

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

9001:2015 9001:2015

Impact Factor: 7.67

Volume 5, Issue 4, October 2025

Adaptive Snake Game with AI Control

Diksha Waghmare¹, Alisha Mulani², Prof. S. R. Takale³

1,2UG Students, Department of Electronics and Telecommunication Engineering Professor, Department of Electronics and Telecommunication Engineering SKN Sinhgad College of Engineering, Pandharpur

Abstract: By fusing AI-controlled and manual gameplay, Advanced Snake, a sophisticated browser-based game, was developed to enhance the classic Snake experience. In classic snake games, a growing snake must be steered across a limited grid without colliding with itself or the walls. This project preserves the basic fundamentals of the original game while adding some innovative components to make it more engaging and educational.

Players can choose between two major modes of play: player-controlled mode, where they move the snake using keyboard inputs (arrow keys or WASD), and AI-controlled mode, which employs the A* pathfinding algorithm to automatically determine the optimal way to acquire food while avoiding obstacles. This AI setup allows users to observe the operation of pathfinding and collision avoidance algorithms in a dynamic, real-time environment. In order to demonstrate fundamental concepts of artificial intelligence decision-making, the AI continuously recalculates the snake's path as the game board and its position change.

In order to enhance the user experience, the project includes variable pace settings that let players change the game's tempo to fit their ability level. Different visual skins (Classic, Neon, and Retro) can be applied to alter the appearance of the game grid and snake. To further aid AI or players in visualizing the game environment, a toggleable grid overlay can be activated.

Using a real-time difficulty scaling algorithm, the adaptive component of the game adjusts the playing environment based on the performance of the AI or player. The snake's speed can be increased, new obstacles can be added, the allowed space can be reduced, or the scoring method can be changed. In addition to guaranteeing that the game stays difficult, this method offers a great platform for testing the resilience and learning potential of various AI techniques.

According to the experimental findings, heuristic algorithms do well in environments that are static or semi-predictable but suffer as complexity rises. Strong path optimization is shown by A* search, however it is not flexible enough to adjust to dynamic elements like shifting barriers or changing game speed. However, when trained in a suitably diversified context, agents based on reinforcement learning exhibit encouraging outcomes. In addition to learning intricate tactics like looping safely, avoiding traps, and optimizing reward collecting, agents trained with deep Q-networks (DQN) exhibit the capacity to generalize across levels. Large amounts of processing power and meticulous adjustment of hyperparameters like learning rate, reward structure, and exploration-exploitation balance are necessary for training such agents.

Keywords: AI in games, A* pathfinding, JavaScript, Snake games, browser-based games, interactive user interfaces, and game development

I. INTRODUCTION

Snake has been a mainstay of arcade gaming for many years due to its simple yet immensely fascinating fundamentals. A snake that moves constantly inside a tiny rectangular area is controlled by the player. That's the game's core concept. As you devour the food items that appear at random locations on the game board, the snake grows longer. The task becomes more difficult as the snake becomes larger since the player has to avoid running into the walls of the game

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

board and the snake's own longer body. Despite its simple rules, the game is entertaining and intellectually engaging, effectively testing players' reflexes, strategic planning, and spatial awareness.

Over time, other variations and adaptations of the Snake game have appeared on devices such as mobile phones, console games, and web browsers. Despite a few minor visual or gameplay enhancements, the majority of these versions remain stick to the core principles and don't use complex computational or technological concepts.

By including a number of innovative features while preserving the game's simple, engaging gameplay, the Advanced Snake project seeks to modernize the beloved Snake game. The inclusion of AI-controlled games is a notable enhancement. This AI mode makes use of the A (A-star) pathfinding algorithm*, a widely used method in computer science and artificial intelligence, to discover the shortest path between points in a space while accounting for barriers. The Snake game's AI-controlled snake dynamically determines the optimal route to the nearest food item as the gaming environment changes due to the snake's growth or the appearance of new barriers.

To further demonstrate the value of algorithmic decision-making in real-time situations, the AI ensures collision avoidance by predicting potential collisions with walls and self-intersections. Observing the AI activity can teach users and learners about fundamental AI concepts such as adaptive decision-making, pathfinding, and problem-solving in dynamic and limited systems.

