

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 3, November 2025

CaloriScan – Simple and Clear: Calorie Scanning From Images

Vishal Borate¹, Dr. Alpana Adsul², Bhakti Bhoskar³

Department of Computer Engineering¹⁻³

Dr. D. Y. Patil College of Engineering and Innovation, Varale, Talegaon, Pune, India vkborate88@gmail.com, hodcomputer@dypatilef.com, bhoskarbhakti@gmail.com

Abstract: This review paper examines the development and application of AI-based systems for automated food calorie and nutrition estimation from images. With rising global health con-cerns related to diet-related diseases, accurate dietary tracking has become essential for health management. Traditional manual food logging methods are time-consuming and prone to errors, creating a need for automated solutions. This paper synthesizes current research on computer vision and deep learning techniques applied to food recognition, portion size estimation, and nutritional analysis. The review discusses various methodological approaches, technological architectures, performance metrics, practical applications, and existing challenges in this rapidly evolving field. The paper concludes by examining future directions and the potential impact of these systems on public health and personalized nutrition.

Keywords: AI, Deep Learning, Food Recognition, Calorie Estimation, Computer Vision, Nutrition Analysis, CNN, Image Processing, Dietary Assessment

I. INTRODUCTION

The global burden of diet-related diseases, including obesity, diabetes, and cardiovascular conditions, has reached epidemic proportions. According to the World Health Organization, obesity has nearly tripled worldwide since 1975, with dietary management playing a crucial role in prevention and treatment. Accurate tracking of calorie intake and nutritional composition is fundamental to effective dietary management, yet traditional methods relying on manual food diaries suffer from significant limitations including user burden, recall bias, and portion size estimation errors [1].

The convergence of artificial intelligence, particularly deep learning and computer vision, with mobile computing has created unprecedented opportunities for automated dietary assessment. AI-based food calorie and nutrition estimators represent a paradigm shift from manual logging to automated, image-based nutritional analysis [2]. These systems leverage convolutional neural networks (CNNs), transfer learning, and advanced image processing techniques to identify food items, estimate portion sizes, and calculate nutritional content from smartphone images [3].

Traditional dietary assessment methods face several critical challenges. Manual food diaries require users to remember and record every food item consumed, estimate portion sizes accurately, and search through extensive food databases [4]. This process is tedious, time-consuming, and suffers from sub- stantial underreporting and misestimation. Studies have shown that self-reported dietary intake can have errors exceeding 30 percent, significantly limiting the reliability of dietary data for clinical and research purposes [5].

The emergence of smartphone technology with high-quality cameras has created new possibilities for dietary monitoring. Nearly everyone carries a capable imaging device, making image-based dietary assessment both practical and scalable [6]. When combined with advances in artificial intelligence, particularly in computer vision and deep learning, automated food recognition and nutrition estimation have become tech- nically feasible and increasingly accurate [7].

AI-based systems offer several advantages over traditional methods. They reduce user burden by requiring only a photograph rather than detailed manual entry [8]. They provide objective measurements rather than subjective estimates. They can analyze complex meals with multiple components. They offer real-time feedback that can influence

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, November 2025

Impact Factor: 7.67

immediate dietary choices. Most importantly, they have the potential to dra- matically improve compliance with dietary tracking, which is perhaps the most significant barrier to effective dietary management [9].

The objective of this review is to provide a comprehensive examination of the current state-of-the-art in AI-based food nutrition estimation, analyzing the technological foundations, methodological approaches, practical implementations, and outstanding challenges that define this interdisciplinary field [10].

II. TECHNOLOGICAL FOUNDATIONS

AI-based food calorie and nutrition estimation systems rely on several interconnected technologies that work together to enable automated dietary assessment [11].

A. Computer Vision

Computer vision enables machines to interpret and understand visual information from images. In food analysis, this involves detecting food items, segmenting them from backgrounds, and identifying their boundaries within complex meal compositions [12]. Computer vision algorithms process pixel data to extract meaningful features that characterize different foods, recognize patterns that distinguish one food type from another, and handle variations in appearance due to lighting, angle, and presentation style [13].

B. Deep Learning and Convolutional Neural Networks

CNNs form the backbone of modern food recognition systems. These neural networks are specifically designed to process visual data through hierarchical layers that learn increasingly complex features. Popular architectures include [14].

POPULAR CNN ARCHITECTURES FOR FOOD RECONITION

Fig. 1. Popular CNN Architectures: ResNet, Inception, EfficientNet, Mo- bileNet

ResNet (Residual Networks): Utilized for deep feature ex- traction with skip connections preventing gradient vanishing. ResNet architectures enable training of very deep networks (50, 101, or even 152 layers) by allowing gradients to flow directly through shortcut connections, addressing the degrada- tion problem in deep networks. This architecture has achieved remarkable success in food recognition tasks due to its ability to learn subtle visual differences between similar food items [15].

