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Abstract: Smallholder farmers face systemic barriers such as opaque pricing, exploitative 

intermediaries, post-harvest losses, and limited access to financial inclusion. Simultaneously, con- 

sumers demand transparency, provenance, quality assurance, and fair pricing. This paper presents 

Digital Farm Link (DFL) — a trust-centric digital marketplace that integrates Artificial Intelligence (AI), 

Blockchain, Internet of Things (IoT), and Federated Learning to create a transparent and equitable 

farmer- to-consumer (F2C) ecosystem. The proposed system combines a hybrid AI forecasting engine 

with blockchain-based provenance tracking, IoT-driven quality verification, and multimodal inter- faces 

(voice and PWA) for inclusivity. 

The system integrates multi-layered AI forecasting and blockchain-based provenance tracking for 

trustworthy agricul- tural trade. 

This version advances prior work through five key enhance- ments: (1) a Fair Pricing Engine enforcing 

ethical minimums and consumer affordability constraints; (2) an Explainable AI (XAI) Layer providing 

human-understandable pricing rationale; (3) an IoT + Computer Vision pipeline for blockchain-

anchored quality certification; (4) a Reputation-Driven Smart Contract Framework for secure 

transactions and dispute resolution; and (5) integration with microfinance and insurance APIs for 

financial empower- ment. Experimental evaluations show significant improvements in forecasting 

accuracy (MAPE ↓ 15 

The approach demonstrates scalability and replicability for rural-to-urban agricultural ecosystems. 

The study demonstrates DFL’s methodological robustness and scalability potential, paving the way for 

sustainable, trust-based digital agriculture ecosystems. 

 

Keywords: Digital agriculture, explainable AI, hybrid fore- casting, blockchain, IoT quality verification, 

federated learning, fair pricing, reputation systems, sustainable agriculture, smart contracts, AI fairness 

 

I. INTRODUCTION 

Agriculture remains the economic backbone of many de- veloping nations, yet smallholder farmers continue to operate 

within fragmented, opaque, and often exploitative ecosys- tems [1]. Intermediaries capture a disproportionate share of 

market value, while unreliable price discovery and post- harvest losses erode farmer income. Meanwhile, modern con- 

sumers—especially in urban markets—demand transparency, provenance, and ethically sourced, high-quality food [2]. 

This asymmetry of access, information, and trust leads to ineffi- ciencies and social inequities across the agricultural 

supply chain [3]. 
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Although several digital platforms have emerged to stream- line agricultural trade, most focus narrowly on listings, lo- 

gistics, or payments, without addressing the core issues of trust, fairness, and explainability [4]. In many cases, farmers 

still depend on intermediaries for market access, while consumers remain uncertain about product authenticity and 

ethical sourcing [5]. To achieve inclusive digital transformation in agriculture, solutions must go beyond connectivity—

they must embed transparency, explainable intelligence, verifiable quality, and equitable pricing within a secure and 

accessible architecture [6]. Digital Farm Link (DFL) represents a system-level solution to this long-standing challenge 

[7]. It integrates multiple frontier technologies to deliver a holistic, trust-centered digital ecosystem that connects 

farmers directly with consumers [8]. The system leverages Artificial Intelligence (AI) for price forecasting and decision 

support, Blockchain for immutable provenance and automated settlement, Internet of Things  (IoT) for real-time 

product quality verification, and Explain- able AI (XAI) for transparency and user confidence [9]. Furthermore, DFL 

incorporates Federated Learning to preserve data privacy while improving model performance across distributed 

farming clusters, and Voice + PWA interfaces to ensure inclusivity among low-literacy users [10]. 

Despite recent progress in agri-digitalization, there re- mains a critical research and implementation gap: existing 

systems fail to combine explainable AI, fair pricing algo- rithms, blockchain-backed reputation management, and fed- 

erated learning into a unified, transparent framework. DFL addresses this gap by introducing a hybrid architecture that 

not only enhances market efficiency but also establishes digital trust and economic resilience within farming 

communities [11, 12]. 

The major contributions of this paper are as follows: 

 A Fair Pricing Engine that integrates predictive mod- eling with ethical and affordability constraints to ensure 

equitable value distribution [13]. 

 A comprehensive Explainable AI (XAI) Layer that reveals underlying price drivers, uncertainty levels, and 

counterfactual scenarios to stakeholders [14]. 

 A hybrid IoT + Computer Vision Quality Verification Pipeline that generates blockchain-anchored certificates 

for transparency and traceability [15]. 

 A permissioned Blockchain and Smart Contract Framework supporting reputation tracking, automated escrow, 

and dispute resolution [16]. 

 An integrated Financial Inclusion Layer interfacing with microfinance, insurance, and government policy APIs 

(e.g., MSP and subsidy schemes) [17]. 

 

II. RELATED WORK 

The intersection of artificial intelligence, blockchain, and IoT in agriculture has attracted growing research attention 

over the past decade [18]. Prior studies have explored the use of machine learning for yield and price prediction, 

blockchain for supply chain transparency, and IoT for precision monitoring; however, these efforts typically operate in 

silos and lack a unified architecture for end-to-end market trust and inclusivity [19]. Early machine learning approaches 

such as ARIMA and SVMs were employed for crop price forecasting [9], offering basic predictive capacity but limited 

adaptability to nonlinear seasonal or climatic changes. Subsequent works adopted deep learning architectures, notably 

LSTM and GRU models, which captured temporal dependencies in commodity prices [20]. Nonetheless, most models 

were designed for centralized datasets, ignoring regional heterogeneity and privacy constraints, which limits their 

applicability to smallholder networks. To address this, federated and hybrid ensemble methods are emerging as privacy-

preserving solutions for distributed agricultural forecasting [21]. 

Parallel research in blockchain-enabled agriculture has demonstrated its potential to improve traceability and reduce 

counterfeiting in agri-supply chains. For instance, authors of papers in [22] proposed a blockchain framework for 

agricultural logistics, ensuring immutable product trace records. However, these models often prioritize supply chain 

provenance rather than market fairness or dynamic price discovery. Recent studies, such as those by authors in paper 

[23], have integrated smart contracts with IoT sensors to automate quality verification, but these systems remain limited 

by scalability, high transaction costs, and lack of explainable interfaces for low-literate farmers [24]. 
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In the IoT domain, authors in apper [25] illustrated how sensor- based environmental monitoring can minimize post-

harvest loss through temperature and humidity tracking. Other works, including proposed edge-computing architectures 

to process agricultural telemetry in real time [26]. Yet, most of these systems remain disconnected from blockchain or 

AI decision modules, resulting in fragmented technology adoption and low data interoperability [27]. 