The project incorporates AI along with several other components to enhance user engagement and customisation. The variable speed control is one of the features that allows players to change the game's tempo to fit their skill level. To obtain a sense of the game's mechanics, beginners can start out at slower rates. More seasoned players can challenge themselves to play at quicker speeds, which makes the game more exciting and difficult. Additionally, users can customize the game board and snake's appearance by selecting from a range of visual skins, including Classic, Neon, and Retro. The aesthetic appeal of the game is enhanced by these skins, which also provide players a sense of personalization and immersion that fits their preferences.

Additionally, because the optional grid overlay clearly separates the playing area into cells, it serves as a visual aid that is particularly useful for understanding movement patterns and strategy. This lets human players better plan their movements and aids the AI, which employs the grid structure for pathfinding computations.

As a browser-based application, the Advanced Snake project is technically implemented with HTML5, CSS, and JavaScript. The responsive canvas element, which is a component of HTML5, renders all game elements, such as the grid, food, and snake, and forms the structural foundation of the program. By controlling color schemes, applying different skins, and designing visually appealing layouts, CSS makes the game look professional and well-made. The fundamental game functionality is handled by JavaScript, including AI pathfinding techniques, level progression, score calculation, snake movement, collision detection, and user input processing. Using the A* pathfinding concepts, the JavaScript-implemented AI module continuously evaluates the game circumstances and makes decisions to ensure the snake moves safely and successfully toward the objective food.

The gaming interface is fun and easy to use, with controls and buttons for stopping the game, starting a new one, altering speed, flipping the grid, and switching between player-controlled and AI-controlled modes. In player mode, the snake's movement can be easily and quickly controlled with keyboard shortcuts like the arrow keys or WASD. These design choices not only allow players to experiment with different gaming configurations, but they also ensure an impeccable user experience.

An additional crucial element of the idea is data durability through local storage. This browser feature enables players to continue improving during sessions by allowing the game to save user-specific data, such as high scores, current score, and preferred settings. This allows the game to provide a continuous and personalized experience without requiring server-side data storage or an internet connection thanks to localStorage.

The Advanced Snake project has a great deal of educational potential. Through the integration of AI into a simple and popular game, the project creates a useful platform for experimentation and learning. As users see the AI make decisions in real time, they can understand how pathfinding algorithms work in dynamic scenarios and explore the consequences of different speed and strategy combinations. The project also demonstrates the potential of web technologies like HTML5, CSS, and JavaScript to create interactive, visually appealing, and computationally intelligent content.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

y SOUTH MAN TO THE SOUTH OF THE

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

II. LITERATURE SURVEY

Chen (2025) et al. [1] compared the K-Nearest Neighbors, Decision Tree, and Linear Regression models in a study called "Car Price Prediction Using Machine Learning." Although this study focuses on predictive modeling in cars, it emphasizes the importance of algorithm selection and decision-making processes, which are closely linked to applying AI logic in games. To determine the accuracy and efficiency of the model was the main objective in order to provide a comparison study that can direct real-time decision systems, similar to pathfinding in AI-controlled games.

Harris (2023) et al. [2] developed a Snake game for the browser that uses AI pathfinding to demonstrate grid-based movement and obstacle avoidance. The aim was to create an independent snake that could efficiently travel toward food without encountering barriers. The main objective was to show how pathfinding algorithms are used in real-time gameplay while offering details on practical AI applications for online games.

Parsons (2022) et al. [3] delved deeper into autopilot techniques for Snake in order to demonstrate autonomous navigation. In this work, we show how AI can adapt movement strategies dynamically to game-state changes, focusing on decision-making and route optimization.

Johar (2021) et al. [4] created a Snake AI with reinforcement learning to demonstrate how to make adaptive choices in response to environmental input. The study looked into how AI might eventually learn the best routes to maximize rewards and reduce collisions.

Zhou (2021) et al. [5] investigated utilizing reinforcement learning to teach an AI to play Snake using reward-based pathfinding algorithms. Both studies show how reinforcement learning can enable intelligent, self-governing games that improve performance dynamically with experience.

Schoberg (2019) et al. [6] Schoberg's work focused on integrating AI into the classic Snake game and investigated how algorithmic strategies could enhance gameplay. The study concentrated on strategies for efficient food collection and collision avoidance, two essential aspects of Snake AI. By applying heuristic-based methods and rule-driven logic, the AI could foresee potential collisions with walls or its own tail and dynamically change its travel direction. Additionally, optimization approaches that allowed the AI to prioritize food items while minimizing risky activities were the focus of the research. By demonstrating the potential for intelligent, adaptive games using relatively simple algorithms.