Inception Networks: Employ multi-scale convolutions to capture food features at various granularities. These networks use parallel convolutional operations with different kernel sizes, allowing the model to capture both fine details and broader context simultaneously. This multi-scale approach is particularly effective for food recognition as it can detect both texture details and overall shape characteristics [16].

EfficientNet: Optimizes accuracy and computational efficiency through compound scaling. This architecture systemat- ically balances network depth, width, and resolution using a principled approach, achieving state-of-the-art accuracy with fewer parameters and lower computational cost [17]. Efficient- Net models are particularly suitable for mobile deployment where computational resources are limited [18].

MobileNet: Designed for mobile deployment with reduced computational requirements. MobileNet uses depthwise separable convolutions to significantly reduce the number of parameters and operations, making real-time inference on smartphones practical [19]. This architecture enables on- device processing, improving privacy and reducing network dependency [20].

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, November 2025

Impact Factor: 7.67

C. Transfer Learning

Transfer learning leverages pre-trained models on large- scale datasets like ImageNet and fine-tunes them on food-specific datasets, significantly reducing training time and im- proving accuracy with limited food image data [21]. This approach is particularly valuable in food recognition where collecting and annotating large datasets is expensive and time- consuming. Pre-trained models provide robust low-level and mid-level feature detectors that generalize well across different image domains [22].

D. Object Detection and Segmentation

Techniques like YOLO (You Only Look Once), Faster R- CNN, and Mask R-CNN enable simultaneous detection of multiple food items in a single image and precise segmentation for volume estimation. Object detection frameworks identify and localize individual food items within complex meal images, providing bounding boxes or pixel-level masks that separate different foods. This capability is essential for analyzing mixed meals where multiple food items appear on the same plate [23].

YOLO provides real-time object detection through a single neural network that simultaneously predicts bounding boxes and class probabilities [24]. Faster R-CNN offers higher ac- curacy through a two-stage approach with region proposals. Mask R-CNN extends detection with instance segmentation, providing pixel-level masks crucial for accurate volume esti- mation [25].

E. Depth Estimation and 3D Reconstruction

Advanced systems incorporate depth sensing using stereo cameras or depth sensors, or monocular depth estimation

MULTI-FOOD DETECTION AND SEGMENTATION

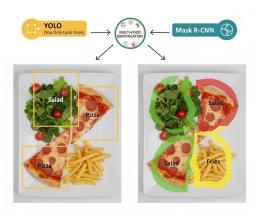


Fig. 2. Multi-food Detection: YOLO and Mask R-CNN identifying multiple items

to calculate food volume, essential for accurate portion size and calorie estimation. Three-dimensional reconstruction from two-dimensional images remains one of the most challenging aspects of automated dietary assessment. Depth information enables conversion from visual appearance to actual food volume, which is necessary for accurate nutritional calculation [26].

F. Natural Language Processing

Some systems integrate NLP to process user inputs, food descriptions, and recipe information, enhancing recognition accuracy through multimodal data fusion. Natural language understanding can help disambiguate between visually similar foods, incorporate cooking method information, and leverage contextual cues that improve overall system performance [27].

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, November 2025

III. METHODOLOGICAL APPROACHES

A. Food Recognition Pipeline

The typical pipeline consists of several sequential stages that transform a raw food image into detailed nutritional information [28].

Stage 1: Image Acquisition Food images are captured using smartphone cameras, either as single images or multiple views from different angles. Image quality considerations include lighting conditions, camera angle, distance from food, and the presence of reference objects for scale [29]. Some systems require calibration images with known objects (such as credit cards or coins) placed beside food to provide absolute scale reference. Advanced systems can work with uncalibrated images but may sacrifice some accuracy in portion estimation [30].

Stage 2: Image Preprocessing Raw images undergo several preprocessing steps to improve subsequent analysis. Noise reduction filters remove artifacts from image capture. Color normalization adjusts for varying lighting conditions and white balance. Background removal and food segmentation separate food items from plates, tables, and other irrelevant image content. Image enhancement techniques improve contrast and sharpness to facilitate feature extraction [31].

Stage 3: Food Classification Deep learning models classify food items into predefined categories from food databases. Classification can be performed at different levels of granu- larity. Hierarchical classification first determines cuisine type, then narrows to dish category, and finally identifies the specific food item. Multi-label classification handles mixed dishes con- taining multiple recognizable ingredients. The classification stage produces probability distributions over possible food categories, often providing top-k predictions rather than a single answer [32].

Stage 4: Portion Size Estimation Estimating food quantity from images is one of the most challenging aspects of automated dietary assessment. Several approaches exist [33]. Reference-based methods use known objects (credit cards, utensils, hands) placed in the image for scale. By comparing the apparent size of food items to reference objects of known dimensions, absolute measurements can be calculated. Depth- based methods perform 3D reconstruction from stereo im- ages or depth sensors. Template matching compares observed food against standard portion templates. Shape-from-shading techniques estimate 3D shape from single images by analyz- ing how lighting creates shadows and brightness variations.

Learning-based approaches train machine learning models to directly predict volume or weight from visual features [34].

Stage 5: Nutritional Calculation Once food items are identified and portion sizes estimated, the system queries nutritional databases to retrieve composition information. Standard databases like USDA FoodData Central provide detailed nu-tritional profiles including macronutrients (carbohydrates, proteins, fats), micronutrients (vitamins, minerals), fiber, choles-

terol, and other components. The system scales database values based on estimated portion size and aggregates across all detected foods to provide total meal nutrition [35].

B. Dataset Development

Several food image datasets have been developed to support research and training of AI models [36].

Food-101: Contains 101,000 images across 101 food cat- egories, primarily Western foods. This dataset has become a standard benchmark for food classification research.

UEC Food datasets: Japanese food datasets with bounding box annotations for multiple food items per image, supporting multi-food detection research [37].

UNIMIB2016: Provides food images with weight annotations, enabling training of portion estimation models.

Recipe1M+: Large-scale dataset with over one million recipes paired with food images and ingredient lists, support- ing joint learning of visual and textual food representations.

Nutrition5k: Contains images with detailed nutritional ground truth measured in laboratory settings, enabling evaluation of end-to-end nutrition estimation accuracy [38].

Despite these resources, significant gaps remain in dataset coverage, particularly for non-Western cuisines, home-cooked meals, and regional food variations.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 3, November 2025

IV. APPLICATIONS OF AI-BASED NUTRITION ESTIMATORS

A. Personal Health Management

Individuals use these applications for daily calorie tracking for weight management, dietary compliance monitoring for medical conditions such as diabetes and hypertension, macro and micronutrient balance optimization, and food allergy and intolerance management. Consumer applications like MyFit- nessPal, Lose It!, and Calorie Mama have integrated AI- powered food recognition, reaching millions of users world- wide [39].

B. Clinical and Medical Applications

Healthcare providers leverage these systems for remote patient monitoring and dietary counseling, nutritional assessment in hospitals and care facilities, treatment planning for metabolic disorders, and research on dietary patterns and health outcomes. Clinical applications require higher accuracy standards and regulatory compliance, but offer significant potential for improving patient care and outcomes [40].

C. Fitness and Sports Nutrition

Athletes and fitness enthusiasts utilize these tools for precise macro tracking for performance optimization, meal timing and composition planning, body composition goal achievement, and competition preparation dietary management. The ability to quickly log meals without manual entry is particularly valuable for athletes who consume multiple meals and snacks throughout training days [41].

D. Food Service and Hospitality

Restaurants and food services implement these systems for automatic nutritional labeling of menu items, portion control and standardization, customer dietary preference accommodation, and regulatory compliance with nutritional disclosure requirements. Some establishments use AI systems to verify that prepared meals match standard specifications and nutritional targets [42].

E. Public Health and Research

Researchers and public health officials use these technologies for large-scale dietary surveys with reduced participant burden, population-level nutritional epidemiology, intervention effectiveness monitoring, and dietary pattern analysis across demographics. Automated dietary assessment enables research studies that would be impractical with traditional manual methods [43].

V. BENEFITS AND CHALLENGES

A. Key Benefits

User Convenience: Eliminates tedious manual entry by simply capturing food images, significantly reducing the barrier to consistent dietary tracking. Users can log meals in seconds rather than minutes [44].

Improved Accuracy: Reduces human estimation errors and recall bias inherent in traditional food diaries through objective image analysis.

Real-time Feedback: Provides instant nutritional information, enabling immediate dietary decisions and behavioral modification [45].

Comprehensive Analysis: Offers detailed breakdown of macronutrients, micronutrients, and calories that would be difficult to calculate manually.

Accessibility: Makes professional-grade nutritional analysis accessible to general population through smartphone applications [46].

Scalability: Facilitates large-scale dietary monitoring pro- grams for research and public health initiatives at minimal cost.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 3, November 2025

B. Major Challenges

Food Recognition Complexity: High visual similarity between dishes, regional variations, mixed ingredients, and food preparation methods create recognition challenges. Cross- cultural food recognition is particularly challenging, as models trained primarily on Western cuisines often perform poorly on Asian, African, or other regional foods [47].

Portion Size Estimation Accuracy: Volume estimation from 2D images remains difficult without reference objects or depth information. Current systems typically achieve 15-30 percent mean absolute percentage error for portion estimation, which translates to significant calorie estimation errors [48].

Dataset Limitations: Insufficient diversity in food databases, cultural and regional food coverage gaps, and limited training data for rare or homemade dishes constrain system performance.

Occlusion and Presentation Variability: Foods hidden by other items, layered dishes, and diverse plating styles complicate accurate recognition and volume estimation [49].

Database Accuracy: Inconsistencies in nutrient composition databases and lack of standardization across sources affect final nutritional estimates [50].

Real-world Deployment: Variable lighting conditions, im- age quality from different devices, and computational constraints on mobile devices affect practical performance [51].

Privacy: Concerns about sensitive dietary information stor- age and user data protection create barriers to adoption .

VI. PERFORMANCE METRICS AND EVALUATION

A. Food Recognition Accuracy

Top-1 Accuracy: Percentage of correctly identified foods as first prediction. State-of-the-art systems achieve 80-95 percent on standardized datasets [52].

Top-5 Accuracy: Whether correct food appears in top 5 predictions, better reflecting practical usage [53].

Mean Average Precision (mAP): Performance across multiple food categories, particularly relevant for multi-food detection tasks [54].

B. Portion Size Estimation Error

Mean Absolute Error (MAE): Average absolute difference between estimated and actual volume [55].

Mean Absolute Percentage Error (MAPE): Percentage- based error measure, typically 15-30 percent for current systems [56].

Root Mean Square Error (RMSE): Penalizes larger errors more heavily [57].

C. Nutritional Estimation Accuracy

Clinical acceptability typically requires calorie estimation within ±20 percent of actual values [58, 59].

VII. FUTURE DIRECTIONS AND RESEARCH OPPORTUNITIES

A. Technical Improvements

Enhanced single-image depth estimation specifically opti- mized for food; cross-cultural dataset expansion; real-time edge computing optimization; advanced segmentation for complex meals[60].

B. Integration and Applications

Electronic health records connectivity; smart kitchen device integration; AI-powered meal planning; clinical validation studies; precision nutrition with genomics integration.

C. Regulatory Frameworks

Industry accuracy standards; privacy regulations; medical device classification; algorithmic fairness across populations.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, November 2025

VIII. CONCLUSION

AI-based food calorie and nutrition estimators represent transformative technology at the intersection of artificial intelligence, computer vision, nutrition science, and public health. These systems address fundamental limitations of traditional dietary tracking by offering convenient, objective, and com- prehensive nutritional analysis from smartphone

While current systems achieve impressive recognition ac- curacy on standardized datasets, significant challenges remain in portion size estimation, diverse food culture handling, and real-world deployment. Future success requires continued col- laboration among computer scientists, nutritionists, healthcare providers, and end-users .

Research priorities include improving portion estimation accuracy, expanding cross-cultural recognition, developing privacy-preserving architectures, and validating systems clinically. As these technologies mature, they promise increasingly important roles in personal health management, clinical nutrition therapy, and public health initiatives addressing global diet-related disease burdens.

REFERENCES

- [1]. V. K. Borate and S. Giri, "XML Duplicate Detection with Improved network pruning algorithm," 2015 International Conference on Pervasive Computing (ICPC), Pune, India, 2015, pp. 1-5, doi: 10.1109/PERVA-SIVE.2015.7087007.
- [2]. Borate, Vishal, Alpana Adsul, Aditya Gaikwad, Akash Mhetre, and Siddhesh Dicholkar. "A Novel Technique for Malware Detection Analysis Using Hybrid Machine Learning Model," International Journal of Advanced Research in Science, Communication and Technology (IJARSCT), Volume 5, Issue 5, pp. 472-484, June 2025, DOI: 10.48175/IJARSCT-27763.
- [3]. Vishal Borate, Dr. Alpana Adsul, Palak Purohit, Rucha Sambare, Samiksha Yadav and Arya Zunjarrao, " Lung Disease Prediction Using Machine Learning Algorithms And GAN," International Journal of Advanced Research in Science, Communication and Technology (IJARSCT), Volume 5, Issue 6, pp. 171-183, June 2025, DOI: 10.48175/IJARSCT-27926.
- [4]. Vishal Borate, Dr. Alpana Adsul, Rohit Dhakane, Shahu- raj Gawade, Shubhangi Ghodake, and Pranit Jadhav. "Machine Learning-Powered Protection Against Phish- ing Crimes," International Journal of Advanced Research in Science, Communication and Technology (IJARSCT), Volume 5, Issue 6, pp. 302-310, June 2025, DOI: : 10.48175/IJARSCT-27946.
- [5]. Borate, Vishal, Alpana Adsul, Aditya Gaikwad, Akash Mhetre, and Siddhesh Dicholkar. "Analysis of Malware Detection Using Various Machine Learning Ap- proach," International Journal of Advanced Research in Science, Communication and Technology (IJARSCT), Volume 4, Issue 2, pp. 314-321, November 2024, DOI: 10.48175/IJARSCT-22159.
- [6]. Vishal Borate, Dr. Alpana Adsul, Palak Purohit, Rucha Sambare, Samiksha Yadav, Arya Zunjarrao, "A Role of Machine Learning Algorithms for Lung Disease Prediction and Analysis," International Journal of Advanced Research in Science, Communication and Technology (IJARSCT), Volume 4, Issue 3, pp. 425-434, October 2024, DOI: 10.48175/IJARSCT-19962.
- [7]. Borate, Mr Vishal, Alpana Adsul, Mr Rohit Dhakane, Mr Shahuraj Gawade, Ms Shubhangi Ghodake, and Mr Pranit Jadhav. "A Comprehensive Review of Phish- ing Attack Detection Using Machine Learning Techniques," International Journal of Advanced Research in Science, Communication and Technology (IJARSCT), Volume 4, Issue 2, pp. 269-278, October 2024 DOI: 10.48175/IJARSCT-19963.
- [8]. Vishal Borate, Dr. Alpana Adsul, Siddhesh Gaikwad, "A Systematic Approach for Skin Disease Detection Prediction by using CNN," International Journal of Advanced Research in Science, Communication and Technology (IJARSCT), Volume 4, Issue 5, pp. 425-434, November 2024, DOI: DOI: 10.48175/IJARSCT-22443.
- [9]. Akanksha A Kadam, Mrudula G Godbole, Vaibhavi S Divekar, Vishakha T. Mandage and Prof. Vishal K Borate, "FIRE ALARM AND RESCUE SYSTEM USING IOT AND ANDROID", IJRAR - International

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, November 2025

Impact Factor: 7.67

- Journal of Research and Analytical Reviews (IJRAR), E-ISSN 2348-1269, P- ISSN 2349-5138, Volume.11, Issue 2, Page No pp.815-821, May 2024.
- [10]. Prof. Vishal Borate, Prof. Aaradana Pawale, Ashwini Kotagonde, Sandip Godase and Rutuja Gangavne, "Design of low-cost Wireless Noise Monitoring Sensor Unit based on IOT Concept", International Journal of Emerging Technologies and Innovative Research (www.jetir.org), ISSN:2349-5162, Vol.10, Issue 12, page no.a153-a158, December-2023.
- [11]. Dnyanesh S. Gaikwad, Vishal Borate, "A REVIEW OF DIFFERENT CROP HEALTH MONITORING AND DISEASE DETECTION TECHNIQUES IN AGRICULTURE", IJRAR - International Journal of Research and Analytical Reviews (IJRAR), E-ISSN 2348-1269, P- ISSN 2349-5138, Volume.10, Issue 4, Page No pp.114-117, November 2023.
- [12]. Prof. Vishal Borate, Vaishnavi Kulkarni and Siddhi Vidhate, "A Novel Approach for Filtration of Spam using NLP", IJRAR - International Journal of Research and Analytical Reviews (IJRAR), E-ISSN 2348-1269, P-ISSN 2349-5138, Volume.10, Issue 4, Page No pp.147-151, November 2023.
- [13]. Prof. Vishal Borate, Kajal Ghadage and Aditi Pawar, "Survey of Spam Comments Identification using NLP Techniques", IJRAR - International Journal of Research and Analytical Reviews (IJRAR), E-ISSN 2348-1269, P- ISSN 2349-5138, Volume.10, Issue 4, Page No pp.136- 140, November 2023.
- [14]. Akanksha A Kadam, Mrudula G Godbole, Vaibhavi S Divekar and Prof. Vishal K Borate, "Fire Evacuation System Using IOT AI", IJRAR - International Journal of Research and Analytical Reviews (IJRAR), E-ISSN 2348-1269, P- ISSN 2349-5138, Volume.10, Issue 4, Page No pp.176-180, November 2023.
- [15]. Shikha Kushwaha, Sahil Dhankhar, Shailendra Singh and Mr. Vishal Kisan Borate, "IOT Based Smart Electric Meter", International Journal of Scientific Research in Computer Science, Engineering and Information Tech- nology (IJSRCSEIT), ISSN: 2456-3307, Volume 8, Issue 3, pp.51-56, May-June-2021.
- [16]. Nikita Ingale, Tushar Anand Jha, Ritin Dixit and Mr Vishal Kisan Borate, "College Enquiry Chatbot Using Rasa," International Journal of Scientific Research in Computer Science, Engineering and Information Technology(IJSRCSEIT), ISSN: 2456-3307, Volume 8, Issue 3, pp.201-206, May-June-2021.
- [17]. Pratik Laxman Trimbake, Swapnali Sampat Kamble, Rakshanda Bharat Kapoor, Mr Vishal Kisan Borate and Mr Prashant Laxmanrao Mandale, "Automatic An- swer Sheet Checker," International Journal of Scientific Research in Computer Science, Engineering and In- formation Technology(IJSRCSEIT), ISSN: 2456-3307, Volume 8, Issue 3, pp.212-215, May-June-2021.
- [18]. Shikha Kushwaha, Sahil Dhankhar, Shailendra Singh and Mr. Vishal Kisan Borate, "IOT Based Smart Electric Meter" International Journal of Scientific Research in Science and Technology (IJSRST), ISSN: 2395-602X, Volume 5, Issue 8, pp.80-84, December-2020.
- [19]. Nikita Ingale, Tushar Anand Jha, Ritin Dixit and Mr Vishal Kisan Borate, "College Enquiry Chatbot Using Rasa," International Journal of Scientific Research in Science and Technology (IJSRST), ISSN: 2395-602X, Volume 5, Issue 8, pp.210-215, December-2020.
- [20]. Pratik Laxman Trimbake, Swapnali Sampat Kamble, Rakshanda Bharat Kapoor and Mr Vishal Kisan Borate, "Automatic Answer Sheet Checker," International Jour- nal of Scientific Research in Science and Technology (IJSRST), ISSN: 2395-602X, Volume 5, Issue 8, pp.221-226, December-2020.
- [21]. Chame Akash Babasaheb, Mene Ankit Madhay, Shinde Hrushikesh Ramdas, Wadagaye Swapnil Sunil, Prof. Vishal Kisan Borate, "IoT Based Women Safety De-vice using Android, International Journal of Scien-tific Research in Science, Engineering and Technol- ogy(IJSRSET), Print ISSN: 2395-1990, Online ISSN: 2394-4099, Volume 5, Issue 10, pp.153-158, March- April-2020.
- [22]. Harshala R. Yevlekar, Pratik B. Deore, Priyanka S. Patil, Rutuja R. Khandebharad, Prof. Vishal Kisan Borate, "Smart and Integrated Crop Disease Identification System, International Journal of Scientific Research in Science, Engineering and Technology(IJSRSET), Print ISSN: 2395-1990, Online ISSN: 2394-4099, Volume 5, Issue 10, pp.189-193, March-April-2020.

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, November 2025

Impact Factor: 7.67

- [23]. Yash Patil, Mihir Paun, Deep Paun, Karunesh Singh, Vishal Kisan Borate, "Virtual Painting with Opency Using Python, International Journal of Scientific Research in Science and Technology(IJSRST), Online ISSN: 2395-602X, Print ISSN: 2395-6011, Volume 5, Issue 8, pp.189-194, November-December-2020.
- [24]. Mayur Mahadev Sawant, Yogesh Nagargoje, Darshan Bora, Shrinivas Shelke and Vishal Borate, Keystroke Dynamics: Review Paper International Journal of Ad- vanced Research in Computer and Communication Engineering, vol. 2, no. 10, October 2013.
- [25]. S. S. Thete, R. P. Jare, M. Jungare, G. Bhagat, S. Durgule and V. Borate, "Netflix Recommendation System by Genre Categories Using Machine Learning," 2025 3rd International Conference on Device Intelligence, Computing and Communication Technologies (DICCT), Dehradun, India, 2025, pp. 196-201, doi: 10.1109/DICCT64131.2025.10986657.
- [26]. R. Dudhmal, I. Khatik, S. Kadam, S. Choudhary, S. Zurange and V. Borate, "Monitoring Students in On-line Learning Environments Using Deep Learning Approach," 2025 3rd International Conference on Device Intelligence, Computing and Communication Technologies (DICCT), Dehradun, India, 2025, pp. 202-206, doi: 10.1109/DICCT64131.2025.10986425.
- [27]. A. N. Jadhav, R. Kohad, N. Mali, S. A. Nalawade, H. Chaudhari and V. Borate, "Segmenting Skin Lesions in Medical Imaging A Transfer Learning Approach," 2025 International Conference on Re- cent Advances in Electrical, Electronics, Ubiqui- tous Communication, and Computational Intelligence (RAEEUCCI), Chennai, India, 2025, pp. 1-6, doi: 10.1109/RAEEUCCI63961.2025.11048333.
- [28]. R. Kohad, S. K. Yadav, S. Choudhary, S. Sawardekar, M. Shirsath and V. Borate, "Rice Leaf Disease Classification with Advanced Resizing and Aug- mentation," 2025 International Conference on Recent Advances in Electrical, Electronics, Ubiqui- tous Communication, and Computational Intelligence (RAEEUCCI), Chennai, India, 2025, pp. 1-6, doi: 10.1109/RAEEUCCI63961.2025.11048331.
- [29]. P. More, P. Gangurde, A. Shinkar, J. N. Mathur, S. Patil and V. Borate, "Identifying Political Hate Speech using Transformer-based Approach," 2025 International Conference on Recent Advances in Electrical, Electronics, Ubiquitous Communication, and Computational Intelligence (RAEEUCCI), Chennai, India, 2025, pp. 1-6, doi: 10.1109/RAEEUCCI63961.2025.11048250.
- [30]. S. Naik, A. Kandelkar, R. Agnihotri, S. Puro- hit, V. Deokate and V. Borate, "Use of Ma- chine Learning Algorithms to assessment of Drink- ing Water Quality in Environment," 2025 Interna- tional Conference on Intelligent and Cloud Comput- ing (ICoICC), Bhubaneswar, India, 2025, pp. 1-6, doi: 10.1109/ICoICC64033.2025.11052015.
- [31]. A. Pisote, S. Mangate, Y. Tarde, H. A. Inamdar, S. Ashok Nangare and V. Borate, "A Comparative Study of ML and NLP Models with Sentimental Analysis," 2025 International Conference on Advancements in Power, Communication and Intelligent Systems (APCI), Kannur, India, 2025, pp. 1-5, doi: 10.1109/APCI65531.2025.11136837.
- [32]. A. Pisote, D. N. Bhaturkar, D. S. Thosar, R. D. Thosar, Deshmukh and V. Borate, "Detection of Blood Clot in Brain Using Supervised Learning Algorithms," 2025 6th International Conference for Emerging Technology (INCET), BELGAUM, India, 2025, pp. 1-6, doi: 10.1109/INCET64471.2025.11140127.
- [33]. S. Darekar, P. Nilekar, S. Lilhare, A. Chaudhari, R. Narayan and V. Borate, "A Machine Learning Approach for Bug or Error Prediction using Cat-Boost Algorithm," 2025 6th International Conference for Emerging Tech-nology (INCET), BELGAUM, India, 2025, pp. 1-5, doi: 10.1109/INCET64471.2025.11140996.
- [34]. R. Tuptewar, S. Deshmukh, S. Sonavane, R. Bhi- lare, S. Darekar and V. Borate, "Ensemble Learning for Burn Severity Classification," 2025 6th International Conference for Emerging Technology (INCET), BELGAUM, India, 2025, pp. 1-5, doi: 10.1109/IN-CET64471.2025.11139863.
- [35]. S. S. Doifode, S. S. Lavhate, S. B. Lavhate, R. Shirb- hate, A. Kulkarni and V. Borate, "Prediction of Drugs Consumption using Neutral Network," 2025 6th International Conference for Emerging Technology (INCET), BELGAUM, India, 2025, pp. 1-5, doi: 10.1109/IN-CET64471.2025.11139984.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, November 2025

Impact Factor: 7.67

- [36]. S. Khawate, S. Gaikwad, Y. Davda, R. Shirbhate, P. Gham and V. Borate, "Dietary Monitoring with Deep Learning and Computer Vision," 2025 International Conference on Computing Technologies Data Communication (ICCTDC), HASSAN, India, 2025, pp. 1-5, doi: 10.1109/ICCTDC64446.2025.11158839.
- [37]. A. Dhore, P. Dhore, P. Gangurde, A. Khadke, S. Singh and V. Borate, "Face Morphing Attack Detection Using Deep Learning," 2025 International Conference on Computing Technologies Data Communication (ICCTDC), HASSAN, India, 2025, pp. 01-06, doi: 10.1109/IC- CTDC64446.2025.11158160.
- [38]. Y. Khalate, N. Khare, S. Kadam, S. Zurange, J. N. Mathur and V. Borate, "Custom Lightweight En-cryption for Secure Storage using Blockchain," 2025 5th International Conference on Intelligent Technologies (CONIT), HUBBALI, India, 2025, pp. 1-5, doi: 10.1109/CONIT65521.2025.11166943.
- [39]. Y. K. Mali, S. Dargad, A. Dixit, N. Tiwari, S. Narkhede and A. Chaudhari, "The Utilization of Block-chain Innovation to Confirm KYC Records," 2023 IEEE International Carnahan Conference on Security Technology (ICCST), Pune, India, 2023, pp. 1-5, doi: 10.1109/ICCST59048.2023.10530513.
- [40]. Mahajan, Krishnal, Sumant Bhange, Prajakta Gade, and Yogesh Mali. "Guardian Shield: Real Time Transaction Security.".
- [41]. Y. K. Mali, S. A. Darekar, S. Sopal, M. Kale, V. Kshatriya and A. Palaskar, "Fault Detection of Under-water Cables by Using Robotic Operating System," 2023 IEEE International Carnahan Conference on Security Technology (ICCST), Pune, India, 2023, pp. 1-6, doi: 10.1109/ICCST59048.2023.10474270.
- [42]. Mali, Yogesh, Krishnal Mahajan, Sumant Bhange, and Prajakta Gade. "Guardian Shield: Real Time Transaction Security.".
- [43]. Bhoye, Tejaswini, Aishwarya Mane, Vandana Navale, Sangeeta Mohapatra, Pooja Mohbansi, and Vishal Borate. "A Role of Machine Learning Algorithms for Demand Based Netflix Recommendation System.".
- [44]. Thube, Smita, Sonam Singh, Poonam Sadafal, Shweta Lilhare, Pooja Mohbansi, Vishal Borate, and Yogesh Mali. "Identifying New Species of Dogs Using Machine Learning Model.".
- [45]. Kale, Hrushikesh, Kartik Aswar, and Yogesh Mali Kisan Yadav. "Attendance Marking using Face Detection." International Journal of Advanced Research in Science, Communication and Technology: 417-424.
- [46]. Mali, Yogesh, and Viresh Chapte. "Grid based authentication system." International Journal 2, no. 10 (2014).
- [47]. N. Nadaf, G. Chendke, D. S. Thosar, R. D. Thosar, Chaudhari and Y. K. Mali, "Development and Evaluation of RF MEMS Switch Utilizing Bimorph Ac- tuator Technology for Enhanced Ohmic Performance," 2024 International Conference on Control, Computing, Communication and Materials (ICCCCM), Prayagraj, India, 2024, pp. 372-375, doi: 10.1109/ICC- CCM61016.2024.11039926.
- [48]. Rojas, M., Mal'ı, Y. (2017). Programa de sensibilizacio'n sobre norma te'cnica de salud N° 096 MINSA/DIGESAV. 01 para la mejora del manejo de residuos so lidos hos- pitalarios en el Centro de Salud Palmira, Independencia- Huaraz, 2017.
- [49]. Modi, S., Nalawade, S., Zurange, S., Mulani, U., Bo-rate, V., Mali, Y. (2025). Python-Driven Mapping of Technological Proficiency with AI to Simplify Transfer Applications in Education. In: Saha, A.K., Sharma, H., Prasad, M., Chouhan, L., Chaudhary, N.K. (eds) Intelligent Vision and Computing. ICIVC 2024 2024. Studies in Smart Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-96-4722-41.
- [50]. Mulani, Umar, Vinod Ingale, Rais Mulla, Ankita Avthankar, Yogesh Mali, and Vishal Borate. "Optimizing Pest Classification in Oil Palm Agriculture using Fine- Tuned GoogleNet Deep Learning Models." Grenze In-ternational Journal of Engineering Technology (GIJET) 11 (2025).
- [51]. D. Chaudhari, R. Dhaygude, U. Mulani, P. Rane, Y. Kha- late and V. Borate, "Onion Crop Cultivation Prediction of Yields by Machine Learning," 2024 2nd International Conference on Advances in Computation, Communication and Information Technology (ICAICCIT), Farid- abad, India, 2024, pp. 244-249, doi: 10.1109/ICAIC-CIT64383.2024.10912135.
- [52]. Mali, Y. NilaySawant, "Smart Helmet for Coal Mining,". International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) Volume, 3. DOI: 10.48175/IJARSCT-29827

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 3, November 2025

Impact Factor: 7.67

- [53]. Mali, Y.K. Marathi sign language recognition method- ology using Canny's edge detection. Sa dhana 50, 268 (2025). https://doi.org/10.1007/s12046-025-02963-z.
- [54] Y. Mali, M. E. Pawar, A. More, S. Shinde, V. Borate and R. Shirbhate, "Improved Pin Entry Method to Prevent Shoulder Surfing Attacks," 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT), Delhi, India, 2023, pp. 1-6, doi: 10.1109/ICCCNT56998.2023.10306875.
- [55]. V. Borate, Y. Mali, V. Suryawanshi, S. Singh, V. Dhoke and A. Kulkarni, "IoT Based Self Alert Generating Coal Miner Safety Helmets," 2023 International Conference on Computational Intelligence, Networks and Security (ICCINS), Mylavaram, India, 2023, pp. 01-04, doi:56 1109/ICCINS58907.2023.10450044.
- [56]. Y. K. Mali and Mohanpurkar, "Advanced pin entry method by resist- ing shoulder surfing attacks," 2015 International Con- ference on Information Processing (ICIP), Pune, India, 2015, pp. 37-42, doi: 10.1109/INFOP.2015.7489347.
- [57]. Mali, Y. NilaySawant, "Smart Helmet for Coal Mining,". International Journal of Advanced Research in Science, Communication and Technology (IJARSCT) Volume, 3.
- [58]. Mali, Y. (2023). TejalUpadhyay,". Fraud Detection in Online Content Mining Relies on the Random Forest Algorithm", SWB, 1(3), 13-20.
- [59]. Kohad, R., Khare, N., Kadam, S., Nidhi, Borate, V., Mali, Y. (2026). A Novel Approach for Identification of Information Defamation Using Sarcasm Features. In: Sharma, H., Chakravorty, A. (eds) Proceedings of International Conference on Information Technology and Intelligence. ICITI 2024. Lecture Notes in Networks and Systems, vol 1341. Springer, Singapore. https://doi.org/10.1007/978-981-96-5126-9 12.
- [60]. Amit Lokre, Sangram Thorat, Pranali Patil, Chetan Gadekar, Yogesh Mali, "Fake Image and Document Detection using Machine Learning," International Journal of Scientific Research in Science and Technology(IJSRST), Print ISSN: 2395-6011, Online ISSN: 2395-602X, Volume 5, Issue 8, pp. 104–109, November-December 2020.