Explainable AI (XAI) and fairness in agricultural decision- making are also underexplored. Existing agricultural AI 

systems typically function as black boxes, with little interpretability or stakeholder understanding of predictions. As 

emphasized by authors in paper [28], the absence of explainability can undermine farmer confidence and impede 

adoption. Ethical AI interventions in pricing—ensuring both affordability for consumers and viability for farmers—are 

almost entirely absent from prior digital marketplace designs [29]. 

A few comprehensive frameworks attempt multi-layer integration [30]. AgriTrust combined blockchain with ML- 

based trust scoring for supply-chain reliability, while Farm- Chain coupled IoT telemetry with smart contract validation 

[31]. However, these initiatives still lack federated data privacy, explainability mechanisms, or financial inclusion 

APIs—three essential components for real-world scalability in low-resource agricultural contexts [32]. 

In contrast, our work, Digital Farm Link (DFL), unifies these streams under a coherent architecture: hybrid AI fore- 

casting with XAI transparency, blockchain-backed reputation systems, IoT-driven quality verification, and policy-level 

financial inclusion [33]. This fusion addresses the critical gaps of transparency, fairness, interpretability, and inclusion, 

establishing a new benchmark for trust-centric digital agriculture platforms [34]. 

 

III. SYSTEM OVERVIEW AND DESIGN GOALS 

The proposed system, Digital Farm Link (DFL), is de- signed as a decentralized, trust-driven ecosystem that bridges the 

persistent gap between smallholder farmers and end consumers [35]. It functions not merely as an online marketplace 

but as a data-intelligent infrastructure that ensures equitable participation, evidence-based pricing, verifiable 

transactions, and transparent value chains [36]. The architecture emphasizes interoperability between diverse 

technologies—Artificial Intelligence (AI), Blockchain, Internet of Things (IoT), and Federated Learning—while 

maintaining scalability, security, and inclusivity [37]. 

 

A. System Overview 

At its core, DFL unifies three pillars of digital agricul- ture: data intelligence, trust assurance, and community 

governance. Figure III-A depicts the high-level architecture, showing the interaction between data sources, services, 

and stakeholders. The system comprises six interconnected layers that together form a transparent, resilient digital 

ecosystem [38, 39]. 

 
Fig. 1 High-level Architecture of DFL 
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In this figure 1 the high-level architecture of the Digital Farm Link (DFL) system is illustrated with six integrated 

layers: (1) User Interaction, (2) Application/API, (3) AI and Analytics, (4) Orchestration and Ledger, (5) IoT and Edge, 

and (6) Community and Finance. Data flows bidirectionally—farmers upload product and sensor data, AI modules 

predict fair prices, transactions are executed via blockchain, and consumers access verified produce through traceable 

smart contracts, ensuring transparency and trust across the ecosystem. 

1) User Interaction Layer: Provides multiple access in- terfaces, including Progressive Web Apps (PWA), responsive 

dashboards, and SMS/USSD channels for low-connectivity regions [40]. It ensures inclusivity regardless of literacy or 

device capability. Functions include listing produce, bidding, uploading quality data, and accessing price explanations 

from the XAI module [41]. 

2) Application and API Layer: Acts as a middleware connecting the front-end interfaces with back-end services [42]. 

Handles authentication, authorization (RBAC), and KYC verification using RESTful and gRPC APIs [43]. It also 

interfaces with government MSP datasets, insurance APIs, and cooperative databases [44]. Built using microservices on 

Kubernetes, it ensures modularity and fault isolation [45]. 

3) AI and Analytics Layer: Hosts the hybrid forecasting ensemble (LSTM + Random Forest) and the Explainable AI 

(XAI) engine [46]. This layer predicts market trends and enforces ethical pricing via the Fair Pricing Engine [47]. It 

supports visual explanations—such as SHAP-based feature importance and counterfactual insights—enhancing 

transparency in decision- making [48]. 

4) Orchestration and Ledger Layer: Implements the permissioned blockchain network (Hyperledger Fabric) responsible 

for transaction immutability, smart contract management, escrow handling, and reputation tracking [49]. Large data 

such as sensor logs or multimedia are stored off-chain, anchored via IPFS hashes for provenance and storage efficiency 

[50]. 

5) IoT and Edge Layer: Comprises edge gateways and IoT sensors (for temperature, humidity, vibration, and GPS 

track- ing) [51]. Edge devices preprocess data locally using lightweight anomaly detection models, ensuring reliability 

in intermittent connectivity. Communication between IoT nodes and the cloud employs MQTT and HTTPS with TLS 

1.3 encryption [52]. 

6) Community and Finance Layer: Empowers farmer cooperatives through dashboards that visualize performance, 

market insights, and financial inclusion opportunities. Smart contracts integrate with microfinance and insurance APIs 

[53]. Creditworthiness and risk scores are dynamically computed using on-chain reputation and verified delivery 

history [54]. 

 

B. Design Goals 

DFL is built around five key design goals that balance technical efficiency and social responsibility: 

 Transparency: Every price recommendation, transaction, and certificate issuance is auditable. Blockchain 

ensures immutability while XAI models provide interpretability to non-technical users [55]. 

 Fairness: The Fair Pricing Engine guarantees ethical margins for farmers while maintaining affordability for 

consumers through cooperative-defined constraints [56]. 

 Verifiability: IoT and Computer Vision modules issue tamper-proof, blockchain-anchored certificates, 

validating quality and logistics integrity [57]. 

 Inclusivity: Multilingual voice interfaces, SMS fallbacks, and visual icons enable participation from low-

literacy and low-connectivity user groups [58]. 

 Privacy and Security: Federated learning with differential privacy ensures that sensitive data (farm yields, 

location) never leave the farmer’s device. End-to-end encryption and digital signatures secure transactions 

across layers [59]. 

 

C. Proposed System Workflow 

The operational workflow of DFL is depicted in Fig- ure III-C. Farmers register and list produce, uploading IoT or 

manual quality data. The AI module forecasts market prices and recommends a Fair Floor Price (FFP), along with a 
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human-readable explanation from the XAI layer. Buyers review these insights, make offers, and initiate blockchain- 

secured transactions through smart contracts [60]. 

Upon dispatch, IoT sensors log transport conditions (tem- perature, humidity, GPS), and the CV module grades quality, 

generating a blockchain-anchored certificate. Once buyers confirm delivery via OTP or digital signature, the escrow 

smart contract releases payment to the farmer and updates reputa- tion scores. Federated learning then retrains local AI 

models using aggregated transaction feedback, improving prediction accuracy and fairness over time. 

 
Figure 2: System Data Flow 

In this figure 2 we illustrate the System Data Flow of the Digital Farm Link (DFL) platform. Farmers upload IoT-based 

sensor data and product listings, which are processed by the AI engine to predict fair market prices and balance supply-

demand. Smart contracts execute secure and transparent blockchain-based transactions, ensuring authenticity and 

traceability. Finally, consumers access verified and quality-certified products, completing the trusted farm-to-consumer 

cycle. 

 

D. System Advantages and Scalability 

The modular design enables independent scaling of compo- nents. Federated learning minimizes data transfer and 

enhances privacy. Containerized microservices improve resilience, al- lowing partial recovery during node failure. The 

permissioned blockchain architecture maintains an average throughput of over 250 TPS with low confirmation latency 

(<7 s). 

Hybrid deployment—edge computation near farms and cloud-based analytics—ensures high availability even un- der 

limited rural connectivity. Overall, DFL operates as an ethical infrastructure that combines AI-driven intelligence, 

blockchain-based accountability, and IoT verifiability, foster- ing sustainable and transparent agri-commerce. 

 

IV. DATA MODEL AND SOURCES 

Digital Farm Link (DFL) operates on heterogeneous, multi- source datasets that integrate real-time and historical 

informa- tion for predictive, transactional, and verification tasks. The system aggregates structured, semi-structured, 

and unstruc- tured data across the agricultural ecosystem. 

A. Data Sources and Types 

 Time-series price data: Collected from wholesale and retail markets, updated daily to weekly, used for hybrid 

price forecasting. 

 Weather & satellite indices: Includes precipitation, tem- perature, NDVI, and soil moisture, sourced from open 

APIs and remote-sensing providers at 6–12 hour intervals. 
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 IoT telemetry: Temperature, humidity, vibration, and GPS data from edge devices; sampled at 5–15 minute 

intervals for post-harvest tracking. 

 Transactional logs: Smart contract events, payment re- ceipts, and order metadata; recorded in near real-time 

on the blockchain. 

 Visual imagery: High-resolution images captured during grading and dispatch, used for CNN-based quality 

veri- fication. 

 Policy & financial data: Minimum Support Price (MSP), subsidy rules, and microfinance or insurance API 

feeds updated monthly or quarterly. 

 

B. Data Storage and Schema 

DFL employs a hybrid multi-database schema to handle data diversity: nosep 

 Relational databases (PostgreSQL): Handle transac- tions, user profiles, payment history, and cooperative data 

with ACID compliance. 

 Document stores (MongoDB): Maintain flexible catalog metadata, user preferences, and sensor payloads. 

 Time-series storage (InfluxDB): Retains continuous IoT telemetry streams for efficient temporal querying. 

 Off-chain storage (IPFS): Used for storing multimedia data (images, certificates, telemetry summaries), 

anchored to blockchain via cryptographic hashes. 

 

C. Data Security and Privacy 

nosep 

 All sensitive data—identity, payment, and IoT teleme- try—are encrypted using AES-256 in transit and at rest. 

 Blockchain anchors are SHA-256 hashed, ensuring im- mutability and verifiable data provenance. 

 Personally identifiable information (PII) is anonymized before model training; only aggregated or 

differentially private updates are transmitted in federated learning. 

 Role-Based Access Control (RBAC) and API-level au- thentication ensure data segregation between user 

groups (farmers, buyers, administrators). 

TABLE I: SUMMARY OF DATA SOURCES, FREQUENCY, AND STORAGE LAYERS 

 
 

D. Entity-Relationship (ER) View 

An ER-style representation (Fig. IV-D) connects primary entities: Farmer, Product, Order, SensorData, and Certificate. 

Relationships include: nosep 

• Farmer–Product (1:N): Each farmer lists multiple prod- ucts. 

• Product–Order (1:N): Products can appear in multiple order transactions. 

• Order–Certificate (1:1): Every transaction generates a unique blockchain-anchored certificate. 
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Fig. 3 Entity–Relationship (ER) Diagram of the DFL Data Model 

In this figure 3 we presents the Entity–Relationship (ER) structure of the Digital Farm Link (DFL) system. It illustrates 

the relationships among core entities including Farmer, Product, Order, and Certificate. This schema ensures data 

integrity, supports end-to-end traceability, and maintains blockchain-linked provenance to verify product authenticity 

and transactional transparency within the ecosystem. 

 

V. AI MODELS AND ALGORITHMS 

This section details the complete AI stack powering DFL, including preprocessing, hybrid ensemble forecasting, fair 

pricing, explainable AI (XAI), federated learning orchestration, and vision-based quality grading. Each submodule is 

designed for transparency, fairness, and adaptability across decentralized data ecosystems. 

A. Preprocessing and Feature Engineering 

To ensure high data fidelity, the following preprocessing steps are applied: nosep 

1) Missing Data Imputation: Seasonal decomposition (STL) and Kalman smoothing for handling short- term gaps. 

2) Temporal Feature Construction: Rolling win- dows, lag features (t − 1, . . . , t − p), and Fourier transforms for cyclic 

seasonality. 

3) External Covariates: Incorporation of weather, festival, and supply-demand variables for context- aware forecasting. 

4) Normalization: Robust scaling (median/IQR) to mitigate heavy-tailed price distributions. 

5) Categorical Encoding: Target encoding with leave- one-out smoothing to prevent data leakage in small farm clusters. 

 

B. Hybrid Forecasting Ensemble 

The DFL forecasting engine fuses temporal (LSTM) and non-temporal (Random Forest) predictors into a weighted 

hybrid ensemble: 

 yˆt = α · fLSTM(Xt−τ:t) + (1 − α) · fRF(Zt) (1) 

where α ∈ [0, 1] balances dependence between temporal dynamics and external features. 

LSTM Architecture: Two stacked layers (128 units each), dropout = 0.2, ReLU activation, MSE loss. Sequence-to-one 

prediction captures long-term dependen- cies. 

Random Forest: 500 trees, max depth tuned via grid search. Tree-based models contribute to explainability via Gini-

based feature importance. 

These metrics evaluate forecast accuracy, where MAPE ensures interpretability and RMSE captures large devia- tions. 

  

Algorithm 1 Hybrid Forecasting Workflow   

Input: Historical price series Xt, external variables Zt Preprocess data (imputation, scaling, encoding)  

Train LSTM on temporal windowed sequences Xt−τ:t Train Random Forest on feature set Zt Optimize ensemble 

weight α via cross-validation Compute final prediction yˆt = αfLSTM + (1 − α)fRF Evaluate with MAPE, RMSE, and 

PCI (Price Confidence Index) Output: Forecasted price yˆt, confidence interval 
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C. Fair Pricing Engine 

Predicted prices serve as a guide, refined by a fairness- aware pricing mechanism: 

 FFPt = max (cf (1 + mmin), yˆt(1 − δ)) (4) 

where cf = production cost, mmin = ethical margin, δ = tolerance deviation. 

A fairness-aware multi-objective loss ensures balance between farmer profit and consumer affordability: 

 Lfair = Lforecast+λ1·max(0, FFPt−yt)+λ2·Var(pregion) (5) 

where λ1 and λ2 regulate ethical margin enforcement and regional parity. 

  

D. Explainable AI (XAI) Layer 

Explainability is implemented through two complemen- tary methods: nosep 

– Local Explanations: SHAP values identify the con- tribution of each feature to an individual prediction. 

– Global Explanations: Aggregated feature impor- tances, sensitivity analyses, and counterfactual rea- soning (e.g., “If 

rainfall were 20% lower, price would decrease by X%”). 

Outputs are visualized as intuitive dashboards (Fig. V-D), providing: nosep 

1) Feature impact plots. 

2) Uncertainty intervals (±CI). 

3) Textual rationales for farmers and officers. 

 
Fig. 4 Explainable AI (XAI) Dashboard Visualization 

In this figure 4 we depicts the Explainable AI (XAI) dashboard integrated within the DFL system. It highlights feature 

importance rankings, attention heatmaps, and price sensitivity analyses used by the predictive AI engine. These 

visualizations enhance model transparency, help stakeholders understand decision factors, and support trust-based 

interactions between farmers, cooperatives, and consumers. 

 

E. Federated Learning Orchestration 

To ensure privacy-preserving model updates across coop- eratives: 

Each cooperative node computes local gradients ∆θi; a secure aggregator combines updates under differential privacy N 

(0, σ2) noise. No raw data leaves the farmer’s environment, preserving sovereignty. 

F. Computer Vision for Quality Grading 

A lightweight CNN (MobileNetV2 backbone) performs multi-class quality grading: nosep 

– Input: 224×224 RGB images of produce (front, side, and cross-section views). 

– Output: Graded label (A/B/C) and ripeness score 

q ∈ [0, 1]. 

 



I J A R S C T    

    

 

               International Journal of Advanced Research in Science, Communication and Technology 

                           International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal 

Volume 5, Issue 3, November 2025 

Copyright to IJARSCT DOI: 10.48175/IJARSCT-29826   180 

www.ijarsct.co.in  

 
 

ISSN: 2581-9429 Impact Factor: 7.67 

 

 
Fig. 5 Federated Learning Architecture Diagram 

In this figure 5 the federated learning process within the Digital Farm Link (DFL) ecosystem is depicted. Each farmer 

cooperative trains a local AI model on its own dataset, ensuring data privacy and ownership. The locally trained 

parameters are then securely aggregated at a central coordinator to form a global model without transferring raw data. 

This distributed learning approach enhances prediction accuracy, maintains confidentiality, and supports scalable AI 

deployment across geographically dispersed farming communities. 

– Training: Transfer learning from ImageNet with augmentation (color jitter, blurring, noise). 

– Deployment: Edge inference nodes automatically issue blockchain-anchored quality certificates. 

This module enhances trust by validating visual quality data against IoT telemetry during logistics. 

Summary: The combined AI pipeline in DFL ensures that pricing is accurate (via hybrid ensemble), fair (via ethical 

constraints), transparent (via XAI), and private (via federated learning). This technical synergy enables a verifiable, 

bias-aware digital agriculture ecosystem. 

 

VI. BLOCKCHAIN, SMART CONTRACTS, AND REPUTATION 

A. Permissioned Ledger Design 

To ensure scalability, privacy, and trust, Digital Farm Link (DFL) employs a permissioned blockchain net- work based 

on Hyperledger Fabric. This architecture supports Proof-of-Authority (PoA) consensus, achieving high throughput (up 

to 250 transactions per second) with an endorsement policy requiring signatures from at least two validating peers per 

transaction. 

The permissioned setup is partitioned into privacy chan- nels: nosep 

– Channel 1 — Farmer-Cooperative: Records inter- nal production and listing data. 

– Channel 2 — Buyer-Market: Manages bids, escrow deposits, and delivery proofs. 

– Channel 3 — Audit-Governance: Contains dispute resolutions, reputational scores, and audit trails. 

Critical transaction events are recorded on-chain: nosep 

– Listing creation (hashed to IPFS content). 

– Escrow deposit and release transactions. 

– IoT-anchored delivery proofs (Merkle-hashed sum- maries). 

– Quality certification issuance (CV and IoT verified). 

– On-chain reputation updates for farmers and buyers. 

This structure guarantees data immutability, role-based access control (RBAC), and decentralized verification while 

minimizing gas-like computational costs through PoA consensus. 
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Fig. 6 Smart Contract and Escrow Workflow 

In this figure 6 the interaction among farmers, buyers, IoT oracles, and cooperative nodes within the Digital Farm Link 

(DFL) ecosystem is illustrated. The smart contract autonomously executes secure transactions based on predefined 

terms, while the escrow mechanism ensures mutual trust, prevents fraud, and minimizes disputes. This workflow 

enhances transparency, accountability, and fairness across the decentralized agricultural network. 

 

B. Smart Contract Flow and Escrow 

The transaction workflow in the Digital Farm Link (DFL) ecosystem is fully automated through a series of smart 

contracts deployed on the Hyperledger network. These contracts ensure transparency, eliminate intermediaries, and 

enable secure, dispute-free settlements between farm- ers and buyers. 

Pseudocode: Simplified Contract Logic 

PlaceOrderbuyer,   listing   require(listing.status 

== Available) escrow.deposit(buyer, list- ing.price) listing.status = Reserved emit OrderPlacedEvent(orderId)   

ConfirmDe- liveryorderId, deliveryProof  verifyDeliv- eryProof(deliveryProof) and matchOTP(orderId) 

escrow.releaseToSeller(orderId.seller)    up- dateReputation(orderId.seller, +1)  emit DeliveryConfirmed(orderId) 

triggerDispute(orderId) 

Dispute Resolution: DFL follows a structured, three- stage approach: nosep 

1) Automated Verification: IoT data and OTP confir- mation are checked for mismatches. 

2) Cooperative Mediation: Local agricultural officers or cooperatives review evidence. 

3) On-chain Arbitration: The final verdict is cryp- tographically signed and stored on the blockchain, along with 

associated image and telemetry hashes. 

This dispute pipeline has demonstrated a 40% reduction in settlement latency compared to centralized market- places. 

 

C. Reputation System 

Trustworthiness is central to DFL’s incentive model. Every participant—farmer, buyer, or logistics node—maintains a 

reputation score Rt stored immutably on-chain: 

  Rt+1 = λRt + (1 − λ)St − γDt (7)  

where: nosep 

– St = successful transaction count, 

– Dt = validated dispute events, 

– λ = time-decay coefficient emphasizing recent be- havior, 

– γ = penalty factor proportional to dispute severity. A dynamic reputation threshold governs access to pre- mium 

features: nosep 

– Farmers with Rt > 0.85 qualify for microloan pre- approval. 

– Buyers with Rt > 0.9 gain priority order matching and fee discounts. 
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Security and Performance: nosep 

– Consensus: Proof-of-Authority ensures determinis- tic block finality with negligible fork probability. 

– Nodes: Pilot network deployed with 8 peers, 2 orderers, and 1 CA (Certificate Authority) node. 

– Throughput: Sustained 250 TPS under endorsement policy (2 of 3 signatures required). 

– Latency: 6.9s average time-to-confirmation per transaction. 

Integration with IoT and AI: Each transaction embeds hashed telemetry summaries, image-based quality scores, and 

AI-generated price verification results. These are stored off-chain in IPFS but verifiable via blockchain anchors—

maintaining scalability while ensuring trace- ability. 

Summary: The integration of smart contracts, PoA- based blockchain consensus, and dynamic reputation scoring 

transforms DFL into a secure, auditable, and trust-enhanced agricultural trading ecosystem, providing immutability 

without sacrificing efficiency. 

 

VII. IOT ARCHITECTURE AND QUALITY VERIFICATION 

A. Edge and Connectivity 

The IoT layer in DFL forms the physical-digital interface between farms, logistics, and blockchain records. Sensors 

measure environmental variables such as temperature, humidity, shock, and GPS location. These devices are connected 

to low-power edge gateways (e.g., Raspberry Pi or industrial-grade LoRaWAN hubs) that handle pre- processing and 

secure data forwarding. 

Each gateway performs: nosep 

– Local anomaly detection: Outlier detection based on threshold rules and embedded ML models for spoilage 

prediction. 

– Short-term buffering: Data caching for intermittent connectivity in rural regions. 

– Secure telemetry transmission: MQTT over TLS encryption ensures confidentiality and integrity. 

– Batch signing: Each telemetry batch is signed using the device’s private key for authenticity verification. 

Communication Optimization: To balance bandwidth and power constraints, edge gateways employ adaptive 

sampling—reducing sensor transmission rates during sta- ble environmental conditions. This strategy, combined with 

periodic batching, lowers network load by approxi- mately 85% while maintaining data accuracy within ±2.3 

°C for temperature and ±4 

 
Fig. 7 IoT Network and Certificate Generation Flow 

In this figure 7 we illustrates the end-to-end IoT-enabled certification process in the DFL ecosystem. Sensor devices 

capture real-time telemetry such as soil moisture, temperature, and shipment status. Edge gateways preprocess and 

digitally sign this data before anchoring summaries to the blockchain ledger. 

Consumers can then verify the authenticity of produce through QR-based certificate validation, ensuring traceability 

and trust throughout the supply chain. 
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B. Anchoring and Summarization to Blockchain 

Raw telemetry data is stored off-chain to prevent blockchain bloat. Periodic digests are created and sum- marized 

through Merkle trees: 

hsummary = H(MerkleRoot(batch)) (8) 

The resulting hash is stored on the blockchain ledger, providing a tamper-proof link to the full dataset. Each batch 

includes: nosep 

– Timestamped IoT data points. 

– Environmental metrics and anomaly flags. 

– Device ID and digital signature for authentication. This approach achieves verifiable integrity while optimiz- ing 

chain storage usage by over 90%. 

  

C. Quality Certificate Generation 

To reinforce buyer confidence, every batch of produce is accompanied by a blockchain-anchored digital quality 

certificate. At the time of dispatch, farmers upload IoT logs and produce images through the DFL interface. The data 

pipeline then performs the following operations: nosep 

1) The Computer Vision (CV) model assigns a quality score q ∈ [0, 1] based on visual grading (color, shape, texture). 

2) IoT data provides contextual metrics—temperature history, humidity stability, and GPS trace. 

3) A certificate object is constructed containing: nosep 

– q (CV quality score) 

– tdispatch, locgps, and hsummary (hashed IoT sum- mary) 

– Digital signature by cooperative authority node 

4) The hash of this certificate is stored on-chain, while the full certificate is pinned in IPFS. 

Consumers scan a QR code at purchase to retrieve: nosep 

– Verified origin and farmer identity. 

– Environmental conditions throughout the logistics journey. 

– Quality grade (A/B/C) and visual proof of freshness. 

This transparency mechanism reduces fraudulent labeling and increases consumer trust. 

Security and Reliability: nosep 

– TLS-based communication and AES-256 encrypted local caches prevent data tampering. 

– Device-level public–private key authentication vali- dates data origin. 

– Federated edge updates allow ML anomaly models to evolve locally without full re-deployment. 

Performance Summary: Field pilots recorded: nosep 

– 28% reduction in spoilage events due to early anomaly alerts. 

– 40% faster quality verification through automated CV grading. 

– 93% blockchain storage efficiency compared to raw data logging. 

Summary: The IoT and Quality Verification layer serves as the trust anchor of DFL, linking physical produce to its 

digital identity. Its secure, energy-efficient design ensures transparency and reliability from farm to consumer while 

supporting scalable, verifiable certification processes. 

 

VIII. FAIRNESS, ETHICS, AND XAI-DRIVEN UX 

A. Algorithmic Fairness 

Ensuring fairness across diverse agricultural and socio- economic groups is a foundational design principle of DFL. The 

platform’s pricing and recommendation mod- els are continuously audited to prevent systematic bias against 

underrepresented regions, smallholders, or spe- cific crop categories. Fairness audits are conducted across three primary 

dimensions: 

nosep 
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– Regional Parity: Evaluates whether average price suggestions for similar-quality produce remain con- sistent across 

different districts or states, accounting for data density variations. 

– Crop Parity: Assesses fairness across commodity types (perishables vs non-perishables) to avoid algo- rithmic bias 

driven by skewed market data. 

– Farmer-Class Fairness: Ensures equitable model performance for smallholders versus large-scale pro- ducers by 

reweighting underrepresented data clus- ters. 

Bias Mitigation: To mitigate bias, we employ data-level and model-level interventions: nosep 

– Synthetic data augmentation for low-volume regions. 

– Fairness-aware loss functions with demographic par- ity regularization. 

– Adversarial debiasing models that learn invariant representations independent of region or crop cat- egory. 

Ethical AI Governance: DFL aligns its algorithmic governance with the principles defined under the EU AI Act (2024) 

and UNESCO Recommendation on the Ethics of Artificial Intelligence (2021). Each model iteration undergoes 

documentation through an Ethical Impact Assessment (EIA) covering: nosep 

– Transparency: All decisions are explainable to af- fected stakeholders. 

– Accountability: Bias audits and data provenance logs are traceable. 

– Human Oversight: Cooperative committees review AI-driven price anomalies or disputes. 

TABLE II: FAIRNESS EVALUATION METRICS AND TARGETS 

 
 

B. Explainability to Users (XAI-Driven UX) 

Explainability is essential to user trust and adoption in low-literacy environments. DFL implements a tiered 

explainability strategy based on user expertise and inter- action context. 

nosep 

– Farmer Interface: Natural language summaries are generated automatically, explaining pricing logic in simple terms, 

such as: “The suggested price is 15% higher due to lower regional supply and improved quality grade.” Confidence 

intervals are visually represented using traffic-light indicators (Green = Stable, Amber = Caution, Red = High 

Uncertainty). 

– Extension Officer Dashboard: SHAP feature plots and time-series saliency maps illustrate which fea- tures (rainfall, 

transport cost, soil index) most influ- enced the model output. Officers can explore coun- terfactual scenarios such as: 

“If rainfall had been 20% higher, the price would increase by 2.4/kg.” 

– Policy and Governance View: Aggregated XAI analytics inform government or cooperative decision- makers about 

pricing trends, fairness compliance, and algorithmic transparency levels. 

Uncertainty Visualization: The system communicates confidence levels through uncertainty ranges: 
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 pˆ = 32 INR/kg (±2.5%, 95% CI) 

This allows farmers to make informed selling decisions and helps cooperatives assess market stability in real time. 

Ethical Design Philosophy: DFL adopts the princi- ple of Human-in-the-Loop AI, where automated recom- mendations 

are never final without user consent. All key price actions require confirmation from human ac- tors—farmers, 

cooperatives, or verified agents—thus en- suring transparency and moral accountability. 

Summary: Through fairness-aware modeling, ethical AI compliance, and multi-level explainability, DFL creates a 

socio-technical ecosystem where both algorithmic and human trust reinforce each other. This combination en- sures 

equitable access, transparency, and sustainability across the agricultural digital value chain. 

 

IX. INTEGRATION WITH FINANCIAL AND POLICY SYSTEMS 

A. Microfinance and Insurance APIs 

Using standardized APIs, DFL offers: nosep 

– Microloan eligibility checks using on-chain reputa- tion + transaction history. 

– Parametric insurance triggers via IoT telemetry and weather oracles. 

Periodic fairness dashboards visualize these metrics in the DFL governance portal, where cooperative leaders and 

auditors can flag potential biases. 

Smart contracts can automatically release insurance pay- outs when preconfigured telemetry patterns (e.g., sus- tained 

temperature spike) oracles confirm loss conditions. 

  

B. Government and MSP Integration 

DFL periodically ingests MSP and subsidy rules and flags eligible transactions to streamline subsidy delivery or fulfill 

policy compliance. 

 

X. EXPERIMENTAL SETUP AND PILOT 

A. Pilot Scope 

A six-month pilot was conducted across three agro- climatic zones representing distinct market and envi- ronmental 

conditions—coastal, semi-arid, and temper- ate—spanning over 600 registered farmers, 150 verified buyers, and 100 

IoT devices per region. Cooperative hubs were established in each zone to facilitate data collection, quality inspection, 

and farmer onboarding. Each hub maintained a localized federated node responsible for model training aggregation and 

blockchain node partici- pation. 

The backend infrastructure was containerized and de- ployed on a hybrid cloud environment using Kubernetes. The 

orchestration layer ran independent services for: nosep 

– Model Serving: TensorFlow Serving for AI infer- ence workloads. 

– Blockchain Ordering: Hyperledger Fabric peers with Proof-of-Authority consensus. 

– Data Storage: PostgreSQL for transactional data, MongoDB for metadata, and IPFS for large media and certificates. 

Edge gateways were deployed using Raspberry Pi 4B (4GB RAM) devices connected to multi-sensor Lo- RaWAN 

nodes. Each device operated under a 15-minute sampling interval and synchronized data with the cloud every 2 hours. 

 

B. Dataset Composition 

The system integrated multi-source datasets collected across the pilot zones: nosep 

– Market Price Data: 1.2 million time-series records (daily prices for 15 commodities). 

– IoT Sensor Data: 7.5 million records (temperature, humidity, shock, GPS). 

– Image Dataset: 10,000 labeled images (A/B/C grad- ing classes). 

– Weather Data: 180,000 daily entries via NOAA and IMD APIs. 

– Transaction Logs: 2,100 blockchain-anchored trans- actions. 

All data underwent cleaning, normalization, and anonymization before being processed for AI training. Data quality 

was continuously monitored through validation rules on missing rate (<1.5%) and feature consistency (>98.7%). 
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TABLE III: SYSTEM CONFIGURATION AND DEPLOYMENT ENVIRONMENT 

Component Configuration Details 

Cloud Backend Google Cloud Platform (GCP), Kubernetes v1.27 

Compute Nodes 8 vCPUs (Intel Xeon Platinum), 64 GB RAM 

GPU Support NVIDIA T4 for model training 

Blockchain Network Hyperledger Fabric v2.5, 9 peers, 3 orderers 

Edge Devices Raspberry Pi 4B (4GB RAM), LoRa Gateway, 4 sensors each 

Storage PostgreSQL 14, MongoDB 6.0, IPFS v0.19 

Communication Protocols MQTT over TLS 1.3, REST APIs secured with JWT 

Model Framework TensorFlow 2.12, Scikit-learn 1.4 

Monitoring Tools Prometheus, Grafana dashboards, Fluentd logs 

 

C. Evaluation Metrics 

Performance evaluation encompassed both algorithmic and socio-technical dimensions. The metrics included: nosep 

– Forecasting Accuracy: MAPE, RMSE, MAE for price predictions. 

– Model Calibration: Coverage of 95% prediction intervals. 

– Blockchain Throughput: Transactions per second (TPS) and latency. 

– Economic Indicators: Average farmer profit change, settlement delay, and dispute rate. 

– Trust and Adoption: Survey-based Trust Index (0–100) and user retention percentage. 

 

TABLE IV: PERFORMANCE METRICS SUMMARY (PILOT RESULTS) 

Metric Baseline (Pre-DFL) After DFL Deployment 

MAPE (Price Forecast) 19.4% 14.8% 

RMSE (Price Error) 8.7 6.1 

Blockchain Throughput (TPS) 170 252 

Average Payment Delay (hrs) 72 19 

Dispute Rate (%) 9.8 3.4 

Farmer Profit Increase (%) – +17.6 

Trust Index (Survey) 64 87 

 

D. Control and Baseline Comparison 

A control group of 120 farmers operating under conven- tional cooperative systems was maintained for baseline 

comparison. They were not exposed to AI-based forecast- ing or blockchain-backed trade. Comparative analysis in- 

dicated statistically significant improvements (p < 0.01) in fairness consistency, pricing transparency, and trust metrics 

under DFL. 

 

E. Qualitative Feedback 

Structured interviews and surveys revealed strong user satisfaction: nosep 

– 92% of farmers reported “high confidence” in price transparency. 

– 84% of buyers confirmed improved trust in quality certificates. 

– Cooperative agents highlighted reduced administra- tive overhead by 43%. 

Summary: The pilot validated the robustness, scalabil- ity, and socio-economic value of the DFL system. The 

combination of AI explainability, federated privacy, and blockchain integrity demonstrated tangible benefits in market 

fairness, transaction speed, and user trust. 
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XI. RESULTS AND DISCUSSION 

A. Forecasting and XAI Outcomes 

The hybrid ensemble (LSTM + Random Forest) achieved an average Mean Absolute Percentage Error (MAPE) of 

6.8%, representing a relative improvement of 15.4% over the LSTM-only baseline and 22.7% over traditional ARIMA 

models. Prediction intervals demonstrated strong calibration with 94% empirical coverage at the nominal 95% level, 

confirming well-behaved uncertainty quantifi- cation post isotonic recalibration. 

Feature explainability via SHAP analysis revealed that top contributors to price variation were: nosep 

– Local wholesale price lag (importance weight: 0.31) 

– Weekly demand index (0.24) 

– Short-term rainfall anomaly (0.18) 

– Transportation cost index (0.13) 

Fig. XI-A illustrates the accuracy comparison among ARIMA, LSTM, and the proposed hybrid model across major 

commodities. A paired t-test (p < 0.01) confirmed that the hybrid model’s accuracy improvement is statisti- cally 

significant. 

 

B. Operational and Blockchain Performance 

The permissioned blockchain achieved an average con- firmation latency of 6.9 seconds and sustained through- put of 

250 transactions per second (TPS) under the configured Proof-of-Authority consensus (two endorser nodes per 

transaction). Off-chain telemetry anchoring through Merkle-hashed summaries reduced ledger storage by 

approximately 93% relative to direct data logging. 

 
Fig. 8 Model Accuracy Comparison 

In this figure 8 ,it represents a comparative analysis of predictive model accuracy within the DFL ecosystem. The chart 

contrasts ARIMA, LSTM, and Hybrid Ensemble models based on Mean Absolute Percentage Error (MAPE). The 
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Hybrid Ensemble model demonstrates the lowest MAPE, indicating superior predictive performance and improved 

generalization over traditional time-series and deep learning baselines. 

The blockchain network’s stability was validated over a 72-hour stress test, maintaining 99.98% uptime and 0.6% 

message loss. Transaction costs per operation averaged $0.003, significantly below comparable public Ethereum- based 

models. 

 

C. Quality Verification and IoT Impact 

IoT-enabled alerts led to an observed 28% reduction in spoilage losses, while computer vision-based grad- ing achieved 

parity with human inspectors at a Co- hen’s Kappa score of 0.82. This confirms high inter- rater reliability between 

automated and manual quality assessments. 

Consumers exhibited a 34% increase in willingness-to- pay (WTP) for graded and blockchain-certified produce. Post-

purchase surveys showed enhanced confidence in product provenance and handling transparency. 

  

D. Economic and Social Outcomes 

The DFL pilot recorded substantial socio-economic im- provements across metrics: nosep 

– Average farmer profit per transaction increased by 17–18%. 

– Payment settlement delay reduced from 72 hours to 19 hours. 

– Verified disputes decreased by 40% due to blockchain-anchored evidence. 

– Average Trust Index score (survey) rose from 64 to 87. 

 
Fig. 9 Comparison of Average Farmer Profit and Payment Delay 

In this figure 9 it illustrates the comparative outcomes across three pilot regions, highlighting the improvements 

achieved after the deployment of the Digital Farm Link (DFL) platform. The average farmer profit shows a significant 
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rise, while payment delays are substantially reduced, demonstrating enhanced transaction transparency, faster 

settlements, and improved financial trust within the ecosystem. 

Statistical analysis using ANOVA confirmed that these improvements were significant across all regions (p < 0.01), 

with particularly strong adoption in semi-arid re- gions (retention rate: 92%). 

  

E. Discussion 

DFL demonstrates how the combination of explainable AI, federated learning, and blockchain-driven trust can tangibly 

enhance transparency, efficiency, and equity in agricultural trade. 

Key Observations: nosep 

– Explainability Drives Adoption: Farmers receiving localized, human-readable AI explanations were 1.8× more likely 

to accept system-recommended pricing. 

– Certified Quality Boosts Market Confidence: Con- sumers showed measurable trust gains and WTP increases for 

produce accompanied by verifiable blockchain certificates. 

– Federated Learning Feasibility: Cooperative-level nodes successfully executed federated updates with- out cloud 

dependency, demonstrating practical scal- ability under rural connectivity constraints. 

– Operational Trade-offs: Anchoring summaries to chain improves verifiability but introduces minor compute 

overhead; however, this is offset by ledger storage optimization. 

Statistical Significance: Across all pilot datasets, paired t-tests and ANOVA results yielded p < 0.01, confirming that 

the observed performance and economic gains are statistically robust. 

User Perception: Survey feedback indicated that 91% of farmers rated DFL as “trustworthy”, while 87% of buyers 

expressed willingness to continue using the system for future procurements. 

Synthesis: These results collectively validate DFL’s cen- tral hypothesis — that integrating explainability, fairness, and 

verifiable data exchange can sustainably strengthen digital agricultural ecosystems. The outcomes further highlight the 

potential of federated, privacy-preserving AI to democratize access to advanced analytics while maintaining trust and 

accountability. 

 

XII. SECURITY, PRIVACY, AND THREAT MODEL 

Security and privacy are fundamental to the Digital Farm Link (DFL) ecosystem, as it operates across distributed data 

sources, heterogeneous IoT devices, and cooperative- led federated networks. This section outlines the system’s threat 

landscape, mitigation strategies, and resilience un- der a formal risk-assessment framework. 

A. Threat Landscape 

The following primary attack vectors were identified during pilot and simulation phases: 

nosep 

– Data Poisoning: Malicious actors inject false sensor or market data to distort AI predictions and pricing 

recommendations. 

– Sybil Attacks: Adversaries create multiple fake co- operative or buyer identities to manipulate reputation scores or 

dominate consensus. 

– IoT Spoofing and Tampering: Sensor readings may be forged or altered via physical access or network injection to 

falsify product quality. 

– Ledger Tampering: Unauthorized modification of on-chain transaction histories or smart contract states. 

– Model Inversion and Privacy Leakage: Attempts to infer private farmer or cooperative data from trained AI models. 

B. Mitigation Strategies 

DFL incorporates multi-layered countermeasures at the device, data, and network levels: nosep 

– Secure Telemetry: Each IoT device signs outgo- ing data packets using asymmetric keys, and edge gateways employ 

secure boot to prevent firmware manipulation. 

– Federated Learning Security: Model updates are encrypted with secure aggregation; differential pri- vacy (DP) noise 

(N (0, σ2)) is added to prevent inference of local datasets. 
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– Identity and Access Control: Role-based access (RBAC) combined with cooperative-level KYC en- sures only 

verified actors participate in ledger oper- ations. 

– Off-Chain Arbitration: Evidence bundles (teleme- try, images, smart contract logs) are anchored via Merkle hashes, 

allowing tamper-evident verification while preserving privacy. 

– Consensus Integrity: Hyperledger Fabric’s Proof- of-Authority consensus mitigates Byzantine failures through pre-

approved validator nodes. 

 

C. Formal Security Model 

The  DFL  system  aligns  with  the  classical CIA Triad—Confidentiality, Integrity, and Availability—summarized in 

Table V. 

TABLE V: CIA TRIAD MAPPING IN DFL SECURITY FRAMEWORK 

 
D. Risk Assessment and Threat Severity 

Each threat vector is evaluated in terms of probability, potential impact, and overall risk level (Table VI). 

 

E. Limitations and Future Resilience Measures 

Although the multi-layer design significantly reduces attack surfaces, several open challenges remain: nosep 

TABLE VI: SECURITY THREAT ASSESSMENT AND MITIGATION SUMMARY 
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– Edge Vulnerability: Physical access to unattended sensors can still enable local tampering; integrating tamper-

detection circuits and remote attestation pro- tocols is planned. 

– Federated Trust Anchors: Cooperative-level gov- ernance must remain consistent to prevent bias in model retraining 

cycles or inconsistent dispute out- comes. 

– Regulatory Alignment: Absence of clear legal frameworks for digital escrow and data immutability in agriculture 

complicates commercial deployment. 

In future iterations, DFL will introduce blockchain-based attestation for edge firmware, AI watermarking for model 

integrity verification, and smart-contract-driven anomaly reporting for autonomous security event handling. 

Summary: DFL’s security posture is grounded in a layered defense model combining cryptographic assur- ance, 

federated privacy preservation, and verifiable ledger transparency. By addressing both digital and institutional risks, the 

framework ensures operational resilience, data integrity, and trustworthiness across distributed agricul- tural networks. 

  

XIII. FUTURE WORK 

Although Digital Farm Link (DFL) demonstrates measur- able benefits in predictive accuracy, transaction efficiency, 

and trust creation, there remain numerous opportunities for refinement and large-scale enhancement. Future work will 

focus on extending DFL into a fully autonomous, privacy-preserving, and globally interoperable agricul- tural 

ecosystem.  

Roadmap Interpretation: The roadmap visualizes DFL’s evolution across three time horizons: nosep 

 
Fig. 10 DFL Security Threat Model 

In this figure 10 it presents the security threat model of the Digital Farm Link (DFL) ecosystem, outlining data flows, 

trust boundaries, and multilayer defenses across the IoT, AI, and blockchain subsystems. It emphasizes how 

authentication, encryption, and anomaly detection collectively protect against data tampering, unauthorized access, and 

transactional fraud within the decentralized environment. 

 
Fig. 11 DFL Future Work Roadmap 
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In this figure 11 we illustrates the strategic roadmap for the Digital Farm Link (DFL) platform. It outlines short-term 

(Year 1–2), mid-term (Year 3–4), and long-term (Year 5+) objectives, emphasizing progressive enhancements in AI-

driven analytics, blockchain interoperability, IoT integration, and sustainable community scaling to support transparent, 

data-driven agriculture at global scale. 

– Short-Term (Years 1–2): Full-scale federated learn- ing deployment, improved XAI interfaces, and pilot integration 

with microfinance APIs. 

– Mid-Term (Years 3–4): Carbon-credit certification, cross-border tokenized trade, and sustainability ana- lytics 

adoption. 

– Long-Term (Year 5+): AI-governed policy opti- mization, decentralized cooperative governance, and global 

interoperability of trust networks. 

Each phase  represents  incremental advancement  in three axes—AI maturity, trust infrastructure, and socio- economic 

scalability. Together, these extensions will evolve DFL into a self-sustaining ecosystem for ethical, data-sovereign 

agriculture. 

 

XIV. CONCLUSION 

Digital Farm Link (DFL) presents a unified architecture and algorithmic framework that integrates artificial in- 

telligence, blockchain, IoT, and human-centered design to establish a trustworthy and transparent agricultural 

marketplace. The system’s hybrid AI forecasting, explain- able decision-making, and blockchain-based provenance 

enable ethical and data-driven trading between farmers and consumers. 

Experimental evaluation demonstrated consistent perfor- mance gains across multiple dimensions: forecasting ac- 

curacy improved by 15%, average farmer profit increased by 17–18%, and post-harvest spoilage reduced by approx- 

imately 28%. Blockchain integration reduced transaction latency to under 7 seconds and dispute rates by 40%, while 

explainable AI modules enhanced user trust and adoption by providing interpretable insights into price 

recommendations. 

Beyond its technical contributions, DFL also embod- ies socio-economic and policy relevance. It aligns with emerging 

national digital agriculture initiatives and global sustainability frameworks such as the FAO’s “Digital Village 

Initiative” and India’s Digital Agriculture Mis- sion (2021–2030). By combining cooperative gover- nance, financial 

inclusion APIs, and trust-driven trade, DFL strengthens rural livelihoods while promoting trans- parency and equitable 

value distribution in the agricul- tural supply chain. 

Addressing future challenges—such as cooperative governance, cross-border interoperability, and privacy- preserving 

scalability—remains critical. However, the ar- chitecture and methodologies proposed in DFL provide a practical and 

extensible blueprint for responsible digital transformation in agriculture, bridging the gap between technology 

innovation and sustainable socio-economic impact. 
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