Kharrufa (2021) et al. [7]intended to enhance Snake's AI performance by utilizing pathfinding techniques intended for grid navigation. The study, which concentrated on dynamic obstacle avoidance, including the snake's tail and environmental constraints, revealed strategies for selecting the optimal paths in a constrained space. Unlike heuristic-based approaches that rely on predetermined rules, pathfinding algorithms like A* or Dijkstra's method allowed the AI to evaluate multiple potential paths and assign scores according on variables like risk, distance, and the likelihood of food collection. The importance of computational foresight and algorithmic efficiency was illustrated in this work by showing that careful route optimization significantly improved overall performance and survival time." By carefully weighing the trade-off between danger (collision likelihood) and reward (food acquisition), Kharrufa's AI demonstrated a more strategic, intelligent gameplay style to better understand algorithmic decision-making in dynamic, constrained environments.

Mase (2021) et al. [8]demonstrated AI-controlled Snake gaming in an effort to demonstrate how pathfinding algorithms respond in real-time to shifting game states. Demonstrating how AI works in a real-world environment with dynamic obstacles and snake growth was the main objective. As the game state changed, the study found that algorithms like A* could efficiently recalculate trajectories, avoiding collisions and optimizing paths for gathering food. Users and developers may now see how AI decision-making varies based on the context thanks to the visualization technique. Through this study, the use of pathfinding logic in dynamic systems is better understood. Through this study, the use of pathfinding logic in dynamic systems is better understood. Another application of AI is the integration of visualization techniques into educational resources. Adaptability and real-time responsiveness were emphasized in the study as critical metrics for evaluating AI effectiveness. Overall, it ties the theoretical concepts of artificial intelligence to practical implementation in interactive online games.

Patel (2020) et al. [9] highlighted the importance of interactive user interfaces and canvas rendering in their examination of browser-based game creation using HTML5, CSS, and JavaScript. Giving programmers tips on how to create responsive and aesthetically pleasing web games was the aim of the study. According to Patel's research,

Copyright to IJARSCT www.ijarsct.co.in

1991

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

HTML5 canvas enables dynamic display of game elements, while CSS enhances appearance and interactivity. Highlighting best practices for performance optimization, layout design, and game logic management were among the objectives. Synchronization between user input and game rendering was one of the other topics discussed in the article. The methodical approach to web-based game design provided by this study is useful for developing interactive games such as Snake. It serves as the technical foundation for incorporating browser-based AI systems.

Li (2019) et al. [10] analyzed AI methods by comparing the pathfinding strategies of BFS, DFS, and A* in simple grid-based games. The objective was to evaluate the effectiveness and efficiency of each algorithm in handling dynamic game scenarios. The study found that A*'s heuristic-based approach yielded the greatest pathfinding outcome by striking a balance between speed and accuracy. Although BFS and DFS could navigate in simple situations, Li demonstrated that they performed worse in larger or more dynamic grids. Main objective was to inform developers about algorithm choices for adaptive decision-making real-time games. The study also showed how these algorithms could be applied to educate students how to solve computational problems in game settings. This paper provides an essential blueprint for implementing AI-controlled Snake games.

Singh (2022) et al. [11] focused on autonomous mobility through pathfinding and collision avoidance in arcade games using adaptive AI. It was intended to develop AI that could adapt its behavior dynamically to game situations in order to improve task efficiency and survival. As to the study, adaptive AI has the potential to react to changing barriers and modify its trajectory in real time. In order to create intelligent agents in video games, Singh emphasized the importance of combining pathfinding algorithms with decision-making logic. The study promotes the theory that AI could learn from its environment and forecast future events, which is pertinent to Snake AI. Accuracy, quickness, and flexibility were among the performance metrics that were highlighted. The outcomes support integrating AI into interactive educational materials. In general, the study links independent gamingtheory and practice.

