

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, November 2025

Pharmacovigilance in Oncology: Adverse Drug Reaction Linked with Chemotherapy

Mr. Prathamesh Vasant Manepatil, Mr. Sachin Mahadu Bhalekar, Mr. Soham Sandeep Lokare, Mr. Tejas Dattatray Patil, Mr. Ajay Sunil Thorat

Students, Department of Quality Assurance Technique Assistant Professor, Department of Quality Assurance Technique Samarth Institute of Pharmacy, Belhe, Pune, Maharashtra

Abstract: Chemotherapy is one of the most effective treatment modalities in cancer management; however, it is frequently accompanied by a wide range of adverse drug reactions (ADRs) that can significantly affect patient safety, treatment adherence, and overall quality of life. Pharmacovigilance is critical in identifying, analysing, and preventing these adverse drug reactions to ensure the safe and effective use of anticancer medicines. The purpose of this study is to summarise the present landscape of oncology pharmacovigilance, with a focus on chemotherapy-related adverse drug reactions (ADRs), reporting procedures, and the issues associated with monitoring and managing drug-induced toxicities. Haematological toxicities, gastrointestinal disturbances, neurotoxicity, and cardiotoxicity are among the most commonly reported ADRs, with variations depending on the drug type and patient characteristics. Despite worldwide pharmacovigilance activities, underreporting remains a significant challenge, particularly in low- and middle-income countries. The combination of real-world data, electronic medical histories, and patient-reported outcomes, along with emerging technologies such as artificial intelligence, provides new prospects for proactive ADR monitoring and signal analysis.

Keywords: Chemotherapy, Pharmacovigilance, Adverse Drug Reactions, Oncology, Drug Safety, Signal Detection

I. INTRODUCTION

Cancer is one of the leading causes of morbidity and mortality worldwide, and chemotherapy remains a fundamental component of its management. Despite significant developments in targeted therapy and immunotherapy, conventional chemotherapeutic drugs continue to serve an important role in the treatment of a wide variety of cancers. These medicines, however, have an important velocity of adverse drug reactions (ADRs) due to their limited therapeutic index and lack of selectivity between normal and malignant cells. ADRs have an impact not just on treatment outcomes but also on patients' quality of life, which often ends in dose reductions, treatment delays, or termination of medication.

Pharmacovigilance (PV), defined by the World Health Organisation as the science and activities concerned with the detection, assessment, understanding, and prevention of adverse effects or other drug-related issues, is an essential tool for ensuring the safety of drugs.

Pharmacovigilance is especially important in oncology since cancer patients frequently receive many cytotoxic medicines, supportive care medications, and adjuvant therapy at the same time, raising the risk of drug interactions and cumulative toxicity. Also, many anticancer medications are approved quickly based on not enough clinical trial data, requiring post-marketing surveillance to detect rare or long-term adverse drug reactions.

Chemotherapy-induced ADRs usually include myelosuppression, nausea, vomiting, mucositis, alopecia, neuropathy, nephrotoxicity, and cardiotoxicity, among others.

The degree and nature of these reactions are determined by a variety of factors, including drug class, dosage, duration, g enetic predisposition, and organ function. Early detection and reporting of these ADRs using pharmacovigilance system s can aid in the identification of new safety signals, revising treatment guidelines, and increasing patient safety.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, November 2025

Impact Factor: 7.67

Despite global efforts to develop pharmacovigilance systems, failing to report of ADRs remains a serious issue, especially with cancer where ADRs are generally viewed as expected consequences of therapy. Promoting understanding among healthcare professionals, integrating electronic reporting systems, and promoting patient participation can all help enhance the effectiveness of pharmacovigilance efforts. Furthermore, emerging technologies such as artificial intelligence (AI), machine learning, and big data analytics present great opportunities for improved signal detection and trend analysis in large pharmacovigilance databases.

This review aims to explore the current trends, challenges, and future perspectives of pharmacovigilance in oncology, with a specific focus on adverse drug reactions associated with chemotherapy. Understanding the importance and scope of these reactions is critical for ensuring safer, more effective cancer treatment procedures worldwide.

