

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ember 2025 Impact Factor: 7.67

Volume 5, Issue 1, November 2025

Imaginarium: Interactive Learning Platform for Concept visualization

Mr. Amar Nagargoje¹, Mr. Atharv Mhargude², Mr. Varun Patil³, Mr. Rohan Argade⁴ Prof. Miss. Namrata Rokade⁵

Students, AI&DS Department, Jaihind College of Engineering, Kuran, Pune, India¹²³⁴ Professor, AI&DS Department, Jaihind College of Engineering, Kuran, Pune, India⁵

Abstract: The integration of Augmented Reality (AR) and 3D visualization in education has revolutionized the way students engage with complex STEM concepts. Traditional methods often rely on static textbooks, which fail to convey abstract ideas effectively. To address this gap, we present Imaginarium, a mobile application that dynamically generates interactive 3D models of chemical molecules and mathematical equations, enabling immersive exploration through AR. Built using React Native, Three.js, and Viro React, the app leverages PubChem APIs for molecular data and equation parsing for mathematical graphs. Key contributions include real-time model generation, secure user authentication, and seamless AR placement. Tested on molecules like H_2O and equations like $a^2 + b^2$, the app demonstrates high accuracy, responsiveness, and user engagement. Future enhancements aim to expand into Biology and Physics, offering a scalable solution for modern education.

Keywords: Augmented Reality (AR), 3D Model Generation, Education Technology (EdTech), STEM Learning, Interactive Visualization

I. INTRODUCTION

The digital transformation of education demands innovative tools to enhance conceptual understanding, particularly in STEM subjects. Conventional teaching methods, reliant on 2D diagrams and passive learning, struggle to illustrate abstract concepts like molecular structures or mathematical graphs. Augmented Reality (AR) bridges this gap by enabling interactive, spatially contextual learning experiences

Imaginarium is a cross-platform mobile application designed to dynamically generate 3D models of chemical compounds and mathematical equations, which users can explore in AR environments. Unlike existing solutions with pre-defined models, our system adapts to user inputs (e.g., chemical formulas or equations) and renders models in real time. This flexibility, combined with AR interactivity, fosters deeper engagement and comprehension.

This smart platform makes learning easier for students by ensuring they understand concepts clearly, stay engaged, and receive personalized guidance without depending entirely on teachers or textbooks.

The platform allows students to explore complex concepts through immersive models, receive personalized summaries, and take automatically generated quizzes. By recommending relevant educational videos and tracking progress in real time, it encourages self-paced learning and deeper understanding. Accessible on both Android and iOS devices, Imaginarium aims to bridge the gap between traditional teaching methods and modern, technology-driven education.

II. OBJECTIVES

- To Development of a lightweight AR framework using React Native and ViroReact for real-time 3D model visualization
- To Dynamic generation of chemical structures (via PubChem API) and mathematical graphs (via equation parsing).
- To Secure user authentication using Firebase to personalize learning experiences.
- To notify family members or caregivers if a medicine dose is missed.
- To Empirical validation showing improved student engagement and conceptual clarity.

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29641

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, November 2025

Impact Factor: 7.67

III. LITERATURE SURVEY

R. In the rapidly evolving landscape of educational technology (EdTech), the incorporation of Augmented Reality (AR) and 3D visualization has significantly enhanced the way students grasp complex concepts. Traditional teaching methods often rely on textbooks and static images, which may not effectively convey intricate ideas, especially in subjects like Chemistry, Mathematics, Biology, and Physics. AR and 3D models offer a solution by providing interactive and immersive environments where learners can visualize abstract concepts in real-time, improving engagement and retention. Studies have shown that visual learning increases knowledge retention by up to 75%, making it a highly effective tool for education.

Cao, Y.; Ng,G.-W.; Ye,S.-S. (2023) "Design and Evaluation for Immersive Virtual Reality Learning Environment: A Systematic Literature Review Design and Evaluation for Immersive Virtual Reality Learning Environ ment: A Systematic Literature Review. This study investigates immersive vir tual reality environments for education, focusing on interactive 3D content that enhances concept understanding. The authors analyzed multiple VR systems across STEM subjects, examining user engagement, knowledge retention, and usability. The review emphasizes the role of VR in providing spatial and experiential learning, which improves conceptual visualization. Findings suggest that well-designed VR modules increase learner motivation and provide safe, repeatable experiments. The study concludes that integrating VR with edu cational platforms can significantly boost interactive learning and comprehension

Khaldi,A.; Bouzidi,R.; Nader,F.(2023)"Gamification of e-learning in higher education: a systematic literature review Gamification of e-learning in higher education: a systematic literature re view. This paper reviews gamification strategies in digital learning platforms, highlighting their effect on student engagement and learning outcomes. The authors categorize gamified components such as points, badges, leaderboards, and challenges used across multiple disciplines. The survey emphasizes how gamification encourages active participation and knowledge reinforcement. Results indicate that integrating gamified elements into e-learning platforms can enhance motivation, retention, and problem-solving skills. The study con cludes that gamified learning modules, combined with interactive visual con tent, significantly improve student performance.