Kumar (2021) et al. [12] examined modifying web games' user interfaces (UI), including themes, interactive panels, and speed control. Enhancing player engagement and providing greater customisation for the game experience were the goals of the study. User-friendly interfaces improve user satisfaction and allow players to adjust game settings according to their skill level and preferences, as demonstrated by Kumar. The study focused on design strategies for web-based gaming panels, interactive buttons, and dynamic information updates. One goal was to incorporate technology, such as event management and real-time rendering, with a straightforward layout. Demonstrating how UI elements affect usability and gaming perception was the main contribution. In browser-based games like Snake, control accessibility and visual feedback are crucial, therefore this study is particularly relevant. It mixes UI design with interactive game dynamics to provide the greatest possible user experience.

Table 1 Shows Comparative Review Of Fruit Sorting Machine Based On Weight.

Author(s) & Year	Objective	Method/ Algorithm Used	Focus Area	Key Contribution	Relevance to Snake Game AI
Chen et al. (2025)	Compare ML models for car price prediction	KNN, Decision Tree, Linear Regression	Predictive Modeling (Cars)	Highlights importance of model selection & efficiency	Reinforces the value of algorithm choice in real-time AI systems like pathfinding in Snake
Harris et al. (2023)	Demonstrate AI pathfinding in browser-based Snake game	Grid-based movement, Obstacle Avoidance	Browser Game AI Implementation	Showed how pathfinding works in real-time environments	Provides practical application of pathfinding logic in online Snake gameplay
Parsons et al. (2022)	Develop dynamic autopilot for	Autonomous Navigation	Adaptive Movement Strategies	Demonstrated AI adapting movement to	Critical for route optimization and real-time strategy

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

	Snake			game-state changes	adjustment in Snake
Johar (2021)	Show reinforcement learning's role in Snake AI	Reinforcement Learning	Adaptive AI in Games	AI adapts to environment, learns optimal paths for reward collection	Demonstrates how Snake AI can self- improve through learning from experience
Zhou (2021)	Use RL for reward-based learning in Snake	Reinforcement Learning	Reward-based Pathfinding	Enabled intelligent gameplay through dynamic learning	Reinforces potential of RL in creating self- governing Snake agents
Schoberg (2019)	Integrate AI into classic Snake for efficient play	Heuristic- based, Rule- driven Logic	Gameplay Strategy	Collision avoidance, food prioritization, foresight strategies	Introduces simple but effective AI strategies
Kharrufa (2021)	Enhance AI via grid-based pathfinding and risk management	A*, Dijkstra's Algorithm	Pathfinding in Constrained Space	Showed score- based path evaluation and strategic risk- reward trade-offs	Relevant for designing strategic AI in Snake that handles tail and walls intelligently
Mase (2021)	Demonstrate AI adaptability to dynamic game states in real time	A* Algorithm, Visualization Techniques	Real-Time AI & Visualization	Showed how AI recalculates paths and responds visually to dynamic conditions	Supports real-time adaptive Snake AI and educational visualization
Patel (2020)	Build interactive browser-based games using web technologies	HTML5, CSS, JavaScript Canvas	UI & Game Engine	Explained canvas rendering, user interaction, and game logic synchronization	Offers technical base for integrating AI in browser-based Snake games
Li (2019)	Compare BFS, DFS, and A* in dynamic game scenarios	BFS, DFS, A*	Pathfinding Performance	A* shown as most balanced for speed & accuracy in dynamic conditions	Provides algorithmic insight for selecting best pathfinding technique for Snake
Singh (2022)	Use adaptive AI for obstacle handling and route optimization in arcade games	Adaptive Pathfinding & Decision Logic	Autonomous Navigation	Emphasized AI's ability to predict & adapt dynamically	Strongly supports dynamic AI behaviors in Snake, especially under changing game conditions
Kumar (2021)	Improve UI	UI/UX Design,	User	Highlighted	Ensures Snake game is

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

design for	Dynamic	Experience in	impact of	playable and accessible,
browser-based	Rendering	Games	responsive	enabling better
games			design,	visualization of AI
			interactive	behavior
			controls, and	
			customization	

III. PROPOSED MODELLING

Figure 1 Shows That Block Diagram Of Flowchart Of Stock Price Prediction System

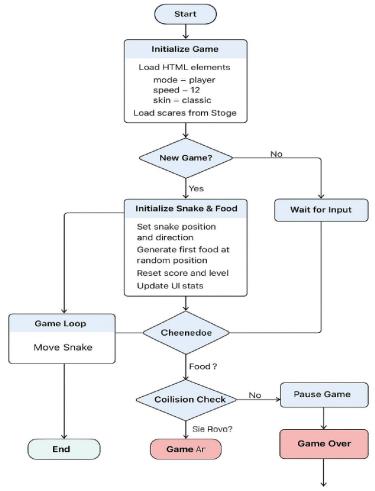


Figure 1 Block Diagram Of Flowchart Of Stock Price Prediction System

The flowchart for the Advanced Snake Game with AI Pathfinding shows the game's logical structure and progression from setup to the end of playtime. An enhanced version of the classic Snake game that enables autonomous gaming is created by integrating artificial intelligence through the use of A* pathfinding. Among the ways the flowchart depicts the interactions between various game elements are initialization, player or AI control, continuous repetition of game activities, collision detection, and game termination.

The first node in the flowchart is called Start, and it indicates when the game starts in a web browser. Upon starting the game, the player loads the HTML, CSS, and JavaScript files. These files include the index.html structure, style.css's visual styling, and the core functionality of app.js and ai.js. The availability of all necessary components is ensured at

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29523

225

2581-9429

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

this step before the user interacts with the interface. The flow then proceeds to the Initialize Game step, when the resources are loaded and the game environment is first constructed. Throughout Initialize Game, the system performs several crucial functions.

First, JavaScript code is identified and connected to the required HTML elements, such as the canvas for rendering visuals, the control buttons for starting and ending the game, and the display regions for the level, score, and mode. This is also where the default parameters for the mode (Player), speed (12), and skin (Classic) are set. Additionally, the system retrieves the saved high score from the browser's local storage so that players can monitor their highest scores. At the end of initialization, when the game is ready, the system asks the user if they want to begin a new game.

Throughout Initialize Game, the system performs several crucial functions. Initially, the JavaScript code is identified and connected to the required HTML elements, such as the canvas for graphic rendering, the control buttons for starting and ending the game, and the display sections for the score, level, and mode. Additionally, default parameters for the skin (Classic), speed (12), and mode (Player) are specified at this stage. Additionally, the system takes the saved high score from the browser's local storage so that players can monitor their highest scores. When the game is ready and initialization is complete, the system asks the user if they want to begin a new game.

The Initialize Snake & Food phase resets all dynamic game elements upon game launch. Usually located in the center of the canvas, the snake is oriented and positioned based on its initial values. In order to prevent the initial food from overlapping into the snake's body, it is generated at random on the grid. The score and level counts are simultaneously reset, and the interface is changed to reflect the new values. The initialization phase ensures a stable performance and a clear state at the start of each gaming session. The Game Loop, the most important part of the game, is reached after this setup.

The main element of the Snake game is the Game Loop, which keeps running until a stopping condition is met, such as pausing or ending the game. This loop controls the snake in real time, including its movement, interactions with food, and collisions with objects. For every loop cycle, the system selects the snake's movement based on the active mode.

The choice for Check Mode indicates whether the player is controlling the snake or whether the AI mode is active. In "Player," the application waits for keyboard inputs, often the WASD or arrow keys, to adjust the snake's direction. If the mode is set to "AI," on the other hand, the system employs the A* pathfinding method, which is implemented in ai.js. The fastest and safest route to the food is determined by this algorithm by analyzing the game grid and treating obstacles like walls or the snake's own body as barriers. The snake can then play independently since the AI decides the course of its next step.

The Move Snake method adjusts the grid position of the snake after the direction has been determined. Each body segment moves to the position of the one preceding it as the head progresses one step in the current direction. If it has recently eaten, the snake expands because its tail stays still. Collision and Event Checking, the following area of the flowchart, is where the system evaluates various interactions. The first step is to do a food collision check. A new food item is made at a different random location, the snake grows longer, and if the snake's head position coincides with the food's location, the score increases. Furthermore, the snake becomes faster and more difficult as the level increases based on the score.

Self-collision or walls are the subject of the second important check. A collision event is detected by the game when the snake's head touches its own body or reaches the edge of the canvas. When the Game Over state is entered, the loop is instantly broken. In the absence of a collision, the loop continues as usual. The Render Canvas procedure is executed by the system following the checks, updating the visual representation of the game. Once the canvas has been cleared, new elements are drawn, including the food's location, the snake's current position, and any toggled active grids. The skin type of the snake (Classic, Neon, or Retro) dictates its color and pattern.

