisartan is its partial agonistic activity toward peroxisome proliferator-activated receptor gamma (PPARy), which is an established target for antidiabetic drugs. This dual mechanism of action distinguishes telmisartan from other ARBs and contributes to metabolic regulation and organ protection.[9]

Molecular modeling studies have revealed that telmisartan is surrounded by helices H3, H6, and H7 in the PPARy ligand-binding domain, with strong hydrophobic interactions and hydrogen bonding with Ser342, similar to other partial PPARy agonists.[10]

International Journal of Advanced Research in Science, Communication and Technology

9001:

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, November 2025

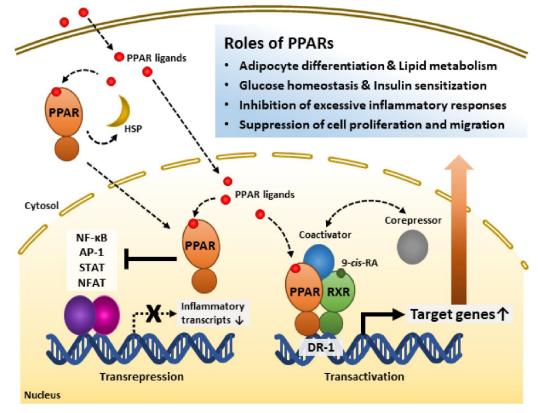


Fig 2. The roles and mechanisms of Peroxisome Proliferator-Activated Receptors (PPARs)

Unlike full agonists such as rosiglitazone, telmisartan does not make direct contact with the activation function helix (AF-2), which explains its partial agonist activity. The PPAR γ agonistic property enables telmisartan to improve carbohydrate and lipid metabolism, as well as control insulin resistance without causing the side effects associated with full PPAR γ activators.[11]

Pharmacokinetics

Absorption and Bioavailability

Following oral administration, telmisartan is rapidly absorbed with peak plasma concentrations (Tmax) occurring within 0.5 to 3.0 hours, with a tendency to decrease at higher doses.[12]

The absolute bioavailability of telmisartan is dose-dependent, ranging from 42% at 40 mg to 58% at 160 mg.[13]

Approximately 50% of the oral dose is absorbed, as demonstrated in radiolabeled studies. Food slightly decreases bioavailability, with reductions of about 6% for the 40 mg dose and 20% for the 160 mg dose. [14]

The pharmacokinetics of orally administered telmisartan are nonlinear over the dose range of 20 to 160 mg, exhibiting greater than proportional increases in Cmax and AUC with increasing doses.[15]

Distribution

Telmisartan is highly bound to plasma proteins (>99.5%), primarily to albumin and α_1 -acid glycoprotein. Plasma protein binding remains constant over the concentration range of 0.1 to 10 μ g/mL and is not affected by the degree of renal impairment. The high lipophilicity of telmisartan results in a remarkably large volume of distribution of approximately 500 L, which is substantially greater than the volumes of distribution observed with candesartan, valsartan, eprosartan, and the active metabolite of losartan (0.13-0.24 L/kg). Telmisartan is reversibly distributed into erythrocytes.[16]

DOI: 10.48175/568

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, November 2025

Impact Factor: 7.67

Metabolism

Telmisartan undergoes minimal metabolism, with the parent compound accounting for approximately 84% of total radioactivity in plasma. The drug is metabolized primarily by conjugation to form a pharmacologically inactive acylglucuronide, which represents approximately 11% of the measured radioactivity in plasma after a single dose. This glucuronide conjugate is the only metabolite identified in human plasma and urine. Importantly, cytochrome P450 isoenzymes are not involved in the metabolism of telmisartan, minimizing the potential for drug-drug interactions. Studies have shown that hepatic uptake via Organic Anion Transporting Polypeptide 1B3 (OATP1B3) plays a role in telmisartan's nonlinear pharmacokinetics.[17]

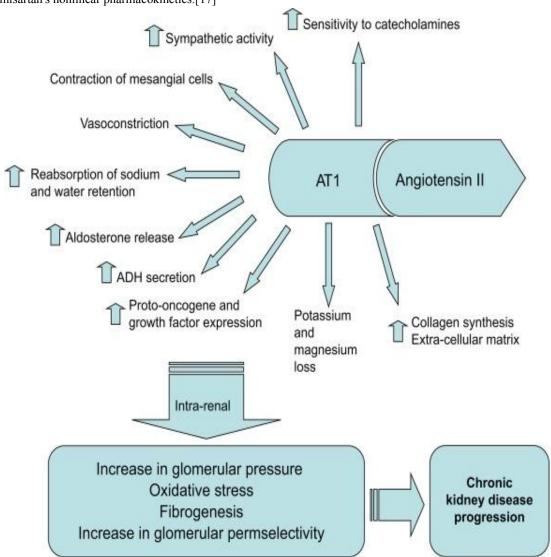


Fig 3. Key Effects of Angiotensin II on the AT1 Receptor

Elimination

Telmisartan exhibits biexponential decay kinetics with a terminal elimination half-life exceeding 20 hours in both healthy subjects and hypertensive patients, making it suitable for once-daily dosing. The mean terminal half-life is generally reported as approximately 24 hours. Total plasma clearance is high, ranging from 800 to 2500 mL/min

DOI: 10.48175/568

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, November 2025

Impact Factor: 7.67

(greater than 800 mL/min), and is rapid. Following either intravenous or oral administration of ¹⁴C-labeled telmisartan, most of the administered dose (>97%) is eliminated unchanged in feces via biliary excretion, with only minute amounts found in urine (0.91% after intravenous and 0.49% after oral administration). [18] More than 90% of the administered dose is excreted within 120 hours, with excretion balance complete 144 hours after dosing. With once-daily dosing, trough plasma concentrations are approximately 10-25% of peak plasma concentrations. The accumulation index in plasma is 1.5 to 2.0 upon repeated once-daily dosing, with steady state observed after 5-7 days.[19]

Pharmacodynamics and Therapeutic Applications Hypertension

Telmisartan is widely used for the treatment of essential hypertension and has been extensively evaluated in clinical trials.[20] In large double-blind, randomized, multicenter clinical trials in patients with mild to moderate hypertension, telmisartan (20 to 160 mg once daily) produced mean reductions in supine trough systolic and diastolic blood pressure of up to 15.5 and 10.5 mm Hg, respectively.[21]

Maximum blood pressure reduction occurs with dosages of 40 to 80 mg per day. [22] The usual initial dosage is 40 mg once daily, with a maintenance dosage range of 20-80 mg given once daily. [23] Most of the antihypertensive effect is evident within 2 weeks, with maximum reduction generally attained after 4 weeks. [24]

In comparative studies, telmisartan 40 to 120 mg per day was as effective as amlodipine 5 to 10 mg per day or atenolol 50 to 100 mg per day.[25] A meta-analysis demonstrated that telmisartan was more effective than losartan in reducing both systolic and diastolic blood pressure in patients with mild to moderate essential hypertension, with significantly higher efficacy observed in Asian populations compared to Caucasian populations.[26]

Ambulatory blood pressure monitoring studies have demonstrated that telmisartan provides effective 24-hour blood pressure control with high smoothness index values, indicating sustained blood pressure reduction throughout the dosing interval.[27]

Combination Therapy

Combination therapy with telmisartan and hydrochlorothiazide (HCTZ) has demonstrated additive blood pressure-lowering effects. [28] In patients with moderate-to-severe hypertension (systolic BP ≥160 mm Hg), treatment with telmisartan 80 mg plus HCTZ 25 mg induced significantly greater reductions in blood pressure (-31.1/-18.3 mm Hg) compared to valsartan 160 mg plus HCTZ 25 mg (-28.4/-16.3 mm Hg). [29] A single-pill combination of telmisartan 80 mg and HCTZ 25 mg provides consistent blood pressure reductions and higher goal attainment rates across various hypertensive patient subgroups. [30] Fixed-dose combination therapy with telmisartan and amlodipine has also been extensively studied, with network meta-analysis suggesting that telmisartan/amlodipine ranks highly in blood pressure control rates.[31]

Cardiovascular Protection

The ONgoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial (ONTARGET) established that telmisartan 80 mg per day was as effective as ramipril 10 mg per day in reducing the primary composite outcome of cardiovascular death, myocardial infarction, stroke, or hospitalization for heart failure in high-risk patients with vascular disease or diabetes with end-organ damage. [32] After a median follow-up of 56 months, telmisartan demonstrated non-inferiority to ramipril with the confidence intervals of relative risk within pre-specified boundaries showing that telmisartan conserved 95% of ramipril's efficacy.[33]

Telmisartan caused significantly lower rates of cough (1.1% vs 4.2%, p<0.001) and angioedema (0.1% vs 0.3%, p=0.01) compared to ramipril, with fewer treatment discontinuations (23% vs 24.5%, p=0.02). [34] In the parallel TRANSCEND trial (Telmisartan Randomized Assessment Study in ACE Intolerant Subjects With Cardiovascular Disease), telmisartan was compared with placebo in high-risk patients intolerant to ACE inhibitors. [35]

Although the primary outcome showed a non-significant reduction (15.7% telmisartan vs 17.0% placebo), telmisartan significantly reduced the secondary endpoint composite of cardiovascular death, myocardial infarction, and stroke (13.0% vs 14.8%, p=0.048). The lower event rate in TRANSCEND compared to assumptions in power calculations was attributed to higher use of concomitant therapy than expected, rendering the study underpowered.[36]

DOI: 10.48175/568

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, November 2025

Impact Factor: 7.67

A multicenter retrospective study examining three-year cardiovascular outcomes in patients taking telmisartan compared to other ARBs found similar rates of major adverse cardiac events (MACE) in propensity score-matched cohorts, though telmisartan users exhibited significantly lower visit-to-visit blood pressure variability. [37] In hemodialysis patients with chronic heart failure, telmisartan significantly reduced all-cause mortality at three years (35.1% vs 54.4%, p<0.001) and cardiovascular mortality (30.3% vs 43.7%, p<0.001) compared to placebo.[38]

Renal Protection and Diabetic Nephropathy

Telmisartan exerts significant renoprotective effects that extend beyond blood pressure lowering. The drug reduces proteinuria and glomerular injury, making it effective in managing both diabetic and non-diabetic nephropathies.[39] In the AMADEO study (A comparison of telmisartan versus losartan in hypertensive type 2 Diabetic patients with Overt nephropathy), telmisartan demonstrated greater antiproteinuric effects compared to losartan in hypertensive type 2 diabetic patients with overt nephropathy. These enhanced renoprotective effects have been attributed to telmisartan's partial PPARγ agonistic activity in addition to AT₁ receptor blockade.[40]

In experimental models, telmisartan has been shown to protect against renal injury through multiple mechanisms including activation of the PPAR γ /hepatocyte growth factor (HGF) pathway independent of AT₁ receptor blockade. [41] Studies in angiotensin II type 1 receptor-deficient mice with unilateral ureteral obstruction demonstrated that telmisartan prevented hydronephrosis and renal fibrosis more effectively than losartan, with these effects significantly attenuated by PPAR γ antagonism. [42]

Telmisartan increased hepatocyte growth factor expression, and neutralizing antibodies against HGF diminished the renal protective action, confirming PPARγ/HGF as a downstream pathway. In a rat model of diabetic nephropathy, telmisartan attenuated hyperglycemia, reduced kidney damage, and decreased oxidative stress and inflammation in the kidneys through upregulation of Nrf2/HO-1 signaling. [43] Combination therapy with telmisartan and calcitriol enhanced therapeutic efficacy for diabetic nephropathy by inhibiting inflammation and renal interstitial fibrosis. Clinical data from Indian populations demonstrated that 98.4% of patients were compliant with telmisartan-based therapy, and 97.6% achieved target blood pressure goals with good to excellent efficacy and tolerability ratings. [44]

Metabolic Effects and Insulin Resistance

Telmisartan has demonstrated superior effects in improving insulin sensitivity and glucose metabolism compared to other ARBs, attributed to its partial PPARγ agonistic activity. [45] A meta-analysis of 21 randomized controlled trials including 1679 patients revealed that telmisartan was superior in improving homeostasis model assessment of insulin resistance (HOMA-IR) (mean difference = -0.23, 95% CI: -0.40 to -0.06), reducing fasting blood glucose (mean difference = -0.32, 95% CI: -0.57 to -0.07), reducing fasting insulin levels (mean difference = -1.01, 95% CI: -1.63 to -0.39), and decreasing diastolic blood pressure (mean difference = -1.46, 95% CI: -2.10 to -0.82) compared with other ARBs.[46]

In patients with metabolic syndrome, telmisartan 80 mg for three months significantly reduced free plasma glucose, free plasma insulin, HOMA-IR, and HbA₁c compared to losartan 50 mg.[47] Even short-term telmisartan treatment (less than three months) ameliorated insulin resistance in hypertensive patients with metabolic syndrome compared to lifestyle changes alone. [48] Studies using tissue-specific PPAR γ knockout mice have provided compelling evidence that adipose tissue PPAR γ is required for telmisartan to increase adiponectin levels and enhance insulin-stimulated glucose incorporation into adipose tissue lipids. [49]

Telmisartan improves insulin resistance by modulating macrophage polarization in adipose tissue, markedly reducing the number of crown-like structures composed mainly of CD11c-positive M1 macrophages and decreasing the M1 to M2 macrophage ratio. [50] The drug also increases energy expenditure by upregulating mitochondrial gene expressions including uncoupling protein-1 in brown adipose tissue. Studies in skeletal muscle have demonstrated that telmisartan enhances running endurance through activation of the PPAR-δ/AMPK pathway.[51]

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, November 2025

Neuroprotective Effects

Emerging evidence supports neuroprotective effects of telmisartan in neurodegenerative diseases, particularly Alzheimer's disease and other cognitive disorders. In APP/PS1 mice, a model of Alzheimer's disease, telmisartan administration (5 mg/kg/day for four months) ameliorated cognitive and executive impairments, neuronal and synaptic injury, amyloid- β ($\Delta\beta$) pathology, neuroinflammation, and oxidative stress. The favorable effects on $\Delta\beta$ pathology were achieved by inhibiting enzymatic $\Delta\beta$ production and facilitating both enzymatic and autophagic $\Delta\beta$ degradation. Anti-inflammatory effects were mediated through the microglial PPAR γ /NLRP3 pathway. [52]

In a ddY mouse model with intracerebroventricular injection of $A\beta_{1-40}$, pretreatment with a non-hypotensive dose of telmisartan significantly prevented cognitive decline, with this effect partially inhibited by the PPAR γ antagonist GW9662. [53] Immunohistochemical staining revealed reduced $A\beta$ deposition in telmisartan-treated mice, which was not observed with co-administration of GW9662. [54] A nationwide cohort study in Taiwan demonstrated that long-term telmisartan use in type 2 diabetes patients with hypertension was associated with lower risk of dementia diagnosis compared to other ARBs, after adjusting for ischemic stroke occurrence or all-cause mortality as competing factors. [55] In experimental models of glutamate-induced neurotoxicity, telmisartan proved to be the most potent neuroprotective ARB, with effects involving the PI3K/Akt/GSK-3 β and ERK1/2 pathways, resulting from both AT₁ receptor blockade and PPAR γ activation. In hyperglycemic ovariectomized rats, telmisartan improved memory and cognitive impairment, ameliorated amyloidogenesis, reduced astrogliosis, and restored blood-brain barrier integrity. [56]

Anticancer Properties

Telmisartan has demonstrated anticancer effects in various cancer types, including glioblastoma, esophageal adenocarcinoma, endometrial cancer, and renal cancers.[57] In human glioblastoma cell lines U87 and U251, telmisartan inhibited cell proliferation in a time- and dose-dependent manner, arrested the cell cycle at S phase, and decreased oncogenicity. [58]

These effects were mediated through increased PPARγ expression, enhanced lipid oxidation, and upregulation of fatty acid oxidation key enzyme hydroxyacyl-coenzyme A dehydrogenase alpha subunit (HADHA). [59] Microarray analysis revealed that telmisartan regulates DNA replication, mismatch repair, and cell cycle pathways in glioblastoma cells.[60]

In esophageal adenocarcinoma cell lines (OE19, OE33, and SKGT-4), telmisartan inhibited proliferation via blockade of the G0/G1 phase and modulation of the AMPKα/mTOR pathway. [61]

Studies using N-nitrosodiethylamine-induced hepatocellular carcinoma models demonstrated that lactosylated chitosan nanoparticles loaded with telmisartan significantly enhanced liver uptake and antiproliferative activity, resulting in improved liver histology and reduced serum levels of alpha-fetoprotein, matrix metalloproteinase-2, and vascular endothelial growth factor.[62]

Cardiac Protection

Telmisartan suppresses cardiac hypertrophy by inhibiting cardiomyocyte apoptosis via the NFAT/ANP/BNP signaling pathway in a dose-dependent manner. In mouse models of cardiac afterload and cultured cardiomyocytes, telmisartan inhibited NFAT nuclear translocation and reduced ANP and BNP expression. [63]

The drug clinically prevents cardiac hypertrophy and remodeling by reducing myocardial fibrosis and improving ventricular compliance. Meta-analysis revealed that telmisartan therapy reduces left ventricular mass index more effectively than other antihypertensive drug therapies in patients with hypertension, with this effect largely unrelated to blood pressure lowering. [64]

Safety and Tolerability

Telmisartan demonstrates an excellent safety profile with tolerability comparable to placebo. In pooled analyses from 27 clinical trials involving 7,968 patients treated for hypertension, discontinuation due to adverse events was required in only 2.8% of telmisartan patients compared to 6.1% of placebo patients.[65] The most frequent adverse events include upper respiratory tract infections, diarrhea, and back pain. In double-blind studies, the incidences of all-cause adverse Copyright to IJARSCT DOI: 10.48175/568

Copyright to IJARSCT www.ijarsct.co.in

ISSN 2581-9429 IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

137

ISSN: 2581-9429

Volume 5, Issue 4, November 2025

events were 2.73 per patient-year (36.1%) for placebo, 2.03 per patient-year (37.4%) for telmisartan monotherapy, and 2.09 per patient-year (44.8%) for telmisartan plus HCTZ. [66]

The most frequent suspected adverse drug reactions are dizziness and headache, which are comparable across treatment groups. The incidence of cough with telmisartan in placebo-controlled trials was identical to placebo (1.6%), representing a significant advantage over ACE inhibitors. In postmarketing surveillance involving 19,870 patients, adverse events were reported in only 1.9% of patients, with global tolerability rated as very good to good in 96.8% of patients. [67] Telmisartan treatment did not increase serum creatinine or potassium in any subgroup, including more than 400 patients with impaired renal function.[68]

Serious adverse events reported rarely in controlled clinical trials include syncope and hypotension. The overall incidence of drug-related laboratory abnormalities is low, with treatment-related hyperuricemia and hypokalemia occurring in less than 0.1% of patients treated with telmisartan plus HCTZ. [70] Telmisartan is contraindicated during pregnancy due to risks of fetal harm, including reduced fetal renal function and increased fetal and neonatal morbidity and death when used during the second and third trimesters. [71]

The drug is also contraindicated in patients with hypersensitivity, nursing women, severe hepatic impairment, and for concomitant use with aliskiren in patients with diabetes mellitus or moderate to severe renal impairment. Drug interactions include increased digoxin levels requiring monitoring when initiating or adjusting telmisartan.[72]

Combination with potassium preparations or potassium-sparing diuretics may cause hyperkalemia, and combination with NSAIDs, especially in patients with impaired kidney function, carries risk of causing reversible kidney failure. [73] In patients with COVID-19, telmisartan treatment was found to be safe with no reported adverse events, and it reduced morbidity and mortality in hospitalized patients through anti-inflammatory effects. [74]

Novel Applications and Future Directions

Beyond its established cardiovascular and metabolic benefits, telmisartan continues to reveal therapeutic potential in diverse pathological conditions. [75] The drug ameliorates lipopolysaccharide-induced innate immune response through PPARγ activation in human monocytes, correlating with PPAR γ agonist potency. [76]

In non-alcoholic fatty liver disease, telmisartan improves insulin sensitivity, decreases hepatic fat accumulation through PPARy modulation, and suppresses hepatic fibrosis by blocking angiotensin II receptors. Connectivity mapping and transcriptome analyses have demonstrated that amelioration of non-alcoholic steatohepatitis by telmisartan occurs through regulation of inflammatory and fibrosis-related gene responses involving interconnected RAS-PPAR-NFKB pathways. [77]

Recent studies have explored telmisartan's effects on anxiety, with evidence suggesting anxiolytic properties through mechanisms involving the renin-angiotensin system and PPAR γ signaling [78] The drug's ability to cross the bloodbrain barrier and accumulate in brain tissue supports its potential for central nervous system applications. [79]

Stability-indicating analytical methods have been developed for telmisartan quantification using high-performance liquid chromatography (HPLC), liquid chromatography-mass spectrometry (LC-MS/MS), and high-performance thinlayer chromatography (HPTLC), enabling accurate pharmaceutical analysis and quality control. [80]

II. CONCLUSION

Telmisartan represents a distinctive angiotensin II receptor blocker with multifaceted pharmacological actions extending well beyond blood pressure control. Its unique combination of potent AT₁ receptor blockade and partial PPARy agonistic activity confers a broad spectrum of therapeutic benefits encompassing cardiovascular protection, renal preservation, metabolic improvement, neuroprotection, and potential anticancer effects. The drug's favorable pharmacokinetic profile, characterized by the longest half-life among ARBs, high lipophilicity, and sustained 24-hour efficacy, enables once-daily dosing with excellent patient compliance.

Extensive clinical evidence from landmark trials including ONTARGET and TRANSCEND has established telmisartan's efficacy in reducing cardiovascular morbidity and mortality in high-risk populations, with a superior tolerability profile compared to ACE inhibitors. The drug's additional metabolic benefits, particularly in improving insulin resistance and glucose metabolism, position it as an optimal therapeutic choice for hypertensive patients with

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, November 2025

Impact Factor: 7.67

metabolic syndrome or diabetes. Emerging evidence of neuroprotective and anticancer properties, coupled with demonstrated safety across diverse patient populations, suggests that telmisartan's therapeutic applications will continue to expand.

Future research should focus on elucidating tissue-specific mechanisms of PPARy activation, optimizing combination therapies for organ protection, and exploring novel indications in neurodegenerative diseases and oncology. The multifaceted pharmacological profile of telmisartan exemplifies the evolution toward comprehensive, mechanism-based therapeutic approaches that address multiple pathophysiological pathways simultaneously, potentially transforming management paradigms across various disease states.

REFERENCES

- [1] Brenner BM, et al. The comparative pharmacology of angiotensin II receptor antagonists. Acta Pharmacol Sin. 2001;22(9):753-66.
- [2] Chen J, Liu C, et al. Expanding telmisartan's therapeutic horizon: exploring its multifaceted mechanisms beyond cardiovascular disorders. Futur J Pharm Sci. 2024;10(1):45.
- [3] Nasrallah R, et al. Insights into repurposing telmisartan beyond its cardiovascular applications: Emphasis on metabolic, neuroprotective, nephroprotective, and anticancer potential. Afr J Pharm Pharmacol. 2025;19(7):45-59.
- [4] Ohtsu H, et al. Stimulatory action of telmisartan on voltage-gated Na+ current. J Pharmacol Sci. 2018;136(1):15-24.
- [5] Cannon CP, et al. Treatment of Gastrointestinal Disorders: plants and potential mechanisms of action. Molecules. 2022;27(9):2881.
- [6] Arai M, et al. Connectivity mapping of angiotensin-PPAR interactions in non-alcoholic steatohepatitis by telmisartan. Sci Rep. 2019;9(1):3705.
- [7] Chaudhary A, Dave R. Estimation of telmisartan and related drugs by HPTLC. IGlobal J Pharm Sci. 2020;2(1):20-30.
- [8] Boffa JJ, Baliunas D. Eprosartan in essential hypertension: review and expert opinion. Hypertens Res. 2024;47(9):1011-22.
- [9] Bennett WM, et al. Telmisartan: overview and pharmacology. Drugs. 2006;66(11):1543-61.
- [10] Hunter PJ, et al. The emerging discipline of quantitative systems pharmacology. Front Pharmacol. 2015;6:129.
- [11] Karasu C, et al. Telmisartan ameliorates innate immune response via PPARy activation. Int Immunopharmacol. 2011;11(11):1965-70.
- [12] Hirota H, et al. Telmisartan suppresses cardiac hypertrophy via NFAT/ANP/BNP pathway. J Cardiovasc Pharmacol. 2017;69(3):203-11.
- [13] Niioka T, et al. Nonlinear pharmacokinetics of telmisartan: Integration of target-mediated disposition and hepatic uptake. Clin Pharmacol Ther. 2024;115(4):675-85.
- [14] Miyazaki T, et al. Telmisartan inhibits growth of esophageal adenocarcinoma via AMPK α/mTOR pathway. Sci Rep. 2016;6:39215.
- [15] Hattori T. New standards in hypertension and cardiovascular risk management: focus on telmisartan. Curr Opin Cardiol. 2010;25(4):340-45.
- [16] Kintscher U, et al. Anti-diabetic effect of telmisartan through partial PPARγ activation. Cardiovasc Diabetol. 2020;19(1):153.
- [17] Miura S, et al. Telmisartan enhances skeletal muscle endurance via PPAR-δ/AMPK pathway. J Physiol Sci. 2010;60(3):193-201.
- [18] Shi J, et al. Telmisartan accentuates voltage-gated Na+ currents and hippocampal excitability. Neurosci Lett. 2020;717:134708.
- [19] Wishart DS, et al. Telmisartan: Uses, interactions, mechanism of action DrugBank. 2021.
- [20] White WB, et al. Telmisartan: A different angiotensin II receptor blocker protecting a different population? Am J Hypertens. 2006;19(5):464-9.

Copyright to IJARSCT www.ijarsct.co.in

Volume 5, Issue 4, November 2025

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

o billia, i cer neviewea, neiereea, riaitiaiseipillar y olillie

Impact Factor: 7.67

- [21] Chemical Book. Telmisartan | 144701-48-4. 2025.
- [22] FDA. Micardis (telmisartan) tablets label. 2009.
- [23] EU Medicines Agency. Micardis INN-telmisartan scientific discussion. 2025.
- [24] Ruilope LM, et al. Telmisartan: Pharmacology and clinical efficacy. Clin Ther. 2008;30(3):371-88.
- [25] PubChem. Telmisartan compound summary. 2025.
- [26] Oliver MF, et al. Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARγ modulating activity. Hypertension. 2004;43(4):993-1002.
- [27] Parving HH, et al. A review of telmisartan in the treatment of hypertension. Drugs. 2005;65(22):327-40.
- [28] WebMD. Telmisartan (Micardis): Uses, side effects, interactions. 2024.
- [29] Wikipedia. Telmisartan. 2005.
- [30] ScienceDirect. Telmisartan an overview.
- [31] Sharma P, et al. Efficacy of single-pill combination in uncontrolled essential hypertension: A systematic review and network meta-analysis. Clin Cardiol. 2023;46(7):657-67.
- [32] Shimada K, et al. Effects of telmisartan/HCTZ vs valsartan/HCTZ in moderate-to-severe hypertension. Int J Hypertens. 2012;2012:976828.
- [33] Badar DS. Results of treatment with telmisartan-amlodipine in hypertensive patients. J Physician Sci. 2009;3(1):12-7.
- [34] Goswami RP, et al. Clinical data analysis of telmisartan for hypertension management in Indian population. Indian J Clin Pharmacol. 2021;36(2):231-7.
- [35] Liu Y, et al. Blood pressure-lowering effect of telmisartan compared to losartan: A meta-analysis. Hypertens Res. 2022;45(9):1351-9.
- [36] Sica DA, et al. Efficacy and tolerability of telmisartan plus hydrochlorothiazide. J Clin Hypertens. 2013;15(3):219-26.
- [37] Chrysant SG. Telmisartan: 24-hour blood pressure lowering and target organ protection. J Hum Hypertens. 2002;16(Suppl 3):S37-44.
- [38] ONTARGET Investigators. Results of the ONTARGET and TRANSCEND studies. Lancet. 2008;372(9638):547-53.
- [39] Sica DA. Telmisartan in the treatment of hypertension. Expert Opin Pharmacother. 2008;9(8):1447-56.
- [40] McMurray JJ, et al. ONTARGET Trial Programme: Vascular protection with telmisartan. Eur Heart J Suppl. 2009;11(Suppl F):F47-53.
- [41] FDA. Telmisartan tablets USP label. 2016.
- [42] Malik S, et al. Three-year cardiovascular outcomes of telmisartan in patients with essential hypertension. J Hypertens. 2024;37(6):429-37.
- [43] Parving HH, et al. Cardiovascular and renal outcomes with telmisartan, ramipril, or both in people at high renal risk. Circulation. 2011;123(15):1721-9.
- [44] GoodRx. Telmisartan dosage information. 2023.
- [45] Chowdhury TA, et al. Effectiveness of telmisartan on blood pressure control in hypertension. Hypertens Res Clin Exp. 2021;44(4):315-22.
- [46] Pfeffer MA, et al. Results of the ONTARGET and TRANSCEND studies. N Engl J Med. 2008;358(15):1537-49.
- [47] Messerli FH, et al. Meta-analysis of randomized controlled trials comparing telmisartan with losartan in hypertension. Am J Hypertens. 2008;21(4):523-31.
- [48] Hermida RC, et al. Comparison of morning versus evening telmisartan in essential hypertension. Hypertension. 2007;50(3):595-601.
- [49] Matsubara H, et al. Cardiovascular and renal outcomes with telmisartan, ramipril, or both. J Hypertens. 2011;29(5):884-90.
- [50] European Medicines Agency. Telmisartan Actavis product info. 2025.
- [51] Togo A, et al. Effects of telmisartan on metabolic syndrome components. J Diabetes Investig. 2024. yright to IJARSCT

 DOI: 10.48175/568

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, November 2025

- [52] Yusuf S, et al. Cardiovascular and renal outcomes with telmisartan, ramipril, or both. Circulation. 2011;123(15):1721-9.
- [53] ClinicalTrials.gov. Study on cardiac remodeling with telmisartan. 2019.
- [54] ClinicalTrials.gov. Ramipril versus telmisartan in cardiovascular patients. 2005.
- [55] Chen L, et al. Telmisartan combined with calcitriol enhances therapeutic efficacy for diabetic nephropathy. Biomed Pharmacother. 2016;82:93-100.
- [56] Sen K, et al. Angiotensin receptor blockers for proteinuria reduction in diabetic nephropathy: AMADEO study. Diabetes Care. 2008;31(12):2559-64.
- [57] Brenner BM, et al. Renovascular properties of telmisartan: clinical utility. Clin J Am Soc Nephrol. 2010;5(3):473-80.
- [58] Parving HH, et al. Renal protection in diabetes: lessons from ONTARGET®. Kidney Int Suppl. 2010;78:S24-8
- [59] Chen Y, et al. Telmisartan protects rats against renal injury via PPARγ signaling. Am J Physiol Renal Physiol. 2014;307(7):F850-F859.
- [60] Wada J, et al. Telmisartan exerts renoprotective actions via PPARγ/HGF pathway independent of AT1 receptor blockade. Hypertension. 2012;59(2):313-22.
- [61] Saito T, et al. Telmisartan improves insulin resistance and modulates macrophage polarization. Endocrinology. 2011;152(5):1789-99.
- [62] Kintscher U, et al. Telmisartan and cardioprotection. Pharmacol Ther. 2011;131(2):280-95.
- [63] Fukuda D, et al. Even short-term telmisartan improves insulin resistance in metabolic syndrome. Metab Syndr Relat Disord. 2019;17(3):179-85.
- [64] Huang Y, et al. Telmisartan attenuates diabetic nephropathy by mitigating oxidative stress and inflammation. Free Radic Biol Med. 2022;182:121-131.
- [65] Ishikawa K, et al. Telmisartan in hemodialysis patients with chronic heart failure. J Am Coll Cardiol. 2011;57(5):610-21.
- [66] Zhu X, et al. Telmisartan improves insulin resistance: meta-analysis. Diabetes Res Clin Pract. 2016;115:39-47.
- [67] Maeda Y, et al. Telmisartan in diabetic nephropathy management. Diabetes Metab Res Rev. 2012;28(4):341-7.
- [68] Daskalopoulos EP, et al. Telmisartan in high cardiovascular risk patients. Eur Cardiol Rev. 2012;7(1):31-36.
- [69] Li WA, et al. Metabolic effect of telmisartan and losartan in hypertensive patients with metabolic syndrome. J Hypertens. 2005;23(7):1441-7.
- [70] Martini N, et al. Assessment of safety profile of ivabradine in real-world scenario. Expert Opin Drug Saf. 2024;23(10):1153-8.
- [71] Friedrich C, et al. Incidence of adverse events with telmisartan compared to ACE inhibitors: pooled analysis. Am J Cardiovasc Drugs. 2011;11(6):391-402.
- [72] Duarte MV, et al. Telmisartan for treatment of COVID-19 patients: multicenter RCT. EClinicalMedicine. 2021;33:100771.
- [73] Zhan X, et al. Application of telmisartan in central nervous system diseases. Front Pharmacol. 2025;16:xxx.
- [74] FDA. Micardis (telmisartan) tablets label. 2011.
- [75] Bolsonaro AS, et al. Safety of telmisartan in arterial hypertension. Am J Cardiovasc Drugs. 2003;3(3):163-70.
- [76] Segura J, et al. Safety profile of telmisartan monotherapy or combined therapy. J Hypertens. 2008;26(11):2203-10.
- [77] DailyMed. TELMISARTAN tablet NIH label. 2023.
- [78] Rakugi H, et al. Efficacy and tolerability of olmesartan, telmisartan, and valsartan in hypertension. Curr Med Res Opin. 2016;32(10):1763-70.
- [79] Fu XX, et al. Telmisartan attenuates human glioblastoma cells proliferation and oncogenicity. Aging Dis. 2021;12(2):531-547.
- [80] Cao H, et al. Antiproliferative and apoptotic effects of telmisartan in human glioma cells. Mol Med Rep. 2023;27(6):179

DOI: 10.48175/568