Bulut,M. BorromeoFerri,R.(2023) A systematic literature review on aug mented reality in mathematics education) Asystematic literature review on augmented reality in mathematics education. This study systematically reviews AR applications in mathematics education, focusing on 3D visualization tools for abstract concepts. The authors an alyzed AR-based learning platforms that allow students to manipulate virtual objects, improving spatial reasoning and conceptual understanding. Findings reveal that AR improves engagement, motivation, and learning efficiency, par ticularly for complex topics like geometry and algebra. The review highlights best practices for AR integration into curricula and recommends combining AR with collaborative tasks to maximize educational benefits. Overall, the study demonstrates AR's potential for interactive, concept-focused learning

Mustafa,M.Y.; Tlili,A.; Lampropoulos,G. et al. (2024) "A systematic re view of literature reviews on artificial intelligence in education (AIED): a roadmap to a future research agenda. Designing for collaborative learning in immersive virtual reality: a systematic literature review. This research explores collaborative learning ap proaches in immersive VR environments, emphasizing multi-user interaction, D14 and shared problem-solving. The authors review VR platforms supporting collaborative concept visualization and interactive simulations. Findings in dicate that collaborative VR improves communication, critical thinking, and understanding of abstract concepts. The paper highlights design principles for maximizing engagement and learning outcomes in group settings. It concludes that immersive collaborative environments, combined with guided instruction and interactive visual tools, significantly enhance learning experiences.

Stracke, C.M.; Bothe, P.; Adler, S. et al. (2024) "Designing for collaborative learning in immersive virtual reality: a systematic literature review A systematic review of literature reviews on artificial intelligence in ed ucation (AIED): a roadmap to a future research agenda. This paper reviews AI applications in educational platforms, including adaptive learning systems and interactive visualization tools. The authors examine how AI supports per sonalized learning paths, intelligent feedback, and assessment analytics. The survey highlights AI's role in enhancing student understanding of complex concepts through adaptive visualization and real-time feedback. Results suggest AI-driven platforms improve

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29641

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

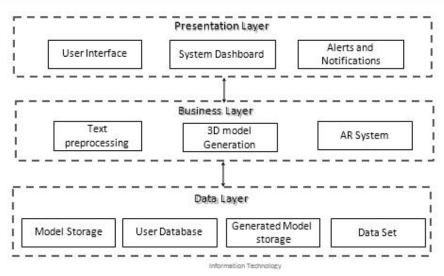
International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, November 2025

Impact Factor: 7.67

learning efficiency, engagement, and knowl edge retention. The study concludes that integrating AI with immersive and interactive tools is a promising direction for next-generation educational systems

Pranav Parekh, Shireen Patel, Nivedita Patel, and Manan Shah (2020) conducted a systematic review and meta-analysis of augmented reality (ar) applications in medicine, retail, and gaming. Their study highlighted how ar enhances user engagement, visualization, and interactive experiences across multiple domains. The findings suggest that ar technology can significantly improve learning and comprehension, demonstrating its potential for educational platforms like imaginarium that aim to combine ar-based 3D visualization with interactive content and AI-driven learning tools.


IV. SYSTEM ARCHITECTURE

The Imaginarium platform is meticulously designed to enhance learning by seamlessly integrating AI-driven content processing with ar-based 3D visualization in a user-friendly mobile application. This integrated system consists of four main components: the User, the Flutter Mobile App, Cloud Services, and the ar 3D Module, all working together to provide an interactive and personalized educational experience.

The user interacts with the Flutter Mobile App, which offers an intuitive graphical interface. Here, users can log in or sign up, select subjects or topics, and manage their learning modules by accessing summaries, taking quizzes, watching recommended videos, or exploring ar 3D models. All user interactions, progress data, and content preferences are securely stored in Firebase Realtime Database. Firebase acts as the central repository, ensuring real-time synchronization between the app and the ar module.

The ar 3D Module renders interactive models in the user's real-world environment using the device camera, allowing students to manipulate, rotate, and zoom objects for immersive exploration. AI algorithms process content in the background, generating concise summaries, quizzes, and video suggestions based on user progress and performance. Push notifications and in-app reminders keep learners engaged and guide them through their learning schedule.

System Architecture

All components are optimized for mobile devices and run efficiently using Flutter and Unity 3D frameworks, ensuring smooth ar rendering, fast AI processing, and minimal latency. The system is housed within the app ecosystem and cloud infrastructure, providing a comprehensive, accessible, and scalable platform for interactive learning.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 1, November 2025

IV. COMPARATIVE RESULT

To evaluate the effectiveness of Imaginarium it is compared with existing e-learning platforms, highlighting improvements in AI-driven content, ar interactivity, personalized quizzes, and real-time progress tracking.

Paper	Method/Result	Limitation
Virtual Reality and Augmented	Demonstrated AR's	Difficulty in scaling VR for younger students
Reality in Education (2021)	effectiveness for science	under 14.
	education engagement	
Methods and Applications of	Reviewed AR's educational	
Augmented Reality in Education: A	benefits and implementation	Cognitive overload, Limited capacity for
Review (2022)	challenges	teachers to use AR effectively
Rapid 3D Model Generation with	Developed Deep3DVRSketch for	Limited availability of 3D sketch data
Intuitive 3D Input 2024	AR/VR 3D modeling from	
	sketches	
Cheng & Tsai (2022)	Conducted Meta Analysis of AR	Limited focus on dynamic generation content
	in STEM	
Nguyen & Johnson (2023)	Implemented AR for chemistry	
		Predefined models only
Imaginarium (Proposed)	Dynamic 3D + AR with user input	The platform's performance may be limited
		on low-end devices, and highly complex 3D
		ar models
Vijayalakshmi & Divya (2023)	IoT and cloud-based	Device compatibility and processing
	interactive learning prototypes	limitations for AR modules
Gupta & Rao (2023)	AR visualization for STEM	High computational demand reduces smooth
	concepts	performance on low-end devices
Sharma et al. (2022)	AI-assisted e-learning platform	Low engagement for complex 3D models on
		some devices

V. APPLICATIONS

- Hospitals and Clinics- Helps students explore complex concepts through interactive 3D models and AI- generated summaries.
- Home Learning / Self-Study Ideal for learners studying independently, providing quizzes, video suggestions, and progress tracking.
- Tutoring Centers / Educational Labs Ensures students get consistent guidance with ar-based visualizations and AI-driven learning paths.
- Online Courses / e-Learning Platforms Useful for remote learners who need personalized content recommendations and immersive concept exploration.

VI. ADVANTAGES

- Structured Learning Schedule Students receive timely reminders for lessons, quizzes, and assignments, ensuring consistent study habits.
- Accurate Content Delivery AI delivers precise summaries, quizzes, and video suggestions tailored to each topic, reducing confusion.
- Real-Time Notifications- Teachers or parents can monitor student engagement and performance instantly.
- User-Friendly imple, intuitive app design requires minimal guidance to navigate.

International Journal of Advanced Research in Science, Communication and Technology

ISO POOT:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, November 2025

Impact Factor: 7.67

VII. CONCLUSION

Our mobile application demonstrates a transformative approach to education by integrating 3D model visualization with AR-based exploration, significantly improving student engagement and understanding of scientific concepts. The potential for future enhancements such as AI-based personalization, offline functionality, and multi-subject expansion positions the application as a scalable and impactful solution for modern education. The positive feedback from initial user testing, combined with the scalability of the system, suggests that the application can revolutionize how students engage with scientific concepts and equations. Our project not only contributes to enhancing STEM education but also opens doors for future research and development in immersive learning technologies.

REFERENCES

- [1]. S. P. Balasubramani and D. V. Bharathi (2023), "Automatic Learning Content Delivery Using Sensor-Driven Feedback and Cloud Module," International Journal of Innovative Research in Computer and Communication Engineering (IJIRCCE), 11(4), pp. 214–219.
- [2]. T. T. Srujana, K. Naresh, and O. Saritha (2024), "Smart AI-Based Learning Reminder System for Remote Supervision and Personalized Feedback," International Journal of Scientific Research in Engineering and Management (IJSREM), 8(1), pp. 102–108.
- [3]. U. G. S. Reddy and H. M. Patel (2025), "Cost-Effective AI-Assisted Learning Platform Using Mobile and Cloud Modules," International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering (IJAREEIE), 12(2), pp. 85–91.
- [4]. Reena V. A. S. Sreedevi and A. Kumar (2023), "IoT-Enabled Interactive Learning and Progress
- [5]. Tracking System Using ESP32," International Research Journal of Modernization in Engineering, Technology and Science (IRJMETS), 5(8), pp. 1203–1210.
- [6]. K. Vijayalakshmi and R. Divya (2023), "Multi-Functional Smart Educational Platform with Cloud Storage and Real-Time Monitoring," International Journal of Engineering Trends and Technology (IJETT), 71(9), pp. 45–51.