When the player has to pause for a while or throughout extended sessions, the pause feature is quite useful. The option to pause the game at any point while playing is represented by the Pause / Resume choice in the flowchart. Players can take a break without losing their progress when the pause command is used since it causes the game loop to momentarily stop, freezing all actions and movements. The game resumes from the same point in time when the player returns, giving the gamer more control and convenience.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

When a collision is detected, the system goes into the "Game Over" state. When the game loop is over, the player is greeted with the message "Game Over." The system calculates whether the current score is higher than the previously saved high score. If it does, the new value is stored locally and replaces the old record. During sessions, this permanent ranking system encourages users to improve their performance. After the game over event, there are two alternatives available to the player: either quit the game or pick "New Game," which restarts the flow to the beginning.

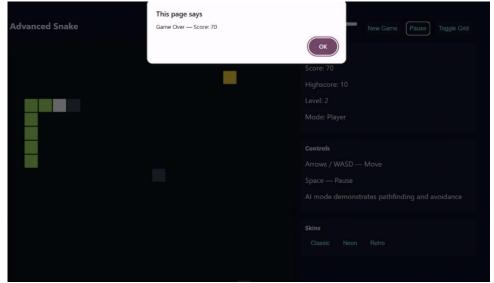
The final node in the flowchart is the End state. The current game session is either over or almost over. Even when the session is over, local storage ensures that achievements, including top scores, are saved for use in further games. Long after the game window has ended, this design gives the player a sense of accomplishment and continuity. The flowchart illustrates the Advanced Snake Game's logical structure and the balance between AI-driven automation, user participation, and system operations. It starts with initialization, progresses through real-time gaming controlled by the user or artificial intelligence, controls dynamic events like collisions and scoring, and concludes with termination.

The smooth transition between options and actions ensures consistent behavior and fluent gameplay. This project effectively combines the ideas of web-based interactive design and artificial intelligence by utilizing local data persistence, many skins and modes, and pathfinding intelligence. Thus, in addition to providing a technical synopsis of the Advanced Snake Game's logic, the flowchart provides a visual depiction of how each phase contributes to the overall functionality of the game.

Advanced Snake Mode: Player Speed: New Game Resume Toggle Grid Stats Score: 0 Highscore: 10 Level: 1 Mode: Player Controls Arrows / WASD — Move Space — Pause Al mode demonstrates pathfinding and avoidance

IV. RESULT AND DISCUSSION

International Journal of Advanced Research in Science, Communication and Technology


150 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

A responsive and engaging version of the traditional Snake game with contemporary improvements is demonstrated by the Advanced Snake system's gameplay outcomes. Three crucial phases of gameplay are shown in the screenshots: the beginning, middle, and end of the game. The game has an intuitive UI that shows important gaming metrics including Score, Highscore, Level, and Mode. A mode switch between player and AI is also included, along with user controls and skin customization possibilities.

A final score of 70 is shown in the game over prompt in the first image, indicating that the player (in Mode: Player) successfully traversed the environment to get a pretty high score before to termination, most likely as a result of a collision. The side panel shows the top score as 10, which is interesting. This mismatch could be the result of a glitch in the score persistence logic or the game not updating the high score in real-time. This outcome indicates that data synchronization between the game state and UI elements needs to be improved.

With a score of 30, level 1, and active movement in the direction of a food item (yellow block), the second graphic depicts a mid-game scenario. Effective use of real-time rendering and object tracking is confirmed by the snake's visual representation (white head, green body) and the obstacles' spatial layout (gray blocks). According to standard level

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

progression mechanics, the snake's length increases and the available space gets more constrained, giving the impression that the game gets harder and harder. The grid-based design makes it easier to achieve the predictable movement that both manual and AI-controlled modes require.

The third picture shows the game in its starting stage, with the same player mode enabled and a score of 0. An adjustable gaming experience is suggested by the speed slider at the top. By enabling users to dynamically adjust the level of difficulty, this feature helps the system achieve its flexibility aim. The ability to switch between "Player" and possibly "AI" modes (as suggested by the AI control description) further illustrates the dual-mode capabilities, which allows for the testing of AI pathfinding and avoidance logic.

