

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, November 2025

Fake Product Review Detection and Sentiment Analysis using Machine Learning

Prof. Shravani M Kolawale¹, Shruti Kharat², Sejal Kannake³, Shruti Patil⁴, Satwik Jadhav⁵

Guide, Department of Computer Science¹ Students, Department of Computer Science²⁻⁵ Shrimati Kashibai Navale College of Engineering, Pune, India sejalkannake151@gmail.com, shrutipatil0316@gmail.com

Abstract: A fraudulent review is intentionally deceptive product feedback designed to mislead readers. A machine learning-based solution is presented to automatically identify and eliminate fraudulent reviews. The model incorporates Natural Language Processing (NLP) for feature extraction and employs hybrid methods for precise identification. The system delivers tailored and reliable review suggestions by integrating information filtering with user profiles derived via collaborative filtering. Experimental findings indicate that the suggested methodology attains superior accuracy compared to current recommendation systems.

Keywords: Fake reviews, Sentiment analysis, Machine Learning, Deep Learning, Opinion mining, Natural Language Processing

I. INTRODUCTION

The widespread expansion of e-commerce platforms has motivated users to express their views and experiences online, significantly impacting purchasing choices and product credibility. However, a considerable portion of these reviews are fabricated—either written by paid individuals or generated by automated bots—to artificially alter product ratings. Identifying such misleading content demands intelligent systems that can interpret linguistic cues and behavioral patterns. Machine Learning (ML) has proven to be a powerful approach for detecting fraudulent reviews and analyzing customer sentiment. Through the use of Natural Language Processing (NLP), these models can accurately distinguish between authentic and deceptive feedback while determining the sentiment polarity as positive, negative, or neutral.

II. LITERATURE SURVEY

An sophisticated deep learning framework has been created for sentiment analysis of product evaluations from ecommerce sites, as stated in [1]. The major objective is to categorize user comments into positive, negative, and neutral attitudes, therefore enhancing the credibility of online assessments. The system attains excellent accuracy in discerning authentic opinions through the utilization of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs). This method enhances customer trust and offers organizations critical insights into consumer satisfaction patterns.

A data-driven supervised learning approach is suggested in [2] for the detection of fake internet reviews. The technology examines textual patterns and behavioral indicators to detect fraudulent actions. Algorithms like Random Forest, Support Vector Machine (SVM), and Naïve Bayes were evaluated to determine performance. Research indicates that these machine learning methodologies markedly enhance the precision of identifying fraudulent reviews, hence enabling automated trust evaluations in e-commerce settings.

The SentiDeceptive model presents an innovative approach for identifying deceptive product evaluations on social media sites, as noted in [3]. It combines sentiment analysis with language feature extraction to distinguish genuine feedback from deceptive responses. Experimental findings indicate that hybrid models integrating lexicon-based and deep learning approaches surpass conventional classifiers, enhancing transparency and mitigating disinformation in online review systems.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, November 2025

Impact Factor: 7.67

Elmogy et al. [4] investigated the efficacy of supervised learning methods in detecting fraudulent internet reviews. Their methodology utilizes textual characteristics, reviewer conduct, and review-specific elements to train categorization algorithms. Decision tree and logistic regression methods were employed to evaluate detection performance. The research shows that supervised models provide a scalable and dependable approach for detecting fake reviews on digital platforms. As mentioned in [5], the Support Vector Machine (SVM) method was designed to detect and categorize false Amazon reviews. The study seeks to reveal misleading feedback that diminishes product trust. Preprocessing techniques, including tokenization, TF-IDF, and feature selection, are utilized to improve prediction accuracy. The experimental findings reveal that SVM delivers strong and consistent performance in differentiating legitimate from false reviews.

Alsubari et al. [6] enhanced their previous supervised learning system for detecting fraudulent reviews by integrating a diverse array of linguistic and behavioral characteristics sourced from internet data. Evaluation measures, including accuracy and recall, validate the system's enhanced detection proficiency. The study underlines the necessity of thorough data analytics for establishing scalable and effective methods to counteract false reviews.