Common Adverse Drug Reactions Associated with Chemotherapy

Chemotherapy-induced adverse drug reactions (ADRs) are among the most prevalent and clinically significant treatment-related problems in cancer care. These reactions occur primarily because most cytotoxic drugs target rapidly dividing cells, which affects both malignant and healthy tissues. The intensity and kind of ADRs are determined by the specific medicine, dose, way of administration, and patient variables such as age, organ function, and genetic history. Addressing these ADRs is critical for effective monitoring, early identification, and management using pharmacovigilance systems.

Neurological Toxicities: Neurotoxicity is a significant dose-limiting consequence of several chemotherapy drugs.

Ototoxicity: Cisplatin is known to induce irreversible hearing loss owing to cochlear injury.

Peripheral Neuropathy: Characterized by tingling, numbness, or paralysis and pain in parts of the body, usually generated by vincristine, the chemotherapy drugs paclitaxel, and oxaliplatin.

Central Neurotoxicity: Confusion, seizures, or encephalopathy can result from central neurotoxicity caused by high doses of methotrexate and cytarabine.

Gastrointestinal Toxicities

The gastrointestinal tract contains rapidly proliferating epithelial cells, making it a major target of chemotherapy-induced toxicity.

Common side effects of medicines like as cisplatin and doxorubicin include nausea and vomiting. Modern antiemetic regimens, which include 5-HT3 antagonists and NK1 receptor blockers, serve to lower the incidence.

Mucositis: Inflammation and ulceration of the oral mucosa caused by methotrexate and fluorouracil, leading to pain, difficulty in eating, and risk of infection.

Diarrhea and Constipation: Irinotecan frequently causes severe diarrhea, whereas vinca alkaloids are linked to constipation.

Hepatotoxicity: Drugs such as methotrexate and 6-mercaptopurine can cause elevated liver enzymes or hepatic fibrosis.

Haematological Toxicities

Haematological adverse reactions are the most common and potentially fatal adverse reactions of chemotherapy. Myelosuppression: Bone marrow suppression causes a decrease in blood cell synthesis, resulting in anaemia, leukopenia, and thrombocytopenia. Drugs including cyclophosphamide, cisplatin, and methotrexate are common causes. Neutropenia: A substantial reduction in neutrophil count increases susceptibility to serious infections and sepsis. G-CSFs are commonly used for preventive purposes.

Anaemia is often caused by bone marrow suppression or long-term health conditions and can be treated with erythropoietin-stimulating medications or transfusions. Thrombocytopenia: Low platelet count contributes patients to problems with bleeding.

Cardiotoxicity

Anthracyclines (e.g., doxorubicin, epirubicin) cause dose-dependent cardiomyopathy leading to congestive heart failure. Trastuzumab, a monoclonal antibody, can induce reversible left ventricular dysfunction, especially when used with anthracyclines.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

nology 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, November 2025

Impact Factor: 7.67

Regular cardiac monitoring using echocardiography and biomarkers such as troponin is recommended during treatment.

Nephrotoxicity

Cisplatin and ifosfamide are well-known nephrotoxic agents that cause tubular injury and electrolyte imbalances.

Hydration and dose adjustments are critical preventive strategies.

Monitoring serum creatinine and urinary output aids early detection

Hypersensitivity Reaction

Chemotherapy can produce skin-related adverse reactions that vary from moderate rashes to severe hypersensitivity.

Alopecia: A common but reversible toxicity caused by damage to hair follicle cells.

Capecitabine and doxorubicin are frequently used to treat hand-foot syndrome, which is characterised by redness, discomfort, and peeling of the palms and soles.

Hypersensitivity Reactions: occur with paclitaxel and platinum compounds, requiring beforehand and constant monitoring.

Secondary Malignancies

Therapy-related secondary malignancies like acute myeloid leukaemia have been linked to long-term use of topoisomerase II inhibitors (like etoposide) and alkylating drugs (like cyclophosphamide). Post-marketing surveillance and ongoing pharmacovigilance are crucial for detecting these delayed ADRs.

Role of Pharmacovigilance in Detecting and Managing Chemotherapy

Pharmacovigilance (PV) is a vital component in ensuring the safe and effective use of chemotherapy drugs. Given the complex nature of cancer therapy, which frequently involves numerous medications, limited therapeutic windows, and individualised regimens, thorough monitoring for adverse drug reactions (ADRs) is critical. Pharmacovigilance in oncology not only identifies and characterises adverse drug reactions (ADRs), but it also helps to improve medication practices, dose efficiency, and outcomes for patients.

The World Health Organisation (WHO) defines pharmacovigilance as "the science and activities relating to the detection, assessment, understanding, and prevention of adverse effects or any other drug-related problems." In oncology, this definition includes the ongoing monitoring of both short- and long-term toxicities associated with cytotoxic drugs, targeted treatments, and immunotherapy. The primary goals are:

- Identifying patient- or drug-related risk factors.
- Detecting previously unknown or rare ADRs
- Quantifying the frequency and severity of known reactions
- Preventing avoidable ADRs through evidence-based interventions

Signal Detection and Causality Assessment:

An important element of pharmacovigilance is signal detection. Because of co-administration of several medications and overlapping toxicities, it can be difficult to spot safety signals in oncology.

Typical techniques include: Disproportionality analysis: To find odd trends in ADRs, methods like the Proportional Reporting Ratio (PRR) and Reporting Odds Ratio (ROR) are used on big databases. Tools for determining causation: Naranjo's Algorithm and the WHO-UMC are frequently used to determine the potential that a specific medication caused an observed reaction. Prior to confirming an association, clinical review, literature evidence, and signal validation are necessary.

Pharmacovigilance in Clinical and Post-Marketing Settings:

Although ADRs are routinely documented during clinical trials, the complete toxicity profile of chemotherapeutic drugs is frequently overlooked due to the small sample size and stringent inclusion criteria. This gap is filled by post-marketing

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, November 2025

Impact Factor: 7.67

pharmacovigilance, which: Identifying uncommon or delayed adverse drug reactions, such cardiomyopathy or secondary cancers observing individuals living the real world, such as children, the elderly, and patients with co-occurring conditions Evaluating interactions with drugs in intricate chemotherapy treatments. This ongoing monitoring guarantees that new safety issues are immediately resolved and that medication labels are updated as needed.

Role of Healthcare Professionals and Patients:

ADR reporting is crucial for healthcare workers, particularly nurses, chemists, and oncologists. Underreporting, however, continues to be a significant barrier because of things like workload, ignorance, and ambiguity regarding causality. Reporting rates can be raised by promoting spontaneous reporting through mobile apps, streamlined digital platforms, and ongoing training initiatives. Also, patient involvement is becoming more widely acknowledged as a crucial component of pharmacovigilance. Patients can offer first-hand reports of adverse drug reactions (ADRs), particularly those that impact quality of life and may otherwise go overlooked in clinical settings.

Pharmacovigilance Systems and Databases

To collect and analyse ADR data, a number of national and international organisations have created pharmacovigilance frameworks and databases: The WHO Programme for International Drug Monitoring (PIDM) is a worldwide program run by the Uppsala Monitoring Centre (UMC), Sweden, and coordinated via VigiBase. All approved medications, including chemotherapeutics, have their post-marketing safety records gathered by the FDA

Adverse Event Reporting System (FAERS). The European Medicines Agency (EMA) maintains EudraVigilance (Europe) to keep an eye on medication safety within the EU. The Central Drugs Standard Control Organisation (CDSCO) oversees the Pharmacovigilance Programme of India (PvPI), which is run by the Indian Pharmacopoeia Commission and gathers ADR reports from ADR Monitoring Centres (AMCs) all over the nation.

These systems gather spontaneous reports from healthcare professionals, pharmaceutical companies, and, increasingly, patients. The collected data help identify safety signals and trigger regulatory action when necessary.

Technology Integration in Pharmacovigilance:

The use of data analysis, machine learning, and artificial intelligence (AI) approaches is changing modern pharmacovigilance. Large datasets can be scanned by AI algorithms to find early indications of danger. Electronic health records (EHRs), patient forums, and social media posts can all be examined for unreported adverse drug reactions (ADRs) using natural language processing (NLP). Personalised chemotherapy treatments can be supported by machine learning, which can also detect high-risk patient groups. Pharmacovigilance is now more proactive, effective, and based on data thanks to these innovations.

Challenges in Pharmacovigilance for Chemotherapy:

Pharmacovigilance (PV) systems around the world have advanced significantly, but a number of obstacles still stand in the way of efficient monitoring and handling of chemotherapy-related adverse drug reactions (ADRs). Under-detection and underreporting of critical safety signals are caused by the complexity of cancer treatment, patient response variability, and limitations in current reporting procedures. Strengthening pharmacovigilance efforts in oncology requires an understanding of these difficulties.

Underreporting of Adverse Drug Reactions:

Underreporting is one of the most persistent challenges in pharmacovigilance, particularly in oncology. Many ADRs go unreported due to factors such as:

Healthcare practitioners are unaware of the importance of reporting and the method for doing so.

Time constraints and heavy workloads in oncology departments.

Perception that adverse drug reactions are to be expected or unavoidable in cancer therapy.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, November 2025

Impact Factor: 7.67

Complexity of Chemotherapy Regimens

Patients with cancer frequently get various cytotoxic medicines, targeted therapies, hormonal agents, and supportive medications such growth factors, antibiotics, and antiemetics as part of polypharmacy. Because of this, it's challenging to: ADRs are linked to particular medications. Determine any cumulative toxicities or synergistic effects. Distinguish between symptoms of the disease and effects of drugs. Specialised pharmacovigilance techniques are necessary because to its complexity, such as interdisciplinary cooperation between nurses, chemists, and oncologists and integrated electronic monitoring systems.

Limited Data from Clinical Trials

Anticancer medicine pre-marketing clinical trials are often undertaken in small, select populations under controlled conditions. These trials may not accurately reflect the diversity of real-world patients, such as those with comorbidities, organ dysfunction, or multiple drugs. As a result Rare or long-term adverse medication reactions may be undiscovered until after the drug is approved. Post-marketing surveillance becomes the sole means to detect these delayed or unusual effects. Therefore, enhancing post-marketing pharmacovigilance programmes is vital for determining the true safety profile of chemotherapeutic drugs.

Resource and Infrastructure Constraints

Pharmacovigilance systems are still in need of development in many low- and middle-income nations. The difficulties include: inadequate financial resources and skilled labour. Hospitals need specialised photovoltaic units. The national databases and hospital information systems are not well integrated. Public health agencies and the pharmaceutical industry must work together, enforce regulations, and strengthen government policies in order to address these problems.

Healthcare Professionals' Limited Knowledge and Training

Limited Awareness and Training among Healthcare Professionals Many healthcare providers, particularly in underdeveloped nations, do not receive rigorous pharmacovigilance training. The barriers include: PV ideas were not covered extensively in medical or pharmacy education. Inadequate institutional support for ADR reporting. Fear of legal repercussions or professional condemnation following reporting. Training workshops, CME programs, and awareness campaigns can help to enhance understanding, attitude, and practice related ADR reporting in oncology settings.

Challenges in Patient Reporting

While patient involvement is recommended in modern pharmacovigilance systems, it is neglected. Cancer patients may be unwilling to report ADRs because of: A lack of knowledge regarding reporting mechanisms. During treatment, you may feel physically or emotionally distressed. Belief that adverse reactions are "normal" or unavoidable. Simplifying patient reporting platforms, creating user-friendly mobile apps, and offering counselling can help to increase engagement and capture valuable patient-reported outcomes.

Data Overload and Analytical Limitations:

PV systems generate huge volumes of data as electronic health records and spontaneous reporting databases become more widely used. However, the lack of advanced analytical tools and qualified data scientists frequently impedes the effective interpretation of this information. The use of artificial intelligence (AI) and machine learning (ML) can aid in managing big datasets, enhancing signal detection accuracy, and forecasting ADR trends.

Future Directions and Recommendations

As cancer advances, the scope and methods of pharmacovigilance (PV) must evolve to maintain optimal drug safety and patient care. The growing complexity of cancer therapies, such as targeted treatments and immunotherapies, need more sophisticated, patient-centered, and technology-driven pharmacovigilance systems. Strengthening PV in oncology will not only improve early detection of adverse drug reactions (ADRs), but will also help to promote safer, evidence-based chemotherapeutic procedures.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 1, November 2025

Integration of Digital Technologies and Artificial Intelligence

The combination of digital health technologies, artificial intelligence (AI), and machine learning (ML) has enormous potential to revolutionise pharmacovigilance. Artificial intelligence tools can: Analyse large amounts of ADR data from various sources, including spontaneous reports, electronic health records, and social media. Detect developing safety signals faster and more accurately. Use personalised data to predict a patient's vulnerability to specific ADRs. Natural language processing (NLP) systems can also extract ADR information from clinical narratives and patient comments, allowing for more accurate real-time detection. Implementing such technology will make pharmacovigilance more proactive than reactive.

Strengthening Post-Marketing Surveillance

On the basis of scant trial data, numerous chemotherapeutic drugs are authorised via expedited regulatory routes. Strong post-marketing surveillance (PMS) is therefore necessary to detect cumulative, delayed, or uncommon toxicity. To make PMS stronger: Encourage all oncology centres to make ADR reporting mandatory. Connect national PV databases to hospital information systems. Carry out registry-based monitoring and active surveillance research. Timely risk management and evidence-based treatment protocol modifications are guaranteed by this ongoing observation.

Enhancing Healthcare Professional Training and Awareness

To increase ADR reporting rates, healthcare professionals' (HCPs') education is essential. Some suggested tactics are: integrating modules on pharmacovigilance into nursing, pharmacy, and medical education programs. Putting on many workshops and CME (continuing medical education) events. Hospitals can monitor ADR trends by forming institutional pharmacovigilance committees. Raising awareness can transform the idea that reporting adverse drug reactions (ADRs) is a legal requirement into a crucial aspect of patient safety.

Promoting Patient-Centered Pharmacovigilance

Patients are becoming more and more significant in contemporary pharmacovigilance systems. Their personal experience offers important insights regarding the impact, severity, and frequency of adverse drug reactions. Future initiatives should concentrate on: educating patients on the significance of ADR reporting. Creating directly accessible online portals and mobile applications. Urging patient advocacy organisations to work with PV facilities. Such involvement enhances the general quality of safety data and guarantees a more thorough knowledge of ADRs.

Global Collaboration and Data Sharing

Pharmacovigilance needs to be an international endeavour, particularly in oncology, since medications and treatment plans are utilised all over the world. In order to standardise reporting guidelines and promote data exchange between nations, international organisations like the World Health Organisation (WHO), Uppsala Monitoring Centre (UMC), and International Council for Harmonisation (ICH) are essential. Encouraging international data sharing can: Boost the early identification of uncommon or surprising ADRs. Encourage standardised safety rules. Promote cooperative studies in signal validation and medication safety.

Implementation of Pharmacogenomics

Cancer patients' treatment responsiveness and susceptibility to adverse drug reactions are greatly influenced by genetic variations. By identifying genetic markers linked to toxicity, pharmacogenomics allows for individualised drug selection and dosage. Pharmacogenomic data integration into PV databases can improve risk prediction and lower the frequency of serious adverse drug reactions (ADRs) linked to chemotherapy.

Policy and Regulatory Strengthening

Oncology regulatory bodies must establish unambiguous pharmacovigilance rules and procedures. Here are some recommendations: Making ADR reporting required for serious or unexpected responses. Encouraging pharmaceutical companies to conduct risk management plans (RMPs) and post-marketing analyses. Ensure that safety information is

Copyright to IJARSCT www.ijarsct.co.in

|} |} DOI: 10.48175/568

ISSN 581-9429 JARSCT 435

International Journal of Advanced Research in Science, Communication and Technology

SO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, November 2025

Impact Factor: 7.67

communicated transparently to healthcare providers and patients. Such policy actions will foster a culture of accountability and support constant safety monitori

II. CONCLUSION

Chemotherapy remains an essential component in cancer treatment; yet, it is commonly linked with a wide spectrum of adverse drug reactions (ADRs), which can have a substantial influence on patient safety, treatment outcomes, and overall quality of life. To make sure that the advantages of chemotherapy outweigh the hazards, pharmacovigilance is a vital tool for the early identification, evaluation, and avoidance of adverse responses. The analysis highlights how effective ADR monitoring continues to be restricted by a number of issues, including underreporting, complicated treatment plans, and a lack of awareness among medical practitioners, even though national and international pharmacovigilance systems have made significant strides. It is crucial to fortify these systems by patient involvement, digital change, and education. Emerging technologies such as artificial intelligence, data analytics, and pharmacogenomics have the potential to transform oncology pharmacovigilance by allowing for faster signal detection and more personalised safety monitoring. Furthermore, worldwide coordination, standardised reporting, and the incorporation of real-world data will improve the accuracy and impact of pharmacovigilance activities. To summarise, efficient pharmacovigilance in chemotherapy is not just a regulatory obligation, but also an essential component of modern cancer practice. A proactive, multidisciplinary, and technology-driven approach can assure safer chemotherapy administration, eliminate unnecessary side effects, and ultimately improve the quality of treatment and life for cancer patients globally.

REFERENCES

- [1]. World Health Organization. (2020). The Importance of Pharmacovigilance: Safety Monitoring of Medicinal Products. Geneva: WHO Press.
- [2]. Edwards, I. R., & Aronson, J. K. (2000). Adverse drug reactions: Definitions, diagnosis, and management. The Lancet, 356(9237), 1255–1259.
- [3]. Uppsala Monitoring Centre (UMC). (2023). VigiBase The WHO Global Database of Individual Case Safety Reports.
- [4]. U. S. Food and Drug Administration (FDA). (2022). FDA Adverse Event Reporting System (FAERS).
- [5]. European Medicines Agency (EMA). (2022). EudraVigilance European Database of Suspected Adverse Drug Reaction Reports.
- [6]. Central Drugs Standard Control Organization (CDSCO). (2021). Pharmacovigilance Programme of India (PvPI): Guidance Document for Spontaneous Adverse Drug Reaction Reporting.
- [7]. Sharma, A., & Kaur, R. (2019). Role of pharmacovigilance in oncology: Current trends and future perspectives. Indian Journal of Pharmacology, 51(5), 285–292.
- [8]. Singh, S., & Kumar, R. (2018). Adverse drug reactions to cancer chemotherapy and their management: A prospective observational study. Journal of Applied Pharmaceutical Science, 8(3), 123–129.
- [9]. Parameswaran Nair, N., & Ibrahim, M. I. M. (2015). Drug-related problems in chemotherapy: Incidence and interventions in a tertiary care hospital. Journal of Oncology Pharmacy Practice, 21(5), 370–377.
- [10]. Basch, E., Deal, A. M., Dueck, A. C., et al. (2017). Patient-reported adverse events during chemotherapy: Detecting signals using digital tools. Journal of Clinical Oncology, 35(26), 3042–3050.
- [11]. Pal, S. N., & Olsson, S. (2017). Pharmacovigilance in the World Health Organization: The first 50 years. Drug Safety, 40(12), 1177–1188.
- [12]. Ilyas, H., Khan, T. M., & Babar, Z. U. D. (2019). Chemotherapy-related adverse drug reactions in cancer patients: Role of pharmacists in monitoring and prevention. European Journal of Hospital Pharmacy, 26(5), 263–267.
- [13]. Shrivastava, S., & Tiwari, P. (2020). Pharmacovigilance in oncology: Role of clinical pharmacists in ADR monitoring. Journal of Young Pharmacists, 12(2), 107–113.
- [14]. Pedrós, C., Quintana, B., Rebolledo, M., Porta, N., Vallano, A., & Arnau, J. M. (2016). Adverse drug reactions leading to hospital admission: A meta-analysis. British Journal of Clinical Pharmacology, 82(4), 1025–1033.

DOI: 10.48175/568

Copyright to IJARSCT www.ijarsct.co.in

ISSN 2581-9429 IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, November 2025

Impact Factor: 7.67

- [15]. Wang, L. M., & Zhang, X. (2020). Machine learning applications in pharmacovigilance: A systematic review. Drug Safety, 43(12), 1203–1214.
- [16]. Gupta, S., & Mehta, P. (2021). Pharmacovigilance in India: Current scenario and future prospects. International Journal of Pharmaceutical Sciences Review and Research, 68(2), 45–52.
- [17]. Karimi, G., Ramezani, M., & Taheri, S. (2018). Chemotherapy-induced cardiotoxicity and pharmacovigilance measures. Journal of Research in Pharmacy Practice, 7(2), 89–94.
- [18]. Rajan, S., & Suresh, B. (2021). Pharmacogenomics in oncology: Implications for adverse drug reaction prevention. Frontiers in Pharmacology, 12, 647944.
- [19]. Jain, N., Kumar, R., & Chauhan, M. (2020). Post-marketing surveillance in oncology drugs: Challenges and opportunities. Therapeutic Advances in Drug Safety, 11, 2042098620917186.
- [20]. Bhosale, U. A., &Deshmukh, A. A. (2022). Awareness and reporting of adverse drug reactions among healthcare professionals in oncology settings: An Indian perspective. Indian Journal of Pharmacology, 54(3), 210–217