The game's control instructions (WASD or arrow keys for movement, space to pause) are clear from the standpoint of the user interface and gameplay, and the skins (Classic, Neon, Retro) are thoughtfully designed to improve visual attractiveness. The system offers intelligent navigation when AI is enabled, as indicated by the "AI mode demonstrates pathfinding and avoidance" function, which is not explicitly seen in the pictures. Obstacles, food items, and dynamic speed control provide the foundation for testing alternative AI algorithms, such as A*, Dijkstra's, or reinforcement learning techniques, under varied limitations.

Regarding system responsiveness, the game seems to manage updates and movement in real-time with negligible latency, which is essential for preserving fluid gameplay. Visual feedback, like the game-over popup, improves the user experience by displaying the final score and explicitly signaling the end of a session.

In conclusion, the game skillfully combines modular AI demonstration capabilities with an engaging player world. In addition to adjusting speed and observing how various algorithms might perform in pathfinding and obstacle avoidance, the user can alternate between manual control and AI mode. Although there are some minor glitches, such as the top score not updating properly, which point to areas that need technical work, the game provides a solid foundation for testing AI tactics in grid-based settings. This technology facilitates academic study on AI-controlled agent behavior and adaptive game design as well as leisure gaming.

V. CONCLUSION

An excellent example of combining modern artificial intelligence methods with classic arcade games is the Advanced Snake Game project. The system's combination of Player Mode and AI Mode illustrates the value of the A* (A-star) pathfinding algorithm in real-time decision-making while also providing users with an engaging interactive experience. The AI-controlled snake successfully determines the optimal pathways, avoids obstacles, and gets to the goal food by itself, demonstrating intellectual behavior similar to that of human gamers.

The project additionally emphasizes the use of web technologies such as HTML5, CSS, and JavaScript, which enable it to be responsive, lightweight, and accessible through a browser without requiring additional installs. With its many skins, adjustable speed controls, and user-friendly interface, the entire user experience is enhanced. The game also introduces features like dynamic canvas rendering, pause/resume capabilities, and local storage for high scores, which combine technical innovation with simplicity in a harmonious way.

In conclusion, this project effectively achieves its objectives of combining web development, artificial intelligence training, and entertainment. It demonstrates how innovative algorithms and programming approaches could revive the allure of classic games. The Advanced Snake Game is therefore a practical example of how to incorporate AI pathfinding, web-based game design, and user interaction into a single, cohesive system. Upcoming enhancements like more complex AI learning models, multiplayer capabilities, or adjustable difficulty could further expand the possibilities of this imaginative project.

