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Abstract: Smallholder farmers face systemic barriers such as opaque pricing, exploitative
intermediaries, post-harvest losses, and limited access to financial inclusion. Simultaneously, con-
sumers demand transparency, provenance, quality assurance, and fair pricing. This paper presents
Digital Farm Link (DFL) — a trust-centric digital marketplace that integrates Artificial Intelligence (Al),
Blockchain, Internet of Things (IoT), and Federated Learning to create a transparent and equitable
farmer- to-consumer (F2C) ecosystem. The proposed system combines a hybrid Al forecasting engine
with blockchain-based provenance tracking, loT-driven quality verification, and multimodal inter- faces
(voice and PWA) for inclusivity.

The system integrates multi-layered Al forecasting and blockchain-based provenance tracking for
trustworthy agricul- tural trade.

This version advances prior work through five key enhance- ments: (1) a Fair Pricing Engine enforcing
ethical minimums and consumer affordability constraints, (2) an Explainable AI (XAI) Layer providing
human-understandable pricing rationale; (3) an IoT + Computer Vision pipeline for blockchain-
anchored quality certification;, (4) a Reputation-Driven Smart Contract Framework for secure
transactions and dispute resolution; and (5) integration with microfinance and insurance APIs for
financial empower- ment. Experimental evaluations show significant improvements in forecasting
accuracy (MAPE | 15

The approach demonstrates scalability and replicability for rural-to-urban agricultural ecosystems.

The study demonstrates DFL’s methodological robustness and scalability potential, paving the way for
sustainable, trust-based digital agriculture ecosystems.

Keywords: Digital agriculture, explainable Al, hybrid fore- casting, blockchain, IoT quality verification,
federated learning, fair pricing, reputation systems, sustainable agriculture, smart contracts, Al fairness

I. INTRODUCTION

Agriculture remains the economic backbone of many de- veloping nations, yet smallholder farmers continue to operate
within fragmented, opaque, and often exploitative ecosys- tems [1]. Intermediaries capture a disproportionate share of
market value, while unreliable price discovery and post- harvest losses erode farmer income. Meanwhile, modern con-
sumers—especially in urban markets—demand transparency, provenance, and ethically sourced, high-quality food [2].
This asymmetry of access, information, and trust leads to ineffi- ciencies and social inequities across the agricultural
supply chain [3].
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Although several digital platforms have emerged to stream- line agricultural trade, most focus narrowly on listings, lo-
gistics, or payments, without addressing the core issues of trust, fairness, and explainability [4]. In many cases, farmers
still depend on intermediaries for market access, while consumers remain uncertain about product authenticity and
ethical sourcing [5]. To achieve inclusive digital transformation in agriculture, solutions must go beyond connectivity—
they must embed transparency, explainable intelligence, verifiable quality, and equitable pricing within a secure and
accessible architecture [6]. Digital Farm Link (DFL) represents a system-level solution to this long-standing challenge
[7]. It integrates multiple frontier technologies to deliver a holistic, trust-centered digital ecosystem that connects
farmers directly with consumers [8]. The system leverages Artificial Intelligence (AI) for price forecasting and decision
support, Blockchain for immutable provenance and automated settlement, Internet of Things (IoT) for real-time
product quality verification, and Explain- able Al (XAI) for transparency and user confidence [9]. Furthermore, DFL
incorporates Federated Learning to preserve data privacy while improving model performance across distributed
farming clusters, and Voice + PWA interfaces to ensure inclusivity among low-literacy users [10].
Despite recent progress in agri-digitalization, there re- mains a critical research and implementation gap: existing
systems fail to combine explainable Al, fair pricing algo- rithms, blockchain-backed reputation management, and fed-
erated learning into a unified, transparent framework. DFL addresses this gap by introducing a hybrid architecture that
not only enhances market efficiency but also establishes digital trust and economic resilience within farming
communities [11, 12].
The major contributions of this paper are as follows:
e A Fair Pricing Engine that integrates predictive mod- eling with ethical and affordability constraints to ensure
equitable value distribution [13].
e A comprehensive Explainable Al (XAI) Layer that reveals underlying price drivers, uncertainty levels, and
counterfactual scenarios to stakeholders [14].
e A hybrid IoT + Computer Vision Quality Verification Pipeline that generates blockchain-anchored certificates
for transparency and traceability [15].
e A permissioned Blockchain and Smart Contract Framework supporting reputation tracking, automated escrow,
and dispute resolution [16].
e Anintegrated Financial Inclusion Layer interfacing with microfinance, insurance, and government policy APIs
(e.g., MSP and subsidy schemes) [17].

II. RELATED WORK

The intersection of artificial intelligence, blockchain, and IoT in agriculture has attracted growing research attention
over the past decade [18]. Prior studies have explored the use of machine learning for yield and price prediction,
blockchain for supply chain transparency, and IoT for precision monitoring; however, these efforts typically operate in
silos and lack a unified architecture for end-to-end market trust and inclusivity [19]. Early machine learning approaches
such as ARIMA and SVMs were employed for crop price forecasting [9], offering basic predictive capacity but limited
adaptability to nonlinear seasonal or climatic changes. Subsequent works adopted deep learning architectures, notably
LSTM and GRU models, which captured temporal dependencies in commodity prices [20]. Nonetheless, most models
were designed for centralized datasets, ignoring regional heterogeneity and privacy constraints, which limits their
applicability to smallholder networks. To address this, federated and hybrid ensemble methods are emerging as privacy-
preserving solutions for distributed agricultural forecasting [21].

Parallel research in blockchain-enabled agriculture has demonstrated its potential to improve traceability and reduce
counterfeiting in agri-supply chains. For instance, authors of papers in [22] proposed a blockchain framework for
agricultural logistics, ensuring immutable product trace records. However, these models often prioritize supply chain
provenance rather than market fairness or dynamic price discovery. Recent studies, such as those by authors in paper
[23], have integrated smart contracts with [oT sensors to automate quality verification, but these systems remain limited
by scalability, high transaction costs, and lack of explainable interfaces for low-literate farmers [24].
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In the IoT domain, authors in apper [25] illustrated how sensor- based environmental monitoring can minimize post-
harvest loss through temperature and humidity tracking. Other works, including proposed edge-computing architectures
to process agricultural telemetry in real time [26]. Yet, most of these systems remain disconnected from blockchain or
Al decision modules, resulting in fragmented technology adoption and low data interoperability [27].

Explainable Al (XAI) and fairness in agricultural decision- making are also underexplored. Existing agricultural Al
systems typically function as black boxes, with little interpretability or stakeholder understanding of predictions. As
emphasized by authors in paper [28], the absence of explainability can undermine farmer confidence and impede
adoption. Ethical Al interventions in pricing—ensuring both affordability for consumers and viability for farmers—are
almost entirely absent from prior digital marketplace designs [29].

A few comprehensive frameworks attempt multi-layer integration [30]. AgriTrust combined blockchain with ML-
based trust scoring for supply-chain reliability, while Farm- Chain coupled IoT telemetry with smart contract validation
[31]. However, these initiatives still lack federated data privacy, explainability mechanisms, or financial inclusion
APIs—three essential components for real-world scalability in low-resource agricultural contexts [32].

In contrast, our work, Digital Farm Link (DFL), unifies these streams under a coherent architecture: hybrid Al fore-
casting with XAlI transparency, blockchain-backed reputation systems, loT-driven quality verification, and policy-level
financial inclusion [33]. This fusion addresses the critical gaps of transparency, fairness, interpretability, and inclusion,
establishing a new benchmark for trust-centric digital agriculture platforms [34].

III. SYSTEM OVERVIEW AND DESIGN GOALS
The proposed system, Digital Farm Link (DFL), is de- signed as a decentralized, trust-driven ecosystem that bridges the
persistent gap between smallholder farmers and end consumers [35]. It functions not merely as an online marketplace
but as a data-intelligent infrastructure that ensures equitable participation, evidence-based pricing, verifiable
transactions, and transparent value chains [36]. The architecture emphasizes interoperability between diverse
technologies—Artificial Intelligence (AI), Blockchain, Internet of Things (IoT), and Federated Learning—while
maintaining scalability, security, and inclusivity [37].

A. System Overview

At its core, DFL unifies three pillars of digital agricul- ture: data intelligence, trust assurance, and community
governance. Figure III-A depicts the high-level architecture, showing the interaction between data sources, services,
and stakeholders. The system comprises six interconnected layers that together form a transparent, resilient digital
ecosystem [38, 39].
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Fig. 1 High-level Architecture of DFL
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In this figure 1 the high-level architecture of the Digital Farm Link (DFL) system is illustrated with six integrated
layers: (1) User Interaction, (2) Application/API, (3) Al and Analytics, (4) Orchestration and Ledger, (5) IoT and Edge,
and (6) Community and Finance. Data flows bidirectionally—farmers upload product and sensor data, AI modules
predict fair prices, transactions are executed via blockchain, and consumers access verified produce through traceable
smart contracts, ensuring transparency and trust across the ecosystem.

1) User Interaction Layer: Provides multiple access in- terfaces, including Progressive Web Apps (PWA), responsive
dashboards, and SMS/USSD channels for low-connectivity regions [40]. It ensures inclusivity regardless of literacy or
device capability. Functions include listing produce, bidding, uploading quality data, and accessing price explanations
from the XAI module [41].

2) Application and API Layer: Acts as a middleware connecting the front-end interfaces with back-end services [42].
Handles authentication, authorization (RBAC), and KYC verification using RESTful and gRPC APIs [43]. It also
interfaces with government MSP datasets, insurance APIs, and cooperative databases [44]. Built using microservices on
Kubernetes, it ensures modularity and fault isolation [45].

3) Al and Analytics Layer: Hosts the hybrid forecasting ensemble (LSTM + Random Forest) and the Explainable Al
(XAI) engine [46]. This layer predicts market trends and enforces ethical pricing via the Fair Pricing Engine [47]. It
supports visual explanations—such as SHAP-based feature importance and counterfactual insights—enhancing
transparency in decision- making [48].

4) Orchestration and Ledger Layer: Implements the permissioned blockchain network (Hyperledger Fabric) responsible
for transaction immutability, smart contract management, escrow handling, and reputation tracking [49]. Large data
such as sensor logs or multimedia are stored off-chain, anchored via IPFS hashes for provenance and storage efficiency
[50].

5) IoT and Edge Layer: Comprises edge gateways and IoT sensors (for temperature, humidity, vibration, and GPS
track- ing) [51]. Edge devices preprocess data locally using lightweight anomaly detection models, ensuring reliability
in intermittent connectivity. Communication between [oT nodes and the cloud employs MQTT and HTTPS with TLS
1.3 encryption [52].

6) Community and Finance Layer: Empowers farmer cooperatives through dashboards that visualize performance,
market insights, and financial inclusion opportunities. Smart contracts integrate with microfinance and insurance APIs
[53]. Creditworthiness and risk scores are dynamically computed using on-chain reputation and verified delivery
history [54].

B. Design Goals
DFL is built around five key design goals that balance technical efficiency and social responsibility:
e Transparency: Every price recommendation, transaction, and certificate issuance is auditable. Blockchain
ensures immutability while XAI models provide interpretability to non-technical users [55].
e Fairness: The Fair Pricing Engine guarantees ethical margins for farmers while maintaining affordability for
consumers through cooperative-defined constraints [56].
e Verifiability: IoT and Computer Vision modules issue tamper-proof, blockchain-anchored -certificates,
validating quality and logistics integrity [57].
e Inclusivity: Multilingual voice interfaces, SMS fallbacks, and visual icons enable participation from low-
literacy and low-connectivity user groups [58].
e Privacy and Security: Federated learning with differential privacy ensures that sensitive data (farm yields,
location) never leave the farmer’s device. End-to-end encryption and digital signatures secure transactions
across layers [59].

C. Proposed System Workflow
The operational workflow of DFL is depicted in Fig- ure III-C. Farmers register and list produce, uploading IoT or
manual quality data. The Al module forecasts market prices and recommends a Fair Floor Price (FFP), along with a
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human-readable explanation from the XAl layer. Buyers review these insights, make offers, and initiate blockchain-
secured transactions through smart contracts [60].

Upon dispatch, IoT sensors log transport conditions (tem- perature, humidity, GPS), and the CV module grades quality,
generating a blockchain-anchored certificate. Once buyers confirm delivery via OTP or digital signature, the escrow
smart contract releases payment to the farmer and updates reputa- tion scores. Federated learning then retrains local Al
models using aggregated transaction feedback, improving prediction accuracy and fairness over time.
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Search or filter
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Add crop details
(fype, quantity, price)

Negotiate or
buy directly

Al predicts

fair price
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Update Ledger

Figure 2: System Data Flow
In this figure 2 we illustrate the System Data Flow of the Digital Farm Link (DFL) platform. Farmers upload IoT-based
sensor data and product listings, which are processed by the Al engine to predict fair market prices and balance supply-
demand. Smart contracts execute secure and transparent blockchain-based transactions, ensuring authenticity and
traceability. Finally, consumers access verified and quality-certified products, completing the trusted farm-to-consumer
cycle.

D. System Advantages and Scalability

The modular design enables independent scaling of compo- nents. Federated learning minimizes data transfer and
enhances privacy. Containerized microservices improve resilience, al- lowing partial recovery during node failure. The
permissioned blockchain architecture maintains an average throughput of over 250 TPS with low confirmation latency
(<7 s).

Hybrid deployment—edge computation near farms and cloud-based analytics—ensures high availability even un- der
limited rural connectivity. Overall, DFL operates as an ethical infrastructure that combines Al-driven intelligence,
blockchain-based accountability, and IoT verifiability, foster- ing sustainable and transparent agri-commerce.

IV. DATA MODEL AND SOURCES

Digital Farm Link (DFL) operates on heterogeneous, multi- source datasets that integrate real-time and historical
informa- tion for predictive, transactional, and verification tasks. The system aggregates structured, semi-structured,
and unstruc- tured data across the agricultural ecosystem.
A. Data Sources and Types

e Time-series price data: Collected from wholesale and retail markets, updated daily to weekly, used for hybrid

price forecasting.
e  Weather & satellite indices: Includes precipitation, tem- perature, NDVI, and soil moisture, sourced from open

APIs and remote-sensing providers at 6—12 hour intervals.
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e [oT telemetry: Temperature, humidity, vibration, and GPS data from edge devices; sampled at 5—15 minute
intervals for post-harvest tracking.

e Transactional logs: Smart contract events, payment re- ceipts, and order metadata; recorded in near real-time
on the blockchain.

e Visual imagery: High-resolution images captured during grading and dispatch, used for CNN-based quality
veri- fication.

e Policy & financial data: Minimum Support Price (MSP), subsidy rules, and microfinance or insurance API
feeds updated monthly or quarterly.

B. Data Storage and Schema
DFL employs a hybrid multi-database schema to handle data diversity: nosep
e Relational databases (PostgreSQL): Handle transac- tions, user profiles, payment history, and cooperative data
with ACID compliance.
e Document stores (MongoDB): Maintain flexible catalog metadata, user preferences, and sensor payloads.
e Time-series storage (InfluxDB): Retains continuous [oT telemetry streams for efficient temporal querying.
e  Off-chain storage (IPFS): Used for storing multimedia data (images, certificates, telemetry summaries),
anchored to blockchain via cryptographic hashes.

C. Data Security and Privacy
nosep
e  All sensitive data—identity, payment, and IoT teleme- try—are encrypted using AES-256 in transit and at rest.
e Blockchain anchors are SHA-256 hashed, ensuring im- mutability and verifiable data provenance.
e Personally identifiable information (PII) is anonymized before model training; only aggregated or
differentially private updates are transmitted in federated learning.
e Role-Based Access Control (RBAC) and API-level au- thentication ensure data segregation between user
groups (farmers, buyers, administrators).
TABLE I: SUMMARY OF DATA SOURCES, FREQUENCY, AND STORAGE LAYERS

Source Tvpe Frequency Storage
Market Prices  Numerical (TS) Daily Postgre5QL
Weather Geospatial 6-12 hr InfluxDB
IoT Senszors Telemetry 5-15 min MongoDB + IPFS
Images Multimedia Event- [PF5

based
Transactions Blockchain Logs Real-time Ledger DB
Finance/Policy  Structured Text MMonthly PostgreSQL

D. Entity-Relationship (ER) View

An ER-style representation (Fig. IV-D) connects primary entities: Farmer, Product, Order, SensorData, and Certificate.
Relationships include: nosep

» Farmer—Product (1:N): Each farmer lists multiple prod- ucts.

* Product—Order (1:N): Products can appear in multiple order transactions.

* Order—Certificate (1:1): Every transaction generates a unique blockchain-anchored certificate.
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Fig. 3 Entity—Relationship (ER) Diagram of the DFL Data Model
In this figure 3 we presents the Entity—Relationship (ER) structure of the Digital Farm Link (DFL) system. It illustrates
the relationships among core entities including Farmer, Product, Order, and Certificate. This schema ensures data
integrity, supports end-to-end traceability, and maintains blockchain-linked provenance to verify product authenticity

linked t unlque

and transactional transparency within the ecosystem.

V. AI MODELS AND ALGORITHMS
This section details the complete Al stack powering DFL, including preprocessing, hybrid ensemble forecasting, fair
pricing, explainable Al (XAlI), federated learning orchestration, and vision-based quality grading. Each submodule is
designed for transparency, fairness, and adaptability across decentralized data ecosystems.
A. Preprocessing and Feature Engineering
To ensure high data fidelity, the following preprocessing steps are applied: nosep
1) Missing Data Imputation: Seasonal decomposition (STL) and Kalman smoothing for handling short- term gaps.
2) Temporal Feature Construction: Rolling win- dows, lag features (t — 1, . . ., t — p), and Fourier transforms for cyclic
seasonality.
3) External Covariates: Incorporation of weather, festival, and supply-demand variables for context- aware forecasting.
4) Normalization: Robust scaling (median/IQR) to mitigate heavy-tailed price distributions.
5) Categorical Encoding: Target encoding with leave- one-out smoothing to prevent data leakage in small farm clusters.

B. Hybrid Forecasting Ensemble
The DFL forecasting engine fuses temporal (LSTM) and non-temporal (Random Forest) predictors into a weighted
hybrid ensemble:

y't=o - fLSTM(Xt-t:t) + (1 — a) - fRF(Zt) (1)
where a € [0, 1] balances dependence between temporal dynamics and external features.
LSTM Architecture: Two stacked layers (128 units each), dropout = 0.2, ReLU activation, MSE loss. Sequence-to-one
prediction captures long-term dependen- cies.
Random Forest: 500 trees, max depth tuned via grid search. Tree-based models contribute to explainability via Gini-
based feature importance.
These metrics evaluate forecast accuracy, where MAPE ensures interpretability and RMSE captures large devia- tions.

Algorithm 1 Hybrid Forecasting Workflow

Input: Historical price series Xt, external variables Zt Preprocess data (imputation, scaling, encoding)

Train LSTM on temporal windowed sequences Xt—t:t Train Random Forest on feature set Zt Optimize ensemble
weight o via cross-validation Compute final prediction y't = of LSTM + (1 — a)fRF Evaluate with MAPE, RMSE, and
PCI (Price Confidence Index) Output: Forecasted price yt, confidence interval
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C. Fair Pricing Engine

Predicted prices serve as a guide, refined by a fairness- aware pricing mechanism:
FFPt = max (cf (1 + mmin), y't(1 — 9)) (4)

where cf = production cost, mmin = ethical margin, 6 = tolerance deviation.

A fairness-aware multi-objective loss ensures balance between farmer profit and consumer affordability:
Lfair = Lforecast+A1-max(0, FFPt—yt)+A2-Var(pregion) %)

where Al and A2 regulate ethical margin enforcement and regional parity.

D. Explainable AI (XAI) Layer

Explainability is implemented through two complemen- tary methods: nosep

— Local Explanations: SHAP values identify the con- tribution of each feature to an individual prediction.

— Global Explanations: Aggregated feature impor- tances, sensitivity analyses, and counterfactual rea- soning (e.g., “If
rainfall were 20% lower, price would decrease by X%”).

Outputs are visualized as intuitive dashboards (Fig. V-D), providing: nosep

1) Feature impact plots.

2) Uncertainty intervals (=CI).

3) Textual rationales for farmers and officers.

€ Feature Importance & -¢- Key Price Influencers Q& Price Sensitivity with (1)
(SHAP Values) (Attention Heatmap) Confidence Intervals

Feature ~ Attentior ; Price

H

* Preodddeone

Confiidence Inteval

a4

Attentlon Weight

‘-1-&
Fig. 4 Explainable Al (XAI) Dashboard Visualization
In this figure 4 we depicts the Explainable Al (XAI) dashboard integrated within the DFL system. It highlights feature
importance rankings, attention heatmaps, and price sensitivity analyses used by the predictive Al engine. These
visualizations enhance model transparency, help stakeholders understand decision factors, and support trust-based
interactions between farmers, cooperatives, and consumers.

E. Federated Learning Orchestration

To ensure privacy-preserving model updates across coop- eratives:

Each cooperative node computes local gradients ABi; a secure aggregator combines updates under differential privacy N
(0, 62) noise. No raw data leaves the farmer’s environment, preserving sovereignty.

F. Computer Vision for Quality Grading

A lightweight CNN (MobileNetV2 backbone) performs multi-class quality grading: nosep

— Input: 224x224 RGB images of produce (front, side, and cross-section views).

— Output: Graded label (A/B/C) and ripeness score

q < [0, 1].
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Fig. 5 Federated Learning Architecture Diagram
In this figure 5 the federated learning process within the Digital Farm Link (DFL) ecosystem is depicted. Each farmer
cooperative trains a local Al model on its own dataset, ensuring data privacy and ownership. The locally trained
parameters are then securely aggregated at a central coordinator to form a global model without transferring raw data.
This distributed learning approach enhances prediction accuracy, maintains confidentiality, and supports scalable Al

deployment across geographically dispersed farming communities.

— Training: Transfer learning from ImageNet with augmentation (color jitter, blurring, noise).

— Deployment: Edge inference nodes automatically issue blockchain-anchored quality certificates.

This module enhances trust by validating visual quality data against [oT telemetry during logistics.

Summary: The combined Al pipeline in DFL ensures that pricing is accurate (via hybrid ensemble), fair (via ethical
constraints), transparent (via XAl), and private (via federated learning). This technical synergy enables a verifiable,
bias-aware digital agriculture ecosystem.

VI. BLOCKCHAIN, SMART CONTRACTS, AND REPUTATION
A. Permissioned Ledger Design
To ensure scalability, privacy, and trust, Digital Farm Link (DFL) employs a permissioned blockchain net- work based
on Hyperledger Fabric. This architecture supports Proof-of-Authority (PoA) consensus, achieving high throughput (up
to 250 transactions per second) with an endorsement policy requiring signatures from at least two validating peers per
transaction.
The permissioned setup is partitioned into privacy chan- nels: nosep
— Channel 1 — Farmer-Cooperative: Records inter- nal production and listing data.
— Channel 2 — Buyer-Market: Manages bids, escrow deposits, and delivery proofs.
— Channel 3 — Audit-Governance: Contains dispute resolutions, reputational scores, and audit trails.
Critical transaction events are recorded on-chain: nosep
— Listing creation (hashed to IPFS content).
— Escrow deposit and release transactions.
— IoT-anchored delivery proofs (Merkle-hashed sum- maries).
— Quality certification issuance (CV and IoT verified).
— On-chain reputation updates for farmers and buyers.
This structure guarantees data immutability, role-based access control (RBAC), and decentralized verification while
minimizing gas-like computational costs through PoA consensus.
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Fig. 6 Smart Contract and Escrow Workflow
In this figure 6 the interaction among farmers, buyers, IoT oracles, and cooperative nodes within the Digital Farm Link
(DFL) ecosystem is illustrated. The smart contract autonomously executes secure transactions based on predefined
terms, while the escrow mechanism ensures mutual trust, prevents fraud, and minimizes disputes. This workflow
enhances transparency, accountability, and fairness across the decentralized agricultural network.

B. Smart Contract Flow and Escrow

The transaction workflow in the Digital Farm Link (DFL) ecosystem is fully automated through a series of smart
contracts deployed on the Hyperledger network. These contracts ensure transparency, eliminate intermediaries, and
enable secure, dispute-free settlements between farm- ers and buyers.

Pseudocode: Simplified Contract Logic

PlaceOrderbuyer, listing require(listing.status

== Available) escrow.deposit(buyer, list- ing.price) listing.status = Reserved emit OrderPlacedEvent(orderld)
ConfirmDe- liveryorderld, deliveryProof verifyDeliv-  eryProof(deliveryProof) and matchOTP(orderld)
escrow.releaseToSeller(orderld.seller) up- dateReputation(orderld.seller, +1) emit DeliveryConfirmed(orderld)
triggerDispute(orderId)

Dispute Resolution: DFL follows a structured, three- stage approach: nosep

1) Automated Verification: loT data and OTP confir- mation are checked for mismatches.

2) Cooperative Mediation: Local agricultural officers or cooperatives review evidence.

3) On-chain Arbitration: The final verdict is cryp- tographically signed and stored on the blockchain, along with
associated image and telemetry hashes.

This dispute pipeline has demonstrated a 40% reduction in settlement latency compared to centralized market- places.

C. Reputation System
Trustworthiness is central to DFL’s incentive model. Every participant—farmer, buyer, or logistics node—maintains a
reputation score Rt stored immutably on-chain:
Rt+1 =ARt+ (1 — A)St —yDt (7)
where: nosep
— St = successful transaction count,
— Dt = validated dispute events,
— A = time-decay coefficient emphasizing recent be- havior,
— v = penalty factor proportional to dispute severity. A dynamic reputation threshold governs access to pre- mium
features: nosep
— Farmers with Rt > 0.85 qualify for microloan pre- approval.
— Buyers with Rt > 0.9 gain priority order matching and fee discounts.
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Security and Performance: nosep

— Consensus: Proof-of-Authority ensures determinis- tic block finality with negligible fork probability.

— Nodes: Pilot network deployed with 8 peers, 2 orderers, and 1 CA (Certificate Authority) node.

— Throughput: Sustained 250 TPS under endorsement policy (2 of 3 signatures required).

— Latency: 6.9s average time-to-confirmation per transaction.

Integration with IoT and AI: Each transaction embeds hashed telemetry summaries, image-based quality scores, and
Al-generated price verification results. These are stored off-chain in IPFS but verifiable via blockchain anchors—
maintaining scalability while ensuring trace- ability.

Summary: The integration of smart contracts, PoA- based blockchain consensus, and dynamic reputation scoring
transforms DFL into a secure, auditable, and trust-enhanced agricultural trading ecosystem, providing immutability
without sacrificing efficiency.

VIL IOT ARCHITECTURE AND QUALITY VERIFICATION
A. Edge and Connectivity
The IoT layer in DFL forms the physical-digital interface between farms, logistics, and blockchain records. Sensors
measure environmental variables such as temperature, humidity, shock, and GPS location. These devices are connected
to low-power edge gateways (e.g., Raspberry Pi or industrial-grade LoRaWAN hubs) that handle pre- processing and
secure data forwarding.
Each gateway performs: nosep
— Local anomaly detection: Outlier detection based on threshold rules and embedded ML models for spoilage
prediction.
— Short-term buffering: Data caching for intermittent connectivity in rural regions.
— Secure telemetry transmission: MQTT over TLS encryption ensures confidentiality and integrity.
— Batch signing: Each telemetry batch is signed using the device’s private key for authenticity verification.
Communication Optimization: To balance bandwidth and power constraints, edge gateways employ adaptive
sampling—reducing sensor transmission rates during sta- ble environmental conditions. This strategy, combined with
periodic batching, lowers network load by approxi- mately 85% while maintaining data accuracy within +2.3
°C for temperature and +4

]
G

Digitally slgned batches
Step 1 Step 2 Pakch i inh batcl Step 3 Step 4

Step 1: Local anomaly El»:kchaln Blockchain  Merkle root Step 4
Sensors gateways detection ledger hashes Consumers

Blockchain-anchored
certificates

Fig. 7 IoT Network and Certificate Generation Flow
In this figure 7 we illustrates the end-to-end IoT-enabled certification process in the DFL ecosystem. Sensor devices
capture real-time telemetry such as soil moisture, temperature, and shipment status. Edge gateways preprocess and
digitally sign this data before anchoring summaries to the blockchain ledger.
Consumers can then verify the authenticity of produce through QR-based certificate validation, ensuring traceability
and trust throughout the supply chain.
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B. Anchoring and Summarization to Blockchain

Raw telemetry data is stored off-chain to prevent blockchain bloat. Periodic digests are created and sum- marized
through Merkle trees:

hsummary = H(MerkleRoot(batch)) (8)

The resulting hash is stored on the blockchain ledger, providing a tamper-proof link to the full dataset. Each batch
includes: nosep

— Timestamped IoT data points.

— Environmental metrics and anomaly flags.

— Device ID and digital signature for authentication. This approach achieves verifiable integrity while optimiz- ing
chain storage usage by over 90%.

C. Quality Certificate Generation

To reinforce buyer confidence, every batch of produce is accompanied by a blockchain-anchored digital quality
certificate. At the time of dispatch, farmers upload IoT logs and produce images through the DFL interface. The data
pipeline then performs the following operations: nosep

1) The Computer Vision (CV) model assigns a quality score q € [0, 1] based on visual grading (color, shape, texture).
2) IoT data provides contextual metrics—temperature history, humidity stability, and GPS trace.

3) A certificate object is constructed containing: nosep

—q (CV quality score)

— tdispatch, locgps, and hsummary (hashed IoT sum- mary)

— Digital signature by cooperative authority node

4) The hash of this certificate is stored on-chain, while the full certificate is pinned in IPFS.

Consumers scan a QR code at purchase to retrieve: nosep

— Verified origin and farmer identity.

— Environmental conditions throughout the logistics journey.

— Quality grade (A/B/C) and visual proof of freshness.

This transparency mechanism reduces fraudulent labeling and increases consumer trust.

Security and Reliability: nosep

— TLS-based communication and AES-256 encrypted local caches prevent data tampering.

— Device-level public—private key authentication vali- dates data origin.

— Federated edge updates allow ML anomaly models to evolve locally without full re-deployment.

Performance Summary: Field pilots recorded: nosep

—28% reduction in spoilage events due to early anomaly alerts.

—40% faster quality verification through automated CV grading.

—93% blockchain storage efficiency compared to raw data logging.

Summary: The IoT and Quality Verification layer serves as the trust anchor of DFL, linking physical produce to its
digital identity. Its secure, energy-efficient design ensures transparency and reliability from farm to consumer while
supporting scalable, verifiable certification processes.

VIIIL. FAIRNESS, ETHICS, AND XAI-DRIVEN UX
A. Algorithmic Fairness
Ensuring fairness across diverse agricultural and socio- economic groups is a foundational design principle of DFL. The
platform’s pricing and recommendation mod- els are continuously audited to prevent systematic bias against
underrepresented regions, smallholders, or spe- cific crop categories. Fairness audits are conducted across three primary
dimensions:
nosep
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— Regional Parity: Evaluates whether average price suggestions for similar-quality produce remain con- sistent across
different districts or states, accounting for data density variations.
— Crop Parity: Assesses fairness across commodity types (perishables vs non-perishables) to avoid algo- rithmic bias
driven by skewed market data.
— Farmer-Class Fairness: Ensures equitable model performance for smallholders versus large-scale pro- ducers by
reweighting underrepresented data clus- ters.
Bias Mitigation: To mitigate bias, we employ data-level and model-level interventions: nosep
— Synthetic data augmentation for low-volume regions.
— Fairness-aware loss functions with demographic par- ity regularization.
— Adversarial debiasing models that learn invariant representations independent of region or crop cat- egory.
Ethical Al Governance: DFL aligns its algorithmic governance with the principles defined under the EU Al Act (2024)
and UNESCO Recommendation on the Ethics of Artificial Intelligence (2021). Each model iteration undergoes
documentation through an Ethical Impact Assessment (EIA) covering: nosep
— Transparency: All decisions are explainable to af- fected stakeholders.
— Accountability: Bias audits and data provenance logs are traceable.
— Human Oversight: Cooperative committees review Al-driven price anomalies or disputes.

TABLE II: FAIRNESS EVALUATION METRICS AND TARGETS

Metric Description Target

Regional Price Panty  Mean deviation in predicted price = 3%
across regions for identical produce
quality

Demographic Fairness Equal opportunity ratio for smallholder = 0.9
vs largeholder pricing outcomes

Crop-Class Balance Average Fl-score dewviation between = 0.07
crop categories

Disparate Impact In- Ratio of positive outcome probabilities 0.8-1.25

dex (protected vs non-protected groups)

Trust Feedback Index Apggregate satisfaction score (farmers - = E3%
consumers)

B. Explainability to Users (XAI-Driven UX)

Explainability is essential to user trust and adoption in low-literacy environments. DFL implements a tiered
explainability strategy based on user expertise and inter- action context.

nosep

— Farmer Interface: Natural language summaries are generated automatically, explaining pricing logic in simple terms,
such as: “The suggested price is 15% higher due to lower regional supply and improved quality grade.” Confidence
intervals are visually represented using traffic-light indicators (Green = Stable, Amber = Caution, Red = High
Uncertainty).

— Extension Officer Dashboard: SHAP feature plots and time-series saliency maps illustrate which fea- tures (rainfall,
transport cost, soil index) most influ- enced the model output. Officers can explore coun- terfactual scenarios such as:
“If rainfall had been 20% higher, the price would increase by 2.4/kg.”

— Policy and Governance View: Aggregated XAl analytics inform government or cooperative decision- makers about
pricing trends, fairness compliance, and algorithmic transparency levels.

Uncertainty Visualization: The system communicates confidence levels through uncertainty ranges
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p” =32 INR/Kkg (+2.5%, 95% CI)

This allows farmers to make informed selling decisions and helps cooperatives assess market stability in real time.
Ethical Design Philosophy: DFL adopts the princi- ple of Human-in-the-Loop AI, where automated recom- mendations
are never final without user consent. All key price actions require confirmation from human ac- tors—farmers,
cooperatives, or verified agents—thus en- suring transparency and moral accountability.

Summary: Through fairness-aware modeling, ethical Al compliance, and multi-level explainability, DFL creates a
socio-technical ecosystem where both algorithmic and human trust reinforce each other. This combination en- sures
equitable access, transparency, and sustainability across the agricultural digital value chain.

IX. INTEGRATION WITH FINANCIAL AND POLICY SYSTEMS
A. Microfinance and Insurance APIs
Using standardized APIs, DFL offers: nosep
— Microloan eligibility checks using on-chain reputa- tion + transaction history.
— Parametric insurance triggers via [oT telemetry and weather oracles.
Periodic fairness dashboards visualize these metrics in the DFL governance portal, where cooperative leaders and
auditors can flag potential biases.
Smart contracts can automatically release insurance pay- outs when preconfigured telemetry patterns (e.g., sus- tained
temperature spike) oracles confirm loss conditions.

B. Government and MSP Integration
DFL periodically ingests MSP and subsidy rules and flags eligible transactions to streamline subsidy delivery or fulfill
policy compliance.

X. EXPERIMENTAL SETUP AND PILOT
A. Pilot Scope
A six-month pilot was conducted across three agro- climatic zones representing distinct market and envi- ronmental
conditions—coastal, semi-arid, and temper- ate—spanning over 600 registered farmers, 150 verified buyers, and 100
IoT devices per region. Cooperative hubs were established in each zone to facilitate data collection, quality inspection,
and farmer onboarding. Each hub maintained a localized federated node responsible for model training aggregation and
blockchain node partici- pation.
The backend infrastructure was containerized and de- ployed on a hybrid cloud environment using Kubernetes. The
orchestration layer ran independent services for: nosep
— Model Serving: TensorFlow Serving for Al infer- ence workloads.
— Blockchain Ordering: Hyperledger Fabric peers with Proof-of-Authority consensus.
— Data Storage: PostgreSQL for transactional data, MongoDB for metadata, and IPFS for large media and certificates.
Edge gateways were deployed using Raspberry Pi 4B (4GB RAM) devices connected to multi-sensor Lo- RaWAN
nodes. Each device operated under a 15-minute sampling interval and synchronized data with the cloud every 2 hours.

B. Dataset Composition
The system integrated multi-source datasets collected across the pilot zones: nosep

— Market Price Data: 1.2 million time-series records (daily prices for 15 commodities).

— 10T Sensor Data: 7.5 million records (temperature, humidity, shock, GPS).

— Image Dataset: 10,000 labeled images (A/B/C grad- ing classes).

— Weather Data: 180,000 daily entries via NOAA and IMD APIs.

— Transaction Logs: 2,100 blockchain-anchored trans- actions.

All data underwent cleaning, normalization, and anonymization before being processed for Al training. Data quality
was continuously monitored through validation rules on missing rate (<1.5%) and feature consistency (>98.7%).
Copyright to IJARSCT E E DOI: 10.48175/IJARSCT-29826 185
www.ijarsct.co.in : i:'-.




.(I IJARSCT

Xx International Journal of Advanced Research in Science, Communication and Technology w\
IJARSCT International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal
ISSN: 2581-9429 Volume 5, Issue 3, November 2025 Impact Factor: 7.67
TABLE III: SYSTEM CONFIGURATION AND DEPLOYMENT ENVIRONMENT
Component Configuration Details
Cloud Backend Google Cloud Platform (GCP), Kubernetes v1.27
Compute Nodes 8 vCPUs (Intel Xeon Platinum), 64 GB RAM
(GPU Support INVIDIA T4 for model training
Blockchain Network Hyperledger Fabric v2.5, 9 peers, 3 orderers
Edge Devices IRaspberry Pi 4B (4GB RAM), LoRa Gateway, 4 sensors each
Storage PostgreSQL 14, MongoDB 6.0, IPFS v0.19
(Communication Protocols [MQTT over TLS 1.3, REST APIs secured with JWT
Model Framework TensorFlow 2.12, Scikit-learn 1.4
Monitoring Tools Prometheus, Grafana dashboards, Fluentd logs

C. Evaluation Metrics

Performance evaluation encompassed both algorithmic and socio-technical dimensions. The metrics included: nosep
— Forecasting Accuracy: MAPE, RMSE, MAE for price predictions.

— Model Calibration: Coverage of 95% prediction intervals.

— Blockchain Throughput: Transactions per second (TPS) and latency.

— Economic Indicators: Average farmer profit change, settlement delay, and dispute rate.

— Trust and Adoption: Survey-based Trust Index (0—100) and user retention percentage.

TABLE IV: PERFORMANCE METRICS SUMMARY (PILOT RESULTS)

Metric Baseline (Pre-DFL) |After DFL Deployment
MAPE (Price Forecast) 19.4% 14.8%

RMSE (Price Error) 8.7 6.1

Blockchain Throughput (TPS) (170 252

|Average Payment Delay (hrs) (72 19

Dispute Rate (%) 9.8 3.4

Farmer Profit Increase (%) - +17.6

Trust Index (Survey) 64 87

D. Control and Baseline Comparison

A control group of 120 farmers operating under conven- tional cooperative systems was maintained for baseline
comparison. They were not exposed to Al-based forecast- ing or blockchain-backed trade. Comparative analysis in-
dicated statistically significant improvements (p < 0.01) in fairness consistency, pricing transparency, and trust metrics
under DFL.

E. Qualitative Feedback

Structured interviews and surveys revealed strong user satisfaction: nosep

—92% of farmers reported “high confidence” in price transparency.

— 84% of buyers confirmed improved trust in quality certificates.

— Cooperative agents highlighted reduced administra- tive overhead by 43%.

Summary: The pilot validated the robustness, scalabil- ity, and socio-economic value of the DFL system. The
combination of Al explainability, federated privacy, and blockchain integrity demonstrated tangible benefits in market
fairness, transaction speed, and user trust.
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XI. RESULTS AND DISCUSSION
A. Forecasting and XAI Outcomes
The hybrid ensemble (LSTM + Random Forest) achieved an average Mean Absolute Percentage Error (MAPE) of
6.8%, representing a relative improvement of 15.4% over the LSTM-only baseline and 22.7% over traditional ARIMA
models. Prediction intervals demonstrated strong calibration with 94% empirical coverage at the nominal 95% level,
confirming well-behaved uncertainty quantifi- cation post isotonic recalibration.
Feature explainability via SHAP analysis revealed that top contributors to price variation were: nosep
— Local wholesale price lag (importance weight: 0.31)
— Weekly demand index (0.24)
— Short-term rainfall anomaly (0.18)
— Transportation cost index (0.13)
Fig. XI-A illustrates the accuracy comparison among ARIMA, LSTM, and the proposed hybrid model across major
commodities. A paired t-test (p < 0.01) confirmed that the hybrid model’s accuracy improvement is statisti- cally
significant.

B. Operational and Blockchain Performance

The permissioned blockchain achieved an average con- firmation latency of 6.9 seconds and sustained through- put of
250 transactions per second (TPS) under the configured Proof-of-Authority consensus (two endorser nodes per
transaction). Off-chain telemetry anchoring through Merkle-hashed summaries reduced ledger storage by
approximately 93% relative to direct data logging.

Model Accuracy Comparison:
Lower is Better

201 19.4%

—~ 151

MAPE Score (%

ARIMA LSTM Hybrid
Ensemble

Models

Fig. 8 Model Accuracy Comparison
In this figure 8 ,it represents a comparative analysis of predictive model accuracy within the DFL ecosystem. The chart
contrasts ARIMA, LSTM, and Hybrid Ensemble models based on Mean Absolute Percentage Error (MAPE). The
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Hybrid Ensemble model demonstrates the lowest MAPE, indicating superior predictive performance and improved
generalization over traditional time-series and deep learning baselines.

The blockchain network’s stability was validated over a 72-hour stress test, maintaining 99.98% uptime and 0.6%
message loss. Transaction costs per operation averaged $0.003, significantly below comparable public Ethereum- based
models.

C. Quality Verification and IoT Impact

IoT-enabled alerts led to an observed 28% reduction in spoilage losses, while computer vision-based grad- ing achieved
parity with human inspectors at a Co- hen’s Kappa score of 0.82. This confirms high inter- rater reliability between
automated and manual quality assessments.

Consumers exhibited a 34% increase in willingness-to- pay (WTP) for graded and blockchain-certified produce. Post-
purchase surveys showed enhanced confidence in product provenance and handling transparency.

D. Economic and Social Outcomes

The DFL pilot recorded substantial socio-economic im- provements across metrics: nosep
— Average farmer profit per transaction increased by 17-18%.

— Payment settlement delay reduced from 72 hours to 19 hours.

— Verified disputes decreased by 40% due to blockchain-anchored evidence.

— Average Trust Index score (survey) rose from 64 to 87.

Il Profit Increase (%) Ml Payment Delay Reduction
(hours)

30h
70 100
60 24h 800
18%
80 15% 18h 700
12%

80
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2 2
0 0

Coastal Semi-arid  Temperate

Value

S

Pilot Regions

Fig. 9 Comparison of Average Farmer Profit and Payment Delay
In this figure 9 it illustrates the comparative outcomes across three pilot regions, highlighting the improvements
achieved after the deployment of the Digital Farm Link (DFL) platform. The average farmer profit shows a significant
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rise, while payment delays are substantially reduced, demonstrating enhanced transaction transparency, faster
settlements, and improved financial trust within the ecosystem.

Statistical analysis using ANOVA confirmed that these improvements were significant across all regions (p < 0.01),
with particularly strong adoption in semi-arid re- gions (retention rate: 92%).

E. Discussion

DFL demonstrates how the combination of explainable Al, federated learning, and blockchain-driven trust can tangibly
enhance transparency, efficiency, and equity in agricultural trade.

Key Observations: nosep

— Explainability Drives Adoption: Farmers receiving localized, human-readable Al explanations were 1.8x more likely
to accept system-recommended pricing.

— Certified Quality Boosts Market Confidence: Con- sumers showed measurable trust gains and WTP increases for
produce accompanied by verifiable blockchain certificates.

— Federated Learning Feasibility: Cooperative-level nodes successfully executed federated updates with- out cloud
dependency, demonstrating practical scal- ability under rural connectivity constraints.

— Operational Trade-offs: Anchoring summaries to chain improves verifiability but introduces minor compute
overhead; however, this is offset by ledger storage optimization.

Statistical Significance: Across all pilot datasets, paired t-tests and ANOVA results yielded p < 0.01, confirming that
the observed performance and economic gains are statistically robust.

User Perception: Survey feedback indicated that 91% of farmers rated DFL as “trustworthy”, while 87% of buyers
expressed willingness to continue using the system for future procurements.

Synthesis: These results collectively validate DFL’s cen- tral hypothesis — that integrating explainability, fairness, and
verifiable data exchange can sustainably strengthen digital agricultural ecosystems. The outcomes further highlight the
potential of federated, privacy-preserving Al to democratize access to advanced analytics while maintaining trust and
accountability.

XII. SECURITY, PRIVACY, AND THREAT MODEL
Security and privacy are fundamental to the Digital Farm Link (DFL) ecosystem, as it operates across distributed data
sources, heterogeneous IoT devices, and cooperative- led federated networks. This section outlines the system’s threat
landscape, mitigation strategies, and resilience un- der a formal risk-assessment framework.
A. Threat Landscape
The following primary attack vectors were identified during pilot and simulation phases:
nosep
— Data Poisoning: Malicious actors inject false sensor or market data to distort Al predictions and pricing
recommendations.
— Sybil Attacks: Adversaries create multiple fake co- operative or buyer identities to manipulate reputation scores or
dominate consensus.
— IoT Spoofing and Tampering: Sensor readings may be forged or altered via physical access or network injection to
falsify product quality.
— Ledger Tampering: Unauthorized modification of on-chain transaction histories or smart contract states.
— Model Inversion and Privacy Leakage: Attempts to infer private farmer or cooperative data from trained Al models.
B. Mitigation Strategies
DFL incorporates multi-layered countermeasures at the device, data, and network levels: nosep
— Secure Telemetry: Each IoT device signs outgo- ing data packets using asymmetric keys, and edge gateways employ
secure boot to prevent firmware manipulation.
— Federated Learning Security: Model updates are encrypted with secure aggregation; differential pri- vacy (DP) noise
(N (0, 62)) is added to prevent inference of local datasets.
DOI: 10.48175/IJARSCT-29826
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— Identity and Access Control: Role-based access (RBAC) combined with cooperative-level KYC en- sures only
verified actors participate in ledger oper- ations.

— Off-Chain Arbitration: Evidence bundles (teleme- try, images, smart contract logs) are anchored via Merkle hashes,
allowing tamper-evident verification while preserving privacy.

— Consensus Integrity: Hyperledger Fabric’s Proof- of-Authority consensus mitigates Byzantine failures through pre-
approved validator nodes.

C. Formal Security Model
The DFL system aligns with the classical CIA Triad—Confidentiality, Integrity, and Availability—summarized in
Table V.

TABLE V: CIA TRIAD MAPPING IN DFL SECURITY FRAMEWORK

Security Principle Mechanism in DFL

Confidentiality Federated learning with differential privacy;
data encryption mn transit (TLS 1.3) and at
rest (AES-256).

Integrity Blockchain immutability, digital signatures,
Merkle-root anchoring for IoT telemetry.
Availability Multi-region edge gateways, redundant cloud

nodes, and retry-based transaction queues.

D. Risk Assessment and Threat Severity
Each threat vector is evaluated in terms of probability, potential impact, and overall risk level (Table VI).

E. Limitations and Future Resilience Measures
Although the multi-layer design significantly reduces attack surfaces, several open challenges remain: nosep
TABLE VI: SECURITY THREAT ASSESSMENT AND MITIGATION SUMMARY

Threat Likelihood Impact Mitigation
Strategy

Data Poisoning Medium High Data provenance
via blockcham.
anomaly
detection filters

Svhbil Attacks Medium High Identity
vetting (KYC),
cooperative node
whitelisting

IoT Spoofing High Medium PKI-based
authentication,
signed telemetry,
sensor attestation

Ledger Tamper- Low High Permissioned

ng blockchain
consensus, audit
logs

Model Inversion Low Medium Differential
privacy,  secure
aggregation
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— Edge Vulnerability: Physical access to unattended sensors can still enable local tampering; integrating tamper-
detection circuits and remote attestation pro- tocols is planned.

— Federated Trust Anchors: Cooperative-level gov- ernance must remain consistent to prevent bias in model retraining
cycles or inconsistent dispute out- comes.

— Regulatory Alignment: Absence of clear legal frameworks for digital escrow and data immutability in agriculture
complicates commercial deployment.

In future iterations, DFL will introduce blockchain-based attestation for edge firmware, Al watermarking for model
integrity verification, and smart-contract-driven anomaly reporting for autonomous security event handling.

Summary: DFL’s security posture is grounded in a layered defense model combining cryptographic assur- ance,
federated privacy preservation, and verifiable ledger transparency. By addressing both digital and institutional risks, the
framework ensures operational resilience, data integrity, and trustworthiness across distributed agricul- tural networks.

XIII. FUTURE WORK
Although Digital Farm Link (DFL) demonstrates measur- able benefits in predictive accuracy, transaction efficiency,
and trust creation, there remain numerous opportunities for refinement and large-scale enhancement. Future work will
focus on extending DFL into a fully autonomous, privacy-preserving, and globally interoperable agricul- tural
ecosystem.
Roadmap Interpretation: The roadmap visualizes DFL’s evolutlon across three time horlzons nosep

10T o’
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Data
Al Models
Poisoning Attacks
1
encryption
loT Al
Spoofing Tampering Model
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:nom;ly anomaly . proof-of-authority
etection detection : _consensus g
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Fig. 10 DFL Securlty Threat Model
In this figure 10 it presents the security threat model of the Digital Farm Link (DFL) ecosystem, outlining data flows,
trust boundaries, and multilayer defenses across the IoT, AI, and blockchain subsystems. It emphasizes how
authentication, encryption, and anomaly detection collectively protect against data tampering, unauthorized access, and
transactional fraud within the decentralized environment.

RoadMap

Short layers

@ Full-scale federated
learning deployment

Al maturity trust infrastructure  Trust infstructure

Long-kayes Long-torm (5 years)
Cross-border tokenized Al-governed policy optimi .
@ trade @

optimization

Trust infasrcture: trust infrastructure trust infrastructure socio-economic scalability

Fig. 11 DFL Future Work Roadmap
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In this figure 11 we illustrates the strategic roadmap for the Digital Farm Link (DFL) platform. It outlines short-term
(Year 1-2), mid-term (Year 3—4), and long-term (Year 5+) objectives, emphasizing progressive enhancements in Al-
driven analytics, blockchain interoperability, IoT integration, and sustainable community scaling to support transparent,
data-driven agriculture at global scale.

— Short-Term (Years 1-2): Full-scale federated learn- ing deployment, improved XAl interfaces, and pilot integration
with microfinance APIs.

— Mid-Term (Years 3—4): Carbon-credit certification, cross-border tokenized trade, and sustainability ana- lytics
adoption.

— Long-Term (Year 5+): Al-governed policy opti- mization, decentralized cooperative governance, and global
interoperability of trust networks.

Each phase represents incremental advancement in three axes—AI maturity, trust infrastructure, and socio- economic
scalability. Together, these extensions will evolve DFL into a self-sustaining ecosystem for ethical, data-sovereign
agriculture.

XIV. CONCLUSION
Digital Farm Link (DFL) presents a unified architecture and algorithmic framework that integrates artificial in-
telligence, blockchain, IoT, and human-centered design to establish a trustworthy and transparent agricultural
marketplace. The system’s hybrid Al forecasting, explain- able decision-making, and blockchain-based provenance
enable ethical and data-driven trading between farmers and consumers.
Experimental evaluation demonstrated consistent perfor- mance gains across multiple dimensions: forecasting ac-
curacy improved by 15%, average farmer profit increased by 17-18%, and post-harvest spoilage reduced by approx-
imately 28%. Blockchain integration reduced transaction latency to under 7 seconds and dispute rates by 40%, while
explainable Al modules enhanced user trust and adoption by providing interpretable insights into price
recommendations.
Beyond its technical contributions, DFL also embod- ies socio-economic and policy relevance. It aligns with emerging
national digital agriculture initiatives and global sustainability frameworks such as the FAO’s “Digital Village
Initiative” and India’s Digital Agriculture Mis- sion (2021-2030). By combining cooperative gover- nance, financial
inclusion APIs, and trust-driven trade, DFL strengthens rural livelihoods while promoting trans- parency and equitable
value distribution in the agricul- tural supply chain.
Addressing future challenges—such as cooperative governance, cross-border interoperability, and privacy- preserving
scalability—remains critical. However, the ar- chitecture and methodologies proposed in DFL provide a practical and
extensible blueprint for responsible digital transformation in agriculture, bridging the gap between technology
innovation and sustainable socio-economic impact.
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