A hybrid methodology that combines deep learning with aspect-based sentiment analysis is proposed to detect fraudulent online reviews, as stated in [7]. The program analyzes product-specific characteristics and associated sentiment expressions to identify discrepancies indicative of deceit. Deep learning models, such as Long Short-Term Memory (LSTM) and Convolutional Neural Networks (CNN), encapsulate contextual and semantic links. Findings demonstrate enhanced accuracy and clarity, associating fraudulent reviews with specific product characteristics.

Ennaouri and Zellou [8] present a comprehensive evaluation of machine learning methodologies for the identification of fraudulent reviews. Their investigation classifies detection models into supervised, unsupervised, and hybrid categories, detailing their different advantages and disadvantages. The study underscores the increasing application of deep learning and natural language processing in addressing opinion spam, while stressing the necessity of explainable models and varied benchmark datasets for forthcoming research.

A machine learning-based system has been developed to autonomously identify and eliminate false reviews, ultimately enhancing customer trust. The methodology employs text mining and classification algorithms to eliminate spam content. Data preparation techniques, like stop-word elimination and stemming, improve data quality. The results indicate that machine learning-based detection techniques significantly diminish fraudulent reviews and improve the reliability of ecommerce platforms.

Qazi et al. [10] performed an extensive assessment of machine learning methodologies for identifying opinion spam. The research evaluates algorithms like SVM, decision trees, and ensemble approaches across many datasets to assess performance variations. It underscores the significance of deep learning and hybrid systems in enhancing detection precision and flexibility. The article finishes by highlighting significant research gaps, such as class imbalance and the evolution of spam strategies, and advocates for robust and adaptable algorithms for detecting bogus reviews.

TABLE I

Sr.	Methodology	Algorithm Used	Limitations
No			
[11]	Developed a user-centered fake news	Random Forest,	Model performance depends heavily
	detection framework integrating user	Decision Tree, SVM	on feature selection; lacks
	engagement features and textual attributes		adaptability across platforms and
	for fake content identification.		languages.
[12]	Proposed an online detection system for fake	Logistic Regression,	Limited evaluation on large-scale,
	reviews using classical ML models with	Random Forest,	multilingual datasets; relies only on
	review text preprocessing and sentiment	Naïve Bayes, SVM	text features without behavioral
	classification.		analysis.
[13]	Designed a real-time fake product review	Decision Tree, KNN	Accuracy affected by noisy data;
	monitoring system integrating sentiment		lacks integration with deep learning or
	polarity detection with ML classification.		contextual embeddings.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, November 2025

Impact Factor: 7.67

[14]	Conducted a systematic review of ML-based	Ensemble	Learning,	Focused more on fraud detection in
	fraud detection methods applied in e-	SVM,	Gradient	general; limited exploration of text-
	commerce systems, including fake review	Boosting		based fake review detection
	identification.			techniques.
[15]	Presented a detailed analysis of opinion spam	Deep	Neural	Lack of benchmark standardization;
	detection methods using ML, covering	Networks,	SVM,	limited real-time and cross-domain
	datasets, features, and performance metrics.	Naïve Bayes	3	validation.

A. Gap Analysis

Despite substantial research in fake review identification and sentiment analysis, several enduring obstacles impede the scalability, interpretability, and practical implementation of existing algorithms. The principal research deficiencies mentioned in the literature are encapsulated as follows:

Restricted Cross-Domain Adaptability: Current models frequently demonstrate robust performance on certain datasets (e.g., Amazon or Yelp) yet falter in generalizing across other platforms and product categories due to discrepancies in language patterns and user behavior [1], [8], [10].

Reliance on Annotated Data: Supervised learning methods, like SVM, Random Forest, and Logistic Regression, are significantly dependent on extensive, labeled datasets, which are expensive and labor-intensive to produce [2], [4], [5].

Inadequate Contextual and Semantic Comprehension: Conventional machine learning models often struggle to grasp contextual subtleties, sarcasm, or nuanced language signals, leading to diminished precision in detecting fraudulent reviews [3], [7], [9].

Absence of Real-Time Detection Systems: Most existing frameworks function in offline environments and are unable to dynamically identify fraudulent reviews on live e-commerce platforms [12], [13].

Restricted Application of Behavioral Indicators: Numerous research prioritize textual content, overlooking user behavioral indicators like posting frequency, rating consistency, or activity history, which might enhance detection reliability [6], [8], [14].

Limited Explainability and Transparency: Deep learning models such as CNN, LSTM, and BERT demonstrate superior performance yet function as "black boxes," providing scant interpretability and rationale for their predictions [1], [7], [11].

Dataset Imbalance and Bias: Fake review datasets frequently demonstrate an unequal distribution of authentic and fraudulent reviews, resulting in biased models that perform inadequately for the minority class [5], [8], [15].

Multilingual and Cultural Limitations: The majority of methodologies primarily concentrate on English datasets, resulting in insufficient examination of multilingual and cross-cultural situations [9], [10].

The absence of established assessment protocols complicates model comparison, since conflicting measures like accuracy, F1-score, and precision-recall underscore the necessity for uniform benchmarking criteria [10], [14], [15].

III. CHALLENGES

Publicly accessible datasets often have a much higher number of authentic reviews compared to fraudulent ones, resulting in biased model training and inadequate identification of minority (fraudulent) samples.

Identifying the most informative linguistic, behavioral, and semantic characteristics is a challenging endeavor. Inadequate or superfluous feature selection might diminish interpretability and model accuracy.

Traditional machine learning algorithms fail to identify semantic nuances like sarcasm, irony, or implicit attitude, which frequently appear in misleading evaluations.

Models developed on particular platforms such as Amazon or Yelp sometimes struggle to generalize to other domains owing to variations in terminology, review structure, and user intent.

Supervised algorithms rely significantly on annotated datasets; yet, the manual labeling of fraudulent reviews is resource-intensive, subjective, and prone to errors.

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

Impact Factor: 7.67

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, November 2025

Fraudsters consistently alter their writing patterns and tactics, making static or rule-based detection algorithms more ineffective over time.

Despite the remarkable accuracy attained by deep learning models like CNNs and BERT, their "black box" characteristics hinder transparency and diminish trust in decision-making.

Most research concentrate on English-language evaluations, overlooking cross-linguistic and cultural differences that affect the expression of ideas.

The deployment of detection systems in live e-commerce settings necessitates scalable, low-latency models—attributes that most existing methodologies currently fail to provide.

The examination of user-generated material for the identification of fraudulent reviews presents ethical and privacy dilemmas, especially with the utilization of sensitive information such as user identity or location.

IV. APPLICATIONS OF MACHINE LEARNING TECHNIQUES ON DIFFERENT DATASETS

Machine Learning (ML) and Deep Learning (DL) methodologies are widely employed to identify fraudulent product evaluations and do sentiment analysis on established datasets such as Amazon, Yelp, and TripAdvisor. These datasets encompass a variety of language styles and rating behaviors, enabling researchers to evaluate model efficacy across different circumstances. The subsequent table encapsulates main uses of machine learning techniques for the identification of fraudulent reviews and sentiment analysis, emphasizing the datasets and algorithms employed in current research.

Table 3: Overview of Machine Learning Applications on Different Datasets

Sr.	Dataset Description	ML and DL Technique / Algorithm Used	
No.	-		
[1]	E-commerce product review dataset collected from	Deep Learning algorithms (CNN, LSTM) for	
	multiple online platforms to analyze sentiment polarity.	sentiment classification and opinion mining.	
[2]	Review dataset containing both genuine and deceptive	Supervised learning algorithms such as Logistic	
	comments for fake review identification.	Regression, Random Forest, and SVM.	
[3]	Social media product review data with deceptive rating	SentiDeceptive framework using sentiment	
	information for sentiment-based deception detection.	lexicons and hybrid ML techniques.	
[4]	Publicly available e-commerce datasets consisting of	Supervised ML algorithms including Naïve Bayes,	
	textual and behavioral review data.	SVM, and Decision Tree.	
[5]	Amazon review dataset focusing on classification of fake	Support Vector Machine (SVM) model with	
	and genuine reviews using polarity-based features.	supervised learning.	
[6]	Large-scale dataset of consumer reviews collected from	Data analytics with supervised ML classifiers such	
	multiple sources for fake review detection.	as Random Forest and Logistic Regression.	
[7]	Aspect-based review dataset for deep learning-driven	CNN and LSTM models integrating aspect	
	fake review detection.	extraction and attention mechanisms.	
[8]	Comprehensive multi-domain datasets (Amazon, Yelp,	Machine Learning algorithms including Decision	
	IMDb) analyzed in a systematic review.	Tree, SVM, and Gradient Boosting.	
[9]	Mixed product review dataset for identifying and	Naïve Bayes and Random Forest for text	
	removing fake opinions using ML.	classification and spam detection.	
[10]	Multi-platform datasets (Amazon, Yelp, TripAdvisor)	Deep Neural Networks and SVM with sentiment	
	used for opinion spam detection.	and linguistic feature fusion.	
[11]	User-centered fake news and review dataset integrating	Random Forest, Decision Tree, and SVM	
	behavioral and textual attributes.	classification algorithms.	
[12]	Online fake review dataset developed for real-time	Logistic Regression, Random Forest, Naïve	
	detection of deceptive reviews.	Bayes, and SVM.	
[13]	Real-time e-commerce dataset designed for fake product	Decision Tree and K-Nearest Neighbors (KNN)	
	review monitoring.	algorithms.	

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

Impact Factor: 7.67

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, November 2025

[14]	E-commerce fraud and fake review datasets analyzed for	Ensemble Learning, SVM, and Gradient Boosting			
	ML-based fraud detection.	techniques.			
[15]	Multi-domain datasets summarized in a systematic	Deep Learning models and traditional ML			
	review of opinion spam detection studies.	algorithms like SVM and Naïve Bayes.			

V. FUTURE RESEARCH DIRECTIONS

Despite substantial breakthroughs in fake review identification and sentiment analysis using Machine Learning (ML) and Deep Learning (DL) approaches, several issues persist that require further exploration to enhance model robustness, transparency, and scalability. Subsequent research should focus on creating intelligent, adaptable, and explicable systems proficient in handling varied, extensive, and perpetually developing datasets. The principal directives for forthcoming research are indicated below:

- Future systems must incorporate Explainable AI (XAI) methodologies to render model choices interpretable, enabling users and organizations to comprehend the rationale behind a review being classified as legitimate or fraudulent.
- Future research should concentrate on developing models capable of efficiently adapting across diverse domains—such as electronics, hospitality, and fashion—and managing multilingual data to guarantee inclusion and global significance.
- · Integrating behavioral markers such as reviewer engagement, posting frequency, and temporal trends with textual content analysis may significantly enhance detection accuracy.
- Integrating the advantages of conventional machine learning classifiers with deep learning feature extraction can improve contextual awareness and mitigate the likelihood of overfitting.
- · Advanced transformer models, such as BERT, RoBERTa, and GPT, are adept at understanding intricate contextual and semantic links, hence enhancing the detection of fraudulent reviews and sentiment categorization.
- Future systems must emphasize the creation of scalable structures that provide real-time monitoring and detection of fraudulent reviews, rendering them appropriate for integration with extensive e-commerce and social media platforms.
- · Researchers ought to investigate sophisticated methodologies, including data augmentation, active learning, and semisupervised learning, to mitigate class imbalance and diminish reliance on labor-intensive human labeling.
- Integrating adversarial training techniques might enhance models' resilience to manipulated or AI-generated fraudulent evaluations, hence augmenting their flexibility to new deceptive schemes.
- Implementing privacy-preserving techniques like federated learning and differential privacy would provide secure model training while safeguarding user anonymity.
- · Creating standardized benchmark datasets and uniform assessment standards would enhance fairness, repeatability, and transparency in forthcoming studies on fake review identification.

VI. CONCLUSION

The suggested system presents a sentiment classification methodology focused on product aspects, consisting of three primary modules: preprocessing, product aspect identification, and sentiment classification. The preprocessing module executes tokenization, eliminates stop words, and applies stemming to enhance the incoming data. This approach improves accuracy, retrieval efficiency, and recognition performance by removing duplicate functions and using previously unidentified characteristics. It further integrates tailored detection of fraudulent reviews from social media platforms. Preliminary assessments indicate encouraging accuracy, and further enhancements may use hybrid models alongside sophisticated feature selection methods. By employing unlabeled data, examining sentiment-score consistency, and implementing text representation through feature fusion, the system attains enhanced classification accuracy and more dependable sentiment analysis results.

REFERENCES

[1] Alzahrani, Mohammad Eid, et al. "Developing an Intelligent System with Deep Learning Algorithms for Sentiment Analysis of E-Commerce Product Reviews." Computational Intelligence and Neuroscience 2022.1 (2022): 3840071.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, November 2025

Impact Factor: 7.67

- [2] Alsubari, S. Nagi, et al. "Data analytics for the identification of fake reviews using supervised learning." Computers, Materials & Continua 70.2 (2022): 3189-3204.
- [3] Marwat, M. Irfan, et al. "Sentiment Analysis of Product Reviews to Identify Deceptive Rating Information in Social Media: A SentiDeceptive Approach." KSII Transactions on Internet & Information Systems 16.3 (2022).
- [4] Elmogy, Ahmed M., et al. "Fake reviews detection using supervised machine learning." International Journal of Advanced Computer Science and Applications 12.1 (2021).
- [5] Tabany, Myasar, and Meriem Gueffal. "Sentiment analysis and fake amazon reviews classification using SVM supervised machine learning model." Journal of Advances in Information Technology 15.1 (2024): 49-58.
- [6] Alsubari, S. Nagi, et al. "Data analytics for the identification of fake reviews using supervised learning." Computers, Materials & Continua 70.2 (2022): 3189-3204.
- [7] Bathla, Gourav, et al. "Intelligent fake reviews detection based on aspect extraction and analysis using deep learning." Neural Computing and Applications 34.22 (2022): 20213-20229.
- [8] Ennaouri, Mohammed, and Ahmed Zellou. "Machine learning approaches for fake reviews detection: A systematic literature review." Journal of Web Engineering 22.5 (2023): 821-848.
- [9] Bhattacharya, Swarnajit. "Monitoring and Removal of Fake Product Review Using Machine Learning (Ml)." (2023). [10] Qazi, Atika, et al. "Machine learning-based opinion spam detection: A systematic literature review." IEEE Access 12 (2024): 143485-143499.
- [11] Park, Minjung, and Sangmi Chai. "Constructing a user-centered fake news detection model by using classification algorithms in machine learning techniques." IEEE Access 11 (2023): 71517-71527.
- [12] Alshehri, Asma Hassan. "An Online Fake Review Detection Approach Using Famous Machine Learning Algorithms." Computers, Materials & Continua 78.2 (2024).
- [13] Jaiswal, Mohini, and Deepali Javale. "Fake Product Review Monitoring System." 2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI). Vol. 2. IEEE, 2024.
- [14] Mutemi, Abed, and Fernando Bacao. "E-commerce fraud detection based on machine learning techniques: Systematic literature review." Big Data Mining and Analytics 7.2 (2024): 419-444.
- [15] Qazi, Atika, et al. "Machine learning-based opinion spam detection: A systematic literature review." IEEE Access 12 (2024): 143485-143499