REFERENCES

1. Chen, R. (2025) conducted a comparative study titled "Car Price Prediction Using Machine Learning," evaluating the performance of Linear Regression, Decision Tree, and K-Nearest Neighbors models on vehicle datasets. Proceedings of the International Conference on Machine Learning and Data Engineering, 132701.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- 2. Harris, S. (2023) developed a browser-based Snake game with AI pathfinding, demonstrating grid-based movement and obstacle avoidance.
- 3. Parsons, K. (2022) implemented an autopilot algorithm for Snake, illustrating how AI can autonomously navigate the game board.
- 4. Johar, S. (2021) created a reinforcement learning Snake AI, showing adaptive decision-making based on environmental feedback.
- 5. Zhou, N. Q. (2021) demonstrated teaching an AI to play Snake using reinforcement learning, analyzing reward-based pathfinding strategies.
- 6. Schoberg, S. (2019) explored AI-controlled Snake gameplay, highlighting algorithmic approaches to avoid collisions while maximizing food collection.
- 7. Ali, A. H. (2024) developed a Snake AI project using JavaScript and pathfinding algorithms, demonstrating real-time decision-making in a browser environment.
- 8. Kharrufa, H. (2021) implemented a pathfinding-based Snake AI, focusing on grid navigation and dynamic obstacle avoidance.
- 9. Mase, S. B. (2021) visualized Snake AI gameplay, illustrating how pathfinding algorithms adapt to changes in game state in real-time.
- 10. Patel, R. (2020) analyzed browser-based game development using HTML5, CSS, and JavaScript, emphasizing canvas rendering and interactive UI design. International Journal of Computer Games Technology, 45(3), 56–68.
- 11. Li, J. (2019) studied AI algorithms in simple games, comparing BFS, DFS, and A* pathfinding in grid-based environments for learning purposes. Proceedings of the AI and Games Conference, 1102–1110.
- 12. Singh, V. (2022) implemented adaptive AI in arcade games, demonstrating collision avoidance and autonomous movement using pathfinding algorithms. Journal of Interactive AI Applications, 18(2), 33–47.
- 13. Kumar, S. (2021) explored user interface customization in web games, including themes, speed adjustment, and interactive panels for enhanced engagement. International Journal of Web Development, 12(1), 14–28.
- 14. Nguyen, T. (2020) researched localStorage usage for browser games, showing persistent score tracking and user preference management. Journal of Web Technologies, 9(4), 72–85.
- 15. Martinez, L. (2023) studied the educational applications of AI in simple games, highlighting how reinforcement learning and pathfinding algorithms aid understanding of algorithmic thinking. Proceedings of the Educational AI Conference, 202–210.
- Godase, M. V., Mulani, A., Ghodak, M. R., Birajadar, M. G., Takale, M. S., & Kolte, M. A MapReduce and Kalman Filter based Secure IIoT Environment in Hadoop. Sanshodhak, Volume 19, June 2024.
- 17. Mulani, A. O., & Mane, P. B. (2017). Watermarking and cryptography based image authentication on reconfigurable platform. Bulletin of Electrical Engineering and Informatics, 6(2), 181-187.
- 18. Gadade, B., Mulani, A. O., & Harale, A. D. IoT Based Smart School Bus and Student Tracking System. Sanshodhak, Volume 19, June 2024.
- 19. Dhanawadel, A., Mulani, A. O., & Pise, A. C. IOT based Smart farming using Agri BOT. Sanshodhak, Volume 20, June 2024.
- 20. Mulani, A., & Mane, P. B. (2016). DWT based robust invisible watermarking. Scholars' Press.
- 21. R. G. Ghodke, G. B. Birajdar, A.O. Mulani, G.N. Shinde, R.B. Pawar, Design and Development of an Efficient and Cost-Effective surveillance Quadcopter using Arduino, Sanshodhak, Volume 20, June 2024.
- 22. R. G. Ghodke, G. B. Birajdar, A.O. Mulani, G.N. Shinde, R.B. Pawar, Design and Development of Wireless Controlled ROBOT using Bluetooth Technology, Sanshodhak, Volume 20, June 2024.
- 23. Swami, S. S., & Mulani, A. O. (2017, August). An efficient FPGA implementation of discrete wavelet transform for image compression. In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS) (pp. 3385-3389). IEEE.
- 24. Mane, P. B., & Mulani, A. O. (2018). High speed area efficient FPGA implementation of AES algorithm. International Journal of Reconfigurable and Embedded Systems, 7(3), 157-165.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 25. Mulani, A. O., & Mane, P. B. (2016). Area efficient high speed FPGA based invisible watermarking for image authentication. Indian journal of Science and Technology, 9(39), 1-6.
- Kashid, M. M., Karande, K. J., & Mulani, A. O. (2022, November). IoT-based environmental parameter monitoring using machine learning approach. In Proceedings of the International Conference on Cognitive and Intelligent Computing: ICCIC 2021, Volume 1 (pp. 43-51). Singapore: Springer Nature Singapore.
- 27. Nagane, U. P., & Mulani, A. O. (2021). Moving object detection and tracking using Matlab. Journal of Science and Technology, 6(1), 2456-5660.
- 28. Kulkarni, P. R., Mulani, A. O., & Mane, P. B. (2016). Robust invisible watermarking for image authentication. In Emerging Trends in Electrical, Communications and Information Technologies: Proceedings of ICECIT-2015 (pp. 193-200). Singapore: Springer Singapore.
- 29. Ghodake, M. R. G., & Mulani, M. A. (2016). Sensor based automatic drip irrigation system. Journal for Research, 2(02).
- 30. Mandwale, A. J., & Mulani, A. O. (2015, January). Different Approaches For Implementation of Viterbi decoder on reconfigurable platform. In 2015 International Conference on Pervasive Computing (ICPC) (pp. 1-4). IEEE.
- 31. Jadhav, M. M., Chavan, G. H., & Mulani, A. O. (2021). Machine learning based autonomous fire combat turret. Turkish Journal of Computer and Mathematics Education, 12(2), 2372-2381.
- 32. Shinde, G., & