

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, November 2025

Intelligent Medical Diagnostics: Leveraging Artificial Intelligence for Precision Healthcare

Vishal Borate, Dr. Alpana Adsul, Bhagyashri Biradar

Department of Computer Engineering

Dr. D. Y. Patil College of Engineering and Innovation, Varale, Talegaon, Pune, India vkborate88@gmail.com, hodcomputer@dypatilef.com, shrushti.biradar2004@gmail.com

Abstract: Disease diagnosis is the identification of an health issue, disease, disorder, or other condition that a person may have. Disease diagnoses could be sometimes very easy tasks, while others may be a bit trickier. There are large data sets available; however, there is a limitation of tools that can accurately deter-mine the patterns and make predictions. The traditional methods which are used to diagnose a disease are manual and error- prone. Usage of Artificial Intelligence (AI) predictive techniques enables auto diagnosis and reduces detection errors compared to exclusive human expertise. In this paper, we have reviewed the current literature for the last 10 years, from January 2009 to December 2019. The study considered eight most frequently used databases, in which a total of 105 articles were found. A detailed analysis of those articles was conducted in order to classify most used AI techniques for medical diagnostic systems. We further discuss various diseases along with corresponding techniques of AI, including Fuzzy Logic, Machine Learning, and Deep Learning. This research paper aims to reveal some important insights into current and previous different AI techniques in the medical field used in today's medical research, particularly in heart disease prediction, brain disease, prostate, liver disease, and kidney disease. Finally, the paper also provides some avenues for future research on AI-based diagnostics systems based on a set of open problems and challenges.

Keywords: Clinical reasoning, Medical AI, Explainable AI, Large language models, Mechanistic interpretability, Diagnostic error, Decision support systems

I. INTRODUCTION

In the field of healthcare, the study of disease diagnosis plays a vital role. Any cause or circumstances that lead to pain, illness, dysfunction, or eventually, a human being's death is called a disease. Diseases may affect a person physically and mentally, and it considerably manipulates the living style of the affected person. The causal study of disease is called the pathological process [1]. A disease is made by signs or symptoms that are interpreted by clinical experts [2]. Diagnosis has been defined as the method of identifying a disease from its signs and symptoms to conclude its pathology [3]. Diagnosis can also be defined as the method of figuring out which disease is based on an individual's symptoms and signs, as shown in Fig. 1. The data gathered from medical history physical examination of the individual having medical pathology constitutes the knowledge required for diagnosis [4]. Often, at least one diagnostic procedure, such as medical tests, is done during this procedure. To form an honest diag-nosis, a medical doctor will perform a process that involves several steps, allowing them to collect the maximum amount of information as possible [5]. Diagnosis of diseases is the most challenging process at the same time, a very pivotal phenomenon for a medical care professional as before reaching the conclusion [6]. The diagnostic process could be very tiresome and complex. To minimize the uncertainty in medical diagnosis health, the care experts collect empirical data to ascertain a patient's disease. The patient's correct treatment may be adjourned or missed with serious health issues due to making fault in the diagnosis process [7]. Unfortunately, all doctors don't have expert knowledge in each domain of the medical field. Hence, there was a need of automatic diagnostic system that provides benefits from both human knowledge and accuracy of the machine A suitable decision support system is needed to achieve accurate results from the diagnosis process with reduced costs [8]. Classification of diseases depending upon various parameters is a complex task for

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, November 2025

Impact Factor: 7.67

human experts but AI would help to detect and handle such kinds of cases [9]. Currently, various AI techniques have been used in the field of medicine to accurately diagnosis sicknesses. AI is an integral part of computer science by which computers become more intelligent [10]. The vital need for any intelligent system is

learning. There are various techniques in AI that are based on Learning like deep learning, machine learning, etc [11]. Some specific AI methods that are significant in the medical field named as a Rule-based intelligent system, provides a set of if-then rules in healthcare, which act as a decision support system. Gradually, intelligent systems are being replaced in the medical field by AI-based automatic techniques where human intervention is very less [12]. The neural network or artificial neural network (ANN) is a large collection of neural units designed based on biological neurons connected in the brain [13]. It is a simulation of the human brain and works exactly like it. Each neural unit is linked with many other neurons approximately similar to the bipartite graph. These kinds of systems learn and are trained automatically [14].

II. LITERATURE REVIEW / BACKGROUND

• Machine Learning in Medical Diagnosis:

Machine learning (ML) algorithms such as Decision Trees, Support Vector Machines (SVM), and Random Forests are widely applied for disease prediction. Re- searchers have used ML to classify diseases like diabetes, heart disease, and cancer with high accuracy[15]. Studies show that training models on large datasets helps the system learn complex patterns between symptoms and diagnoses [16]. For instance, the UCI medical dataset has been used to train models for breast cancer detection

• Deep Learning for Image-Based Diagnosis:

Deep learning techniques, particularly Convolutional Neural Networks (CNNs), have revolutionized image-based diagnosis in radiology and pathology [17]. Studies by researchers at Stanford and MIT have demonstrated that CNNs can detect skin cancer and pneumonia from medical images with accuracy comparable to expert doctors [18].

• Natural Language Processing (NLP) in Medical Re- ports:

NLP techniques help analyze unstructured clinical data, such as doctors' notes and medical histories [19]. Recent studies show that NLP models can identify key medical terms, symptoms, and diagnoses from patient reports. For example, AI systems can automatically extract disease names, medications, and outcomes from electronic health records (EHRs) [20].

• Explainable AI and Ethical Considerationsx: Explain- able AI and Ethical Considerations

Recent literature emphasizes the importance of explain- able AI (XAI) to make medical decisions transparent and trustworthy [21]. Studies highlight that black-box models can raise ethical issues, as doctors may not understand how the AI reaches a diagnosis [22]. Researchers are developing interpretable AI systems that provide reasons for their predictions.

• AI in Predictive and Preventive Healthcare: AI in Predictive and Preventive Healthcare Recent studies show that AI not only diagnoses existing diseases but also predicts future health risks [23]. Predictive models use patient data such as genetics, lifestyle, and medical his- tory to forecast conditions like heart attacks or diabetes before symptoms appear [24].

III. RELEATED WORK

In this section we discuss current applied AI techniques which are used for disease diagnostic process, relevant survey articles on diagnostic process and our contribution in regards to the existing work [25]. Authors carried out a survey on automated surveillance techniques for healthcare- associated infections. In this review, authors have described how automatic surveillance systems based on machine learning algorithms bring enhanced performance and reliability compared to manual surveillance methods [26]. Another finding of this review is that the use of regression models can improve the efficiency and sensitivity of surveillance programs [27]. There are some challenges that need to be

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29830

237

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, November 2025

Impact Factor: 7.67

addressed in the near future such as post discharge surveillance, case-mix adjustment, quantification of device utilization [28]. BRON- CHIOLITIS is a lung infection that is commonly seen in younger children and infants Luo et al reviewed this disease along with respiratory syncytial virus (RSV), an infection that can be a root cause of bronchiolitis [29]. The systematic review provides some insights into predictive modeling and also reported how machine learning can use to overcome limitations of predictive modeling [30]. SEPSIS is a life- threatening condition that occurs due to your body's response to infection, which causes inflammation that result in multiple organ failures at the same time. The Author al [31] performed a systematic review to investigate the current trends in sepsis detection in hospitals [32]. Authors have investigated various sepsis detection scoring systems and screening tools along with their pros and cons in general hospital wards. Finally, they observed biomarkers and electronic health records can have a huge effect in predicting sepsis [33]. One more study on sepsis was performed by The authors in paper [34]. They reported some drawbacks in routine blood culture testing for sepsis detection [35]. To analyzed suitable automatic sepsis detection, methods that they investigated seven molecular technologies that utilize blood samples [36]. In this study, they have discussed the various present and future trends. In addition, they have also analyzed the impact of machine learning algorithms with electronic medical records in sepsis detection [37]. They conclude that by merging various technologies can improve the detection process and minimize the risk of using the wrong antibiotic [38].

To the best of the knowledge, this is the first attempt that provide a comprehensive survey for disease prediction using the techniques of fuzzy logics, machine learning and deep learning [39]. In addition, contrary to existing survey articles available in the literature, this work has focused on a particular range of sicknesses including heart disease, brain disease, prostate, liver disease and kidney disease [40].

IV. FUZZY LOGIC AND DISEASE DIAGNOSIS

Fuzzy logic provides dynamic methods that deal with difficult problems [41]. Fuzzy logic is assumed a solid tool for decision-making systems, such as expert systems or Pattern classification systems [42]. Fuzzy logic plays a vital role in the medical evaluation as it provides an exact examination report [43]. These sorts of frameworks provide an instant and straightforward strategy for clinical assessment. They are also useful where an expert or clinical specialist is absent [44]. These frameworks give an outcome depending on the knowledgebase incorporated within or from specialists or experts in the field various clinical diagnoses systems created depend on the fuzzy set model and applied in the medical field [45]. The word fuzzy refers to things that are ambiguous [46]. Sometimes we face a circumstance when we are uncertain about whether the state is valid or invalid, wherein fuzzy logic provides reasoning for such conditions as depicted in Fig. 2. It is a rule-based method [47]. Fuzzy Rule-Based System (FRBS) is a frequently used technique in healthcare that drives from Fuzzy Inference Systems (FIS). FRBS applies IF-THEN rules for information portrayal [48]. Besides this, clustering and classifying techniques are also used in the medical domain. Also, FIS and FDSS are determined as the most common techniques in the area of medicine [49]. The main feature of fuzzy logic is that it can alleviate the inaccuracies and uncertainties of any situation [50]. There is no logic for the absolute valid and absolute invalid value, but partially true and partially false intermediate value exists in a fuzzy logic system [51]. Let's take the following example to show how fuzzy logic works [52].

In the past few years, Fuzzy logic is consistently gaining popularity in diagnosing disease based on different parameters [53]. For instance, coronary illness is a sort of malady caused due to a damage or blockage of veins in the heart, thus influencing less oxygen supply to heart organs [54]. Common heart diseases are heart failure, artery blockage, heart attack, stroke, etc [55]. Fuzzy logic is continually developing to distinguish heart patients all through the world with the assistance of growing new AI techniques. Many articles have been published to detect coronary disease by utilizing Fuzzy logic [56]. Sari and Gupta discussed coronary disease detection using a neuron-fuzzy integrated system and their results reached a similar level of doctor's opinion in case of high/low cardiac risk [57]. Junior et al presented a cardiovascu- lar arrhythmia grouping framework utilizing fuzzy classifiers to recognize the particular point of the electroencephalogram utilizing network fuzzy Rules [58]. In their system, the total time of ECG signal processing is reduced by a sequence of samples, without any essential loss [59]. The ECG signals are imposed into the framework that implements cleaning, and afterward utilizes a clustering algorithm "Gustafson–Kassel fuzzy" for the signal classification and correlation. Their study suggested that common heart diseases like myocardial infarct, arterial

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29830

238

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, November 2025

Impact Factor: 7.67

coronaria and angina diseases could easily be detected by their system. According to the obtained results, their method provided better disease diagnosis for Pulse Pressure Variation compared to other reported systems[60]. Ebola Virus Disease is a fatal infectious disease also known as the "Ebola hemorrhagic fever". Hence, a secure method of diagnosis has been investigated. Oluwagbemi et al . described that Ebola fuzzy informatics system was designed to diagnose EVD. They utilized fuzzy logic as its inference engine along with a collection of rules. A knowledgebase was created to help provide a diagnosis of the Ebola Virus Disease (EVD). The method used as a fuzzy inference method was Root Sum Square. According to the performance of their system, we can say that their system is a valuable addition to fight against Ebola. BRAIN DISEASE or disorder is a condition where a person loses the capability of reasoning, loss of memory; change personality, mild seizures, and twitching are common symptoms. The brain is the central control of the body. When brain problems occur, the results can be devastating. Brain diseases such as stroke, brain tumours, Alzheimer's disease can cause problems like vision loss, weakness, and paralysis, etc. Early detection of these problems is very necessary for a doctor as well as a patient in order for the treatment to be started. Gopal and Karnan proposed a system for diagnosing Brain Tumor. A system designed to diagnose brain tumors using MRI images by the use of the Fuzzy C Means clustering algorithm. The tools used along with Fuzzy C means algorithms are Genetic Algorithm and Particle Swarm Optimization. The suspicious block is fragmented by the use of two algorithms GA and PSO. Computer-aided System is then utilized for verification and correlation of brain tumor in the diagnosis algorithm. Fuzzy C Means helped to determine the adaptive threshold for brain tumor fragmentation. The results of previous techniques were compared with existing outcomes. Their results indicated that it improves the overall performances of the fragmentation and can find the optimal solution .Another representation was given by Chen et al

to introduce a productive brain problem detection sys- tem by the use of fuzzy k-closest neighbour or SVM for Parkinson's disease diagnosis. A comparative analysis was performed between SVM and FKNN. The experimental outcome showed that the FKNN technique worked better over the SVM classifier. The accuracy obtained by the FKNN was 96.07 which is more than the SVM method. Different diseases such as neuro diseases, cancer, diabetes, heart diseases, thyroid disorder, asthma disease were also diagnosed by using various ANN mechanisms. The neuro-fuzzy model has been proposed by Patra and Thakur. for the proper diagnosis of adult Asthma disease. The dataset was collected from various hospitals. Three learning algorithms were used: ANN with Self Organizing Maps (SOM), ANN with Learning Vector Quantization (LVQ) and ANN with Backpropagation Algorithm along with NF tool to produce accurate results. Fuzzy inference was then used to classified data to diagnosis a disease. Fuzzy logic is also capable to detect dangerous diseases like cancer, especially BREAST CANCER. Breast cancer is a sort of sickness caused by bumps found in the breast that frames the cells. Cancer appears when cells start

to grow out of control. Miranda and Felipe inter-operated on the Fuzzy Omega algorithm, an automated tool to detect breast lesions. The user availed elements like contour, size, and density and the system suggested the BI-RADS classification. Their method achieved an accuracy of 76.6 for nodules and 83.34was given by Nilashi for early diagnosis to tackle the disease. The authors designed an information- based architecture for the classification of breast cancer disease using Clustering, and classification approaches. They used Expectation-Maximization for clustering the data. Fuzzy rules extracted from Classification and Regression Trees were used for the classification of breast cancer disease. Their method can be used as a decision support system for disease diagnosis. The liver ailment is also a sort of hepatic sickness that makes the liver stop its working partially or completely. Most of the factors of liver ailment are due to an alcoholic or hereditary nature. The most well-known kind of liver illness is fatty liver. In order to diagnose, a liver disease, Satarkar S.L, and Ali M.S worked to form an expert system that cooperated Fuzzifier: The Fuzzification process is done by a Fuzzifier. It is a process of changing a crisp input value to the fuzzy set. Hence Fuzzifier is used as a mapping from observing input to fuzzy value. • Inference engine: After completing the fuzzification process, fuzzy value processed by the inference engine using a set of rules act as a collection of rules to the knowledge base. • Knowledgebase: This is the main component of the fuzzy logic system. The overall fuzzy system depends on the knowledge base. Basically, it consists of rules, structured and unstructured data also named the database. • Defuzzifier: The process of converting the output from the inference engine into crisp logic. Fuzzy value is an input to the defuzzification that maps fuzzy value to crisp value.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 3, November 2025

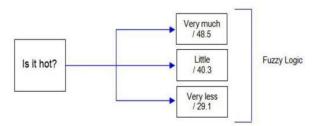


Fig. 1. Process of Fuzzy Logic.

The figure No.1 demonstrates the process of Fuzzy Logic. The diagram shows a simple example of how fuzzy logic works, using the question "Is it hot?". The input is processed through three linguistic variables: "Very much," "Little," and "Very less," each associated with a numerical value (48.5, 40.3, and 29.1, respectively). This process of using degrees of truth rather than a simple true or false (binary) system is the core concept of fuzzy logic.

V. METHODOLOGY USED

A. Problem Definition

Objective: Define the specific diagnostic goal (e.g., detect pneumonia from chest X-rays, identify diabetic retinopathy). Scope:

Disease type Patient population

Clinical setting (hospital, clinic, telemedicine)

Success Metrics: Sensitivity, specificity, AUC-ROC, preci-sion, recall, F1-score.

Automation and job displacement Problem Definition Objective: Define the specific diagnostic goal (e.g., detect pneumonia from chest X-rays, identify diabetic retinopathy). Scope:

Disease type Patient population

Clinical setting (hospital, clinic, telemedicine)

Success Metrics: Sensitivity, specificity, AUC-ROC, preci-sion, recall, F1-score.

B. Data Collection Types of Data:

Imaging (X-rays, MRIs, CT scans) Clinical notes

Electronic health records (EHR) Genomics / Lab reports Sources:

Public datasets (e.g., MIMIC, NIH ChestX-ray14) Hospital databases (with consent IRB approval) Preprocessing:

Anonymization Normalization Handling missing data

Data augmentation (for image data)

C.Data Labeling An- notation

Label Sources:

Verified clinical diagnoses Radiologist or specialist annotations Quality Assurance:

Inter-rater reliability checks Use of consensus labeling Manual review of edge cases

D. Model Selection Development Algorithm Choices:

For imaging: CNNs (e.g., ResNet, DenseNet), Vision Trans- formers

For tabular/EHR data: XGBoost, Random Forests, LSTMs For text (clinical notes): BERT, BioBERT, GPT-like models Hybrid Models:

Combine image + EHR using multi-modal models Techniques:

Transfer learning

Fine-tuning on domain-specific data

Explainability techniques (e.g., Grad-CAM, SHAP)

E. Model Training Validation Data Splits:

Training (70

Validation (15

Test (15

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, November 2025

Impact Factor: 7.67

Cross-validation:

K-fold CV to ensure generalizability Performance Metrics: Accuracy, AUC, recall, precision, F1-score Confusion matrix Class imbalance handling (SMOTE, class weights)

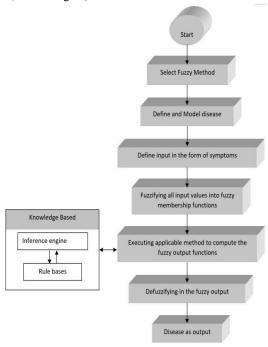


Fig. 2. Flowchart of the medical diagnosis AI methodology

VI. MEDICAL DIAGNOSIS PROCESS USING FUZZY LOGIC

Fuzzy logic has the ability to portray information and outcomes in the form of semantic articulation. It tends to be valuable since most diagnosis processes have been performed based on the probability of medical findings. The power of human thinking and decision-making ability develop a clinical proof-based theory to make the process of diagnosis better. Due to the demonstrated viability of applying fuzzy methods in the field of healthcare to display uncertainty, it has been used in the finding procedure with various applications as per the kind of illness and targets of the researchers. The main rule of this framework in medical science has two major elements in which symptoms are used as input and the disease as output. Generally, the Fuzzy logic process to disease diagnosis as described in Fig 3 is made by the following steps:

- Fuzzifier: The Fuzzification process is done by a Fuzzifier. It is a process of changing a crisp input value to the fuzzy set. Hence Fuzzifier is used as a mapping from observing input to fuzzy value.
- Inference engine: After completing the fuzzification process, fuzzy value processed by the inference engine using a set of rules act as a collection of rules to the knowledge base.

The Figure No.2 demonstrates a flowchart of a medical diagnosis AI methodology that uses fuzzy logic. The process begins with selecting a fuzzy method and defining the disease. It then takes symptoms as input and uses a "Knowledge Based" system, which includes an "Inference engine" and "Rule bases," to process the information. The input values are converted into fuzzy membership functions, and an applicable method is executed to compute fuzzy output functions. Finally, the fuzzy output is defuzzified to provide a disease as the final output.

• Knowledgebase: This is the main component of the fuzzy logic system. The overall fuzzy system depends on the knowledge base. Basically, it consists of rules, structured and unstructured data also named the database.

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, November 2025

Impact Factor: 7.67

• Defuzzifier: The process of converting the output from the inference engine into crisp logic. Fuzzy value is an input to the defuzzification that maps fuzzy value to crisp value. Fuzzy Logic is taken into account among the techniques for AI, where intelligent behavior is achieved by creating fuzzy classes of some parameters. The rules and criteria are understandable by humans. These rules and the fuzzy classes are defined by a domain expert mostly. Therefore, a great deal of human intervention is required in fuzzy logic. The actual processing of data basically provides a presentation of the information in fuzzy logic. One of such representations can be done using machine learning in the medical field even in a much better way than fuzzy logic. The statistical model used for estimation is not capable to produce good performance results. Statistical models fail to detect missing values, large data values and hold categorical data. All the above-mentioned reasons can be achieved through machine learning (ML). ML plays an essential role in numerous applications such as natural language processing, information mining, image detection, and disease detection. In all the above-mentioned domains, ML provides appropriate solutions as per the problem. Thus, ML also facilitates advanced diagnosis systems and treatment options in healthcare. In the following section, we describe how ML was used for disease diagnostic systems.

VII. MACHINE LEARNING AND DISEASE DIAGNOSIS

A. EXISTING WORKS USING FUZZY ML

Machine learning is a field that comes within the broader area of AI in which by training, a machine learns itself and The Figure No.3 demonstrates a machine learning system for predicting disease. The diagram outlines a process that begins with patient data and follows these steps: Data Input: Patient records are used as the initial data source. Feature Extraction and Processing: Features are extracted from th

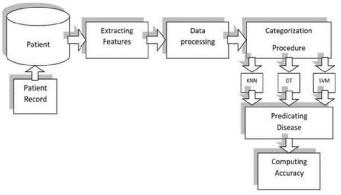


Fig. 3. Machine Learning System.

patient data and then processed. Categorization: The pro- cessed data is fed into a "Categorization Procedure" that uses multiple machine learning algorithms, specifically K-Nearest Neighbors (KNN), Decision Tree (DT), and Support Vector Machine (SVM). Prediction and Evaluation: The system then uses these algorithms to predict a disease. The final step is to compute the accuracy of the predictions

VIII. MEDICAL DIAGNOSIS PROCESS USING ML

Machine learning has granted computer systems new abilities that we could have never thought of. Machine learning is a field of AI that gives machines to power to learn itself by examples in order to analyze how to different models perform in ML without using human judgment. The working of ML are explained step by step as follow as shown in Fig. 4.

- Data Collection: The very first step is to collect data. It is a very critical step as quality and quantity affect the overall performance of the system. Basically it is a process of gathering data on targeted variables .
- Data Preparation: After the collection of data, the second step is data preprocessing. It is a process to change raw data to useful data, on which a decision could be made. This process is also called data cleaning.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429

Volume 5, Issue 3, November 2025

Impact Factor: 7.67

- Choose a Model: To represent preprocessed data into a model, one chooses an appropriate algorithm according to the task.
- Train the Model: ML use supervised learning to train a model to increase the accuracy of decision making or doing predictions.
- Evaluate the Model: To evaluate the model, a number parameters is needed. The parameters are driven from the defined objectives. Also, one needs to capture the performance of the model with the previous one.
- Parameter Tuning: This step may include: numbering of training steps, performance, outcome, learning rate, initialization values, and distribution, etc.
- Make Predictions: To evaluate the developed model with the real world, it is indispensable to predict some out-come on the test dataset. If that outcome will match with domain expert or opinions nearer to it, then that model can be used for further predictions. The basic steps of for disease detection using ML is described as follows . 1) Collect test data with patient details. 2) The feature extraction process picks attributes which are useful for disease prediction 3) Afterward, the selection of attributes, then select and process the dataset. 4) Various classifications methods as mentioned in the diagram can be applied to preprocess dataset to evaluate the accuracy of prediction of disease 5) The performance of different classifiers compared with each other in order to select the best classifier with the highest accuracy . In Machine learning, all the features extracted by a domain specialist to minimize the complications of data and to develop patterns in such a way that would easily visible to ML algorithms. However, deep learning based technique can extract features manually without human intervention, the only condition is to make precise decisions in which the testing data could be accurate . This technique eliminates the requirement of a domain expert for feature extraction. In the following section, we describe how deep learning has been used for disease diagnostic system

IX. APPLICATIONS OF MEDICAL DIAGNOSIS

Artificial Intelligence is transforming healthcare by helping doctors and medical staff diagnose diseases faster, more accu- rately, and in a more personalized way. AI can analyze large amounts of data—like medical images, lab reports, and patient histories—to support better healthcare decisions. Here's how AI is applied in medical diagnostics:

A. Disease Detection

AI systems can identify diseases early by analyzing medical data such as X-rays, CT scans, MRI images, and lab results. Example: Detecting tumors, fractures, pneumonia, or abnor- malities in organs that may be missed by human observation. Early detection allows doctors to treat patients sooner and improve outcomes.

B. Medical Imaging Analysis

AI can process and interpret medical images faster and more accurately than traditional methods. It highlights areas of concern in images for radiologists, reducing the chance of misdiagnosis. Example: AI can detect tiny cancerous nodules in lung scans that might be overlooked by humans.

C. Predictive Diagnosis

AI can predict the likelihood of a patient developing certain diseases based on their medical history, lifestyle, and genetic data. Example: Predicting the risk of heart attacks, diabetes, or stroke before symptoms appear. Helps in preventive healthcare, allowing patients to make lifestyle changes or take early treatment.

D. Personalized Treatment Recommendations

AI analyzes patient data along with global medical research to recommend the most suitable treatment plan. 26 Example: Suggesting specific chemotherapy protocols for cancer patients based on their condition and response patterns.

E. Drug Discovery and Development

AI speeds up the process of finding new drugs by predicting which compounds might be effective against certain diseases. Example: AI can simulate drug interactions or identify potential new medications, reducing the time and cost of development.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, November 2025

Impact Factor: 7.67

X. CHALLENGES FOR MEDICAL DIAGNOSIS USING AI

- Technical and Data Challenges: AI threatens to Technical and Data Challenges Data Quality and Availability Need for Big, Clean Data: AI models require massive volumes of high-quality, labeled data to achieve human-level accuracy. Healthcare data is often fragmented, in-consistent, incomplete, and unstructured.
- Ethical and Fairness Challenges: Algorithmic Bias and Health Equity Bias Reinforcement: AI models are trained on historical data, which often reflects existing systemic biases and disparities in healthcare access and quality. If the training data under-represents certain racial, ethnic, or socioeconomic groups, the model will perform less accurately for those groups.
- · Operational and Cultural Challenges: Developing countries and under- Operational and Cultural Challenges
- Integration into Clinical Workflow Disruption: AI tools must be seamlessly integrated into existing, often rigid Electronic Health Records (EHRs) and clinical work- flows. Tools that disrupt the physician's workflow will face strong resistance and low adoption rates.

XI. FUTURE SCOPE

- Predictive and Preventive Healthcare:AI is shifting the medical paradigm from reactive treatment to proactive prevention by leveraging comprehensive patient data. By analyzing vast amounts of information, including a person's genetic markers, full medical history, detailed lifestyle habits, and environmental data, AI can calculate an individual's precise risk profile for various future illnesses.
- Early and More Accurate Disease Detection: The future of AI in diagnostics promises to elevate the detection of diseases to their earliest, most treatable stages. AI algorithms are becoming adept at analyzing minute, sub- tle patterns in data, such as faint molecular biomarkers or cellular changes, often missed by the naked eye or conventional tests.
- Personalized Treatment Plans: AI is essential for re- alizing truly personalized medicine, moving away from a onesize-fits-all treatment approach. The technology can analyze complex in29 teractions between a patient's genetics, metabolism, age, concurrent conditions, and past responses to various medications.
- Continuous Monitoring Through Wearable Devices: The integration of AI with wearable technology is creating a system of seamless, continuous patient monitoring outside of a clinic. Devices like smartwatches, rings, and specialized health patches constantly collect real-time physiological data, including heart rhythm, blood pressure, oxygen saturation, and blood glucose levels.
- Enhanced Telemedicine and Remote Care: AI is vital for scaling and improving the quality of telemedicine and healthcare delivery to remote populations. In online consultations, AI systems can process patient-reported symptoms and history to perform initial triage, flagging cases that require immediate physical intervention and prioritizing the doctor's time efficientlyy ref1,ref12.
- Faster Drug Discovery and Medical Research: The process of developing a new drug is historically slow, astronomically expensive, and often unsuccessful; AI is poised to revolutionize this. AI and ML algorithms can rapidly screen millions of chemical compounds and biological targets, predicting their efficacy, toxicity, and potential interaction profiles against specific diseases with unprecedented speed.
- Improved Medical Imaging and Surgical Assistance: AI is transforming both the visualization and execution of medical procedures. In medical imaging, specialized Con- volutional Neural Networks (CNNs) can analyze complex scans like MRIs, CTs, and X-rays with superior precision, rapidly highlighting subtle anomalies such as tiny tumors, deep tissue lesions, or vascular blockages that might escape human detection.

XII. CONCLUSION

Artificial Intelligence (AI) is playing an increasingly im-portant role in healthcare, especially in medical diagnostics. It helps doctors detect diseases more quickly and accurately by analyzing large amounts of medical data, including lab reports, patient histories, and medical images like X-rays, CT scans, and MRIs. AI enables early diagnosis, which can prevent serious complications and save lives. By predicting potential health risks, AI allows doctors to take preventive measures, helping patients avoid developing severe illnesses. It also supports personalized treatment plans, tailoring therapies to each patient's specific needs, which improves treatment effectiveness and reduces side effects. With the

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, November 2025

Impact Factor: 7.67

integration of wearable devices and continuous monitoring, AI can track vital signs in real-time, alerting doctors immediately if any abnormalities occur. This improves patient safety and allows timely medical intervention. AI also reduces human errors by acting as a second opinion for doctors, ensuring more reliable diagnoses and treatments. Looking forward, AI will continue to evolve, making healthcare faster, smarter, and more accessible. It will assist in drug discovery, enhance telemedicine services, and support population health manage-

ment by detecting trends and predicting outbreaks. While AI will not replace doctors, it will serve as a powerful tool that enhances their capabilities, improves patient outcomes, and transforms healthcare into a more efficient and patient-centered system.

REFERENCES

- [1] V. K. Borate and S. Giri, "XML Duplicate Detection with Improved network pruning algorithm," 2015 International Conference on Pervasive Computing (ICPC), Pune, India, 2015, pp. 1-5, doi: 10.1109/PERVA- SIVE.2015.7087007. 2004 IEEE Access, 2004.
- [2] Borate, Vishal, Alpana Adsul, Aditya Gaikwad, Akash Mhetre, and Siddhesh Dicholkar. "A Novel Technique for Malware Detection Analysis Using Hybrid Machine Learning Model," International Jour- nal of Advanced Research in Science, Communication and Technol- ogy (IJARSCT), Volume 5, Issue 5, pp. 472-484, June 2025, DOI: 10.48175/IJARSCT-27763. 2909–2917, Nov. 2013.
- [3] Vishal Borate, Dr. Alpana Adsul, Palak Purohit, Rucha Sambare, Samiksha Yadav and Arya Zunjarrao, "Lung Disease Prediction Using Machine Learning Algorithms And GAN," International Jour- nal of Advanced Research in Science, Communication and Technol- ogy (IJARSCT), Volume 5, Issue 6, pp. 171-183, June 2025, DOI: 10.48175/IJARSCT-27926.
- [4] Vishal Borate, Dr. Alpana Adsul, Rohit Dhakane, Shahuraj Gawade, Shubhangi Ghodake, and Pranit Jadhav. "Machine Learning-Powered Protection Against Phishing Crimes," International Journal of Advanced Research in Science, Communication and Technology (IJARSCT), Vol- ume 5, Issue 6, pp. 302-310, June 2025, DOI: 10.48175/IJARSCT-27946.
- [5] Borate, Vishal, Alpana Adsul, Aditya Gaikwad, Akash Mhetre, and Siddhesh Dicholkar. "Analysis of Malware Detection Using Various Ma- chine Learning Approach," International Journal of Advanced Research in Science, Communication and Technology (IJARSCT), Volume 4, Issue 2, pp. 314-321, November 2024, DOI: 10.48175/IJARSCT-22159.
- [6] Vishal Borate, Dr. Alpana Adsul, Palak Purohit, Rucha Sambare, Samiksha Yadav, Arya Zunjarrao, "A Role of Machine Learning Algo- rithms for Lung Disease Prediction and Analysis," International Journal of Advanced Research in Science, Communication and Technology (IJARSCT), Volume 4, Issue 3, pp. 425-434, October 2024, DOI: 10.48175/IJARSCT-19962.
- [7] Borate, Mr Vishal, Alpana Adsul, Mr Rohit Dhakane, Mr Shahuraj Gawade, Ms Shubhangi Ghodake, and Mr Pranit Jadhav. "A Compre- hensive Review of Phishing Attack Detection Using Machine Learning Techniques," International Journal of Advanced Research in Science, Communication and Technology (IJARSCT), Volume 4, Issue 2, pp. 269-278, October 2024 DOI: 10.48175/IJARSCT-19963.
- [8] Vishal Borate, Dr. Alpana Adsul, Siddhesh Gaikwad, "A Systematic Approach for Skin Disease Detection Prediction by using CNN," In- ternational Journal of Advanced Research in Science, Communication and Technology (IJARSCT), Volume 4, Issue 5, pp. 425-434, November 2024, DOI: DOI: 10.48175/IJARSCT-22443.
- [9] Akanksha A Kadam, Mrudula G Godbole, Vaibhavi S Divekar, Vishakha
- T. Mandage and Prof. Vishal K Borate, "FIRE ALARM AND RESCUE SYSTEM USING IOT AND ANDROID", IJRAR International Journal of Research and Analytical Reviews (IJRAR), E-ISSN 2348-1269, P- ISSN 2349-5138, Volume.11, Issue 2, Page No pp.815-821, May 2024.
- [10] Prof. Vishal Borate, Prof. Aaradana Pawale, Ashwini Kotagonde, Sandip Godase and Rutuja Gangavne, "Design of low-cost Wireless Noise Monitoring Sensor Unit based on IOT Concept", International Journal of Emerging Technologies and Innovative Research (www.jetir.org), ISSN:2349-5162, Vol.10, Issue 12, page no.a153-a158, December-2023.

DOI: 10.48175/IJARSCT-29830

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429

Volume 5, Issue 3, November 2025

Impact Factor: 7.67

- [11] Dnyanesh S. Gaikwad, Vishal Borate, "A REVIEW OF DIFFER- ENT CROP HEALTH MONITORING AND DISEASE DETECTION TECHNIQUES IN AGRICULTURE", IJRAR International Journal of Research and Analytical Reviews (IJRAR), E-ISSN 2348-1269, PISSN 2349-5138, Volume.10, Issue 4, Page No pp.114- 117, November 2023.
- [12] Prof. Vishal Borate, Vaishnavi Kulkarni and Siddhi Vidhate, "A Novel Approach for Filtration of Spam using NLP", IJRAR International Journal of Research and Analytical Reviews (IJRAR), E-ISSN 2348- 1269, PISSN 2349-5138, Volume.10, Issue 4, Page No pp.147-151, November 2023.
- [13] Prof. Vishal Borate, Kajal Ghadage and Aditi Pawar, "Survey of Spam Comments Identification using NLP Techniques", IJRAR International Journal of Research and Analytical Reviews (IJRAR), E-ISSN 2348- 1269, PISSN 2349-5138, Volume.10, Issue 4, Page No pp.136- 140, November 2023.
- [14] Akanksha A Kadam, Mrudula G Godbole, Vaibhavi S Divekar and Prof. Vishal K Borate, "Fire Evacuation System Using IOT AI", IJRAR International Journal of Research and Analytical Reviews (IJRAR), E- ISSN 2348-1269, P- ISSN 2349-5138, Volume.10, Issue 4, Page Nopp.176-180, November 2023
- [15] Shikha Kushwaha, Sahil Dhankhar, Shailendra Singh and Mr. Vishal Kisan Borate, "IOT Based Smart Electric Meter", International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCSEIT), ISSN: 2456-3307, Volume 8, Issue 3, pp.51-56, May-June-2021.
- [16] Nikita Ingale, Tushar Anand Jha, Ritin Dixit and Mr Vishal Kisan Borate, "College Enquiry Chatbot Using Rasa," International Journal of Scientific Research in Computer Science, Engineering and Information Technology(IJSRCSEIT), ISSN: 2456-3307, Volume 8, Issue 3, pp.201-206, May-June-2021.
- [17] Pratik Laxman Trimbake, Swapnali Sampat Kamble, Rakshanda Bharat Kapoor, Mr Vishal Kisan Borate and Mr Prashant Laxmanrao Mandale, "Automatic Answer Sheet Checker," International Journal of Scientific Research in Computer Science, Engineering and In-formation Technol- ogy(IJSRCSEIT), ISSN: 2456-3307, Volume 8, Issue 3, pp.212-215, May-June-2021.
- [18] Shikha Kushwaha, Sahil Dhankhar, Shailendra Singh and Mr. Vishal Kisan Borate, "IOT Based Smart Electric Meter" International Journal of Scientific Research in Science and Technology (IJSRST), ISSN: 2395-602X, Volume 5, Issue 8, pp.80-84, December-2020.
- [19] Nikita Ingale, Tushar Anand Jha, Ritin Dixit and Mr Vishal Kisan Borate, "College Enquiry Chatbot Using Rasa," International Journal of Scientific Research in Science and Technology (IJSRST), ISSN: 2395- 602X, Volume 5, Issue 8, pp.210-215, December-2020.
- [20] Pratik Laxman Trimbake, Swapnali Sampat Kamble, Rakshanda Bharat Kapoor and Mr Vishal Kisan Borate, "Automatic Answer Sheet Checker," International Journal of Scientific Research in Science and Technology (IJSRST), ISSN: 2395-602X, Volume 5, Issue 8, pp.221-226, December-2020.
- [21] Chame Akash Babasaheb, Mene Ankit Madhav, Shinde Hrushikesh Ramdas, Wadagave Swapnil Sunil, Prof. Vishal Kisan Borate, "IoT Based Women Safety Device using Android, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN: 2395-1990, Online ISSN: 2394-4099, Volume 5, Issue 10, pp.153-158, MarchApril-2020.
- [22] Harshala R. Yevlekar, Pratik B. Deore, Priyanka S. Patil, Rutuja R. Khandebharad, Prof. Vishal Kisan Borate, "Smart and Integrated Crop Disease Identification System, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN: 2395-1990, Online ISSN: 2394-4099, Volume 5, Issue 10, pp.189-193, March-April-2020.
- [23] Yash Patil, Mihir Paun, Deep Paun, Karunesh Singh, Vishal Kisan Borate, "Virtual Painting with Opency Using Python, International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN: 2395-602X, Print ISSN: 2395-6011, Volume 5, Issue 8, pp.189-194, November-December-2020.
- [24] Mayur Mahadev Sawant, Yogesh Nagargoje, Darshan Bora, Shrinivas Shelke and Vishal Borate, Keystroke Dynamics: Review Paper Interna- tional Journal of Advanced Research in Computer and Communication Engineering, vol. 2, no. 10, October 2013.

Copyright to IJARSCT www.ijarsct.co.in

ISSN 2581-9429 IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, November 2025

Impact Factor: 7.67

- Communication **Technologies** (DICCT), Dehradun, India, 2025, 196-201, doi: pp. 10.1109/DICCT64131.2025.10986657.
- [26] R. Dudhmal, I. Khatik, S. Kadam, S. Choudhary, S. Zurange and V. Borate, "Monitoring Students in Online Learning Envi- ronments Using Deep Learning Approach," 2025 3rd International Conference on Device Intelligence, Computing and Communication Technolo gies (DICCT), Dehradun, India, 2025, pp. 202-206, doi: 10.1109/DICCT64131.2025.10986425.
- [27] A. N. Jadhav, R. Kohad, N. Mali, S. A. Nalawade, H. Chaudhari and V. Borate, "Segmenting Skin Lesions in Medical Imaging A Transfer Learning Approach," 2025 International Conference on Recent Advances in Electrical, Electronics, Ubiquitous Communication, and Computational Intelligence (RAEEUCCI), Chennai, India, 2025, pp. 1-6, doi: 10.1109/RAEEUCCI63961.2025.11048333.
- [28] R. Kohad, S. K. Yadav, S. Choudhary, S. Sawardekar, M. Shirsath and V. Borate, "Rice Leaf Disease Classification with Advanced Resizing and Augmentation," 2025 International Conference on Recent Advances in Electrical, Electronics, Ubiquitous Communication, and Computational Intelligence (RAEEUCCI), Chennai, India, 2025, pp. 1-6, doi: 10.1109/RAEEUCCI63961.2025.11048331.
- [29] P. More, P. Gangurde, A. Shinkar, J. N. Mathur, S. Patil and V. Borate, "Identifying Political Hate Speech using Transformer-based Approach," 2025 International Conference on Recent Advances in Electrical, Electronics, Ubiquitous Communication, and Computational Intelligence (RAEEUCCI), Chennai, India, 2025, pp. 1-6, doi: 10.1109/RAEEUCCI63961.2025.11048250.
- [30] S. Naik, A. Kandelkar, R. Agnihotri, S. Purohit, V. Deokate and V. Borate, "Use of Machine Learning Algorithms to assessment of Drinking Water Quality in Environment," 2025 International Conference on Intelligent and Cloud Computing (ICoICC), Bhubaneswar, India, 2025, pp. 1-6, doi: 10.1109/ICoICC64033.2025.11052015
- [31] A. Pisote, S. Mangate, Y. Tarde, H. A. Inamdar, S. Ashok Nangare and V. Borate, "A Comparative Study of ML and NLP Models with Sentimental Analysis," 2025 International Conference on Advancements in Power, Communication and Intelligent Systems (APCI), Kannur, India, 2025, 1-5, 10.1109/APCI65531.2025.11136837.
- [32] A. Pisote, D. N. Bhaturkar, D. S. Thosar, R. D. Thosar, A. Deshmukh and V. Borate, "Detection of Blood Clot in Brain Using Supervised Learning Algorithms," 2025 6th International Conference for Emerging Technology (INCET), BELGAUM, India, 2025, pp. 1-6, doi: 10.1109/IN- CET64471.2025.11140127.
- [33] S. Darekar, P. Nilekar, S. Lilhare, A. Chaudhari, R. Narayan and V. Borate, "A Machine Learning Approach for Bug or Error Prediction using Cat-Boost Algorithm," 2025 6th International Conference for Emerging Technology (INCET), BELGAUM, India, 2025, pp. 1-5, doi: 10.1109/INCET64471.2025.11140996.
- [34] R. Tuptewar, S. Deshmukh, S. Sonavane, R. Bhilare, S. Darekar and V. Borate, "Ensemble Learning for Burn Severity Classifica- tion," 2025 6th International Conference for Emerging Technol- ogy (INCET), BELGAUM, India, 2025, pp. 1-5, doi: 10.1109/IN-CET64471.2025.11139863
- [35] S. S. Doifode, S. S. Lavhate, S. B. Lavhate, R. Shirbhate, A. Kulka-rni and V. Borate, "Prediction of Drugs Consumption using Neutral Network," 2025 6th International Conference for Emerging Technol- ogy (INCET), BELGAUM, India, 2025, pp. 1-5, doi: 10.1109/IN- CET64471.2025.11139984.
- [36] S. Khawate, S. Gaikwad, Y. Davda, R. Shirbhate, P. Gham and V. Borate, "Dietary Monitoring with Deep Learning and Computer Vision," 2025 International Conference on Computing Technologies Data Communi-cation (ICCTDC), HASSAN, India, 2025, pp. 1-5, doi: 10.1109/IC-CTDC64446.2025.11158839.
- [37] A. Dhore, P. Dhore, P. Gangurde, A. Khadke, S. Singh and V. Bo- rate, "Face Morphing Attack Detection Using Deep Learning," 2025 International Conference on Computing Technologies Data Communication (ICCTDC), HASSAN, India, 2025, pp. 01-06, doi: 10.1109/IC-CTDC64446.2025.11158160.
- [38] Y. Khalate, N. Khare, S. Kadam, S. Zurange, J. N. Mathur and
- V. Borate, "Custom Lightweight Encryption for Secure Storage using Blockchain," 2025 5th International Conference on Intelli- gent Technologies (CONIT), HUBBALI, India, 2025, pp. 1-5, doi: 10.1109/CONIT65521.2025.11166943.

International Journal of Advanced Research in Science, Communication and Technology

ISO POOT:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429

Volume 5, Issue 3, November 2025

Impact Factor: 7.67

- [39] Y. K. Mali, S. Dargad, A. Dixit, N. Tiwari, S. Narkhede and A. Chaudhari, "The Utilization of Block-chain Innovation to Confirm KYC Records," 2023 IEEE International Carnahan Conference on Security Technology (ICCST), Pune, India, 2023, pp. 1-5, doi: 10.1109/ICCST59048.2023.10530513.
- [40] Mahajan, Krishnal, Sumant Bhange, Prajakta Gade, and Yogesh Mali. "Guardian Shield: Real Time Transaction Security.".
- [41] Y. K. Mali, S. A. Darekar, S. Sopal, M. Kale, V. Kshatriya and A. Palaskar, "Fault Detection of Underwater Cables by Using Robotic Operating System," 2023 IEEE International Carnahan Conference on Security Technology (ICCST), Pune, India, 2023, pp. 1-6, doi: 10.1109/ICCST59048.2023.10474270.
- [42] Mali, Yogesh, Krishnal Mahajan, Sumant Bhange, and Prajakta Gade. "Guardian Shield: Real Time Transaction Security.".
- [43] Bhoye, Tejaswini, Aishwarya Mane, Vandana Navale, Sangeeta Mohap- atra, Pooja Mohbansi, and Vishal Borate. "A Role of Machine Learning Algorithms for Demand Based Netflix Recommendation System.".
- [44] Thube, Smita, Sonam Singh, Poonam Sadafal, Shweta Lilhare, Pooja Mohbansi, Vishal Borate, and Yogesh Mali. "Identifying New Species of Dogs Using Machine Learning Model.".
- [45] Kale, Hrushikesh, Kartik Aswar, and Yogesh Mali Kisan Yadav. "Atten- dance Marking using Face Detection." International Journal of Advanced Research in Science, Communication and Technology: 417–424.
- [46] Mali, Yogesh, and Viresh Chapte. "Grid based authentication system." International Journal 2, no. 10 (2014).
- [47] N. Nadaf, G. Chendke, D. S. Thosar, R. D. Thosar, A. Chaudhari and Y. K. Mali, "Development and Evaluation of RF MEMS Switch Utiliz- ing Bimorph Actuator Technology for Enhanced Ohmic Performance," 2024 International Conference on Control, Computing, Communication and Materials (ICCCCM), Prayagraj, India, 2024, pp. 372-375, doi: 10.1109/ICCCCM61016.2024.11039926.
- [48] Rojas, M., Mal'ı, Y. (2017). Programa de sensibilizacion' sobre norma tecnica de salud N° 096 MINSA/DIGESA 'V. 01 para la mejora del manejo de residuos solidos hos- 'pitalarios en el Centro de Salud Palmira, IndependenciaHuaraz, 2017.
- [49] Modi, S., Nalawade, S., Zurange, S., Mulani, U., Borate, V., Mali, Y. (2025). Python-Driven Mapping of Technological Proficiency with AI to Simplify Transfer Applications in Education. In: Saha, A.K., Sharma, H., Prasad, M., Chouhan, L., Chaudhary, N.K. (eds) Intelligent Vision and Computing. ICIVC 2024 2024. Studies in Smart Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-96-4722-41
- [50] Mulani, Umar, Vinod Ingale, Rais Mulla, Ankita Avthankar, Yo- gesh Mali, and Vishal Borate. "Optimizing Pest Classification in Oil Palm Agriculture using FineTuned GoogleNet Deep Learning Models." Grenze International Journal of Engineering Technology (GIJET) 11 (2025).
- [51] D. Chaudhari, R. Dhaygude, U. Mulani, P. Rane, Y. Khalate and V. Borate, "Onion Crop Cultivation Prediction of Yields by Machine Learn- ing," 2024 2nd International Conference on Advances in Computation, Communication and Information Technology (ICAICCIT), Faridabad, India, 2024, pp. 244-249, doi: 10.1109/ICAICCIT64383.2024.10912135.
- [52] Mali, Y. NilaySawant, "Smart Helmet for Coal Mining,". International Journal of Advanced Research in Science, Communication and Tech-nology (IJARSCT) Volume, 3.
- [53] Mali, Y.K. Marathi sign language recognition methodology us- ing Canny's edge detection. Sadhan a 50, 268 (2025). https://doi.org/10.1007/s12046-025-02963-z.
- [54] Y. Mali, M. E. Pawar, A. More, S. Shinde, V. Borate and R. Shirbhate, "Improved Pin Entry Method to Prevent Shoulder Surfing Attacks," 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), Delhi, India, 2023, pp. 1-6, doi: 10.1109/ICCCNT56998.2023.10306875.
- [55] V. Borate, Y. Mali, V. Suryawanshi, S. Singh, V. Dhoke and A. Kulkarni, "IoT Based Self Alert Generating Coal Miner Safety Hel- mets," 2023 International Conference on Computational Intelligence, Networks and Security (ICCINS), Mylavaram, India, 2023, pp. 01-04, doi: 10.1109/ICCINS58907.2023.10450044.
- [56] Y. K. Mali and A. Mohanpurkar, "Advanced pin entry method by resisting shoulder surfing attacks," 2015 International Conference on Information Processing (ICIP), Pune, India, 2015, pp. 37-42, doi: 10.1109/INFOP.2015.7489347.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, November 2025

Impact Factor: 7.67

[57] Mali, Y. NilaySawant, "Smart Helmet for Coal Mining,". International Journal of Advanced Research in Science, Communication and Tech- nology (IJARSCT) Volume, 3

[58] Mali, Y. (2023). TejalUpadhyay,". Fraud Detection in Online Content Mining Relies on the Random Forest Algorithm", SWB, 1(3), 13-20.

[59] Kohad, R., Khare, N., Kadam, S., Nidhi, Borate, V., Mali, Y. (2026). A Novel Approach for Identification of Information Defamation Using Sarcasm Features. In: Sharma, H., Chakravorty, A. (eds) Proceedings of International Conference on Information Technology and Intelligence. ICITI 2024. Lecture Notes in Networks and Systems, vol 1341. Springer, Singapore. https://doi.org/10.1007/978-981-96-5126-9 12.

[60] Amit Lokre, Sangram Thorat, Pranali Patil, Chetan Gadekar, Yogesh Mali, "Fake Image and Document Detection using Machine Learning," International Journal of Scientific Research in Science and Technology(IJSRST), Print ISSN: 2395-6011, Online ISSN: 2395-602X, Volume 5, Issue 8, pp. 104-109, November-December - 2020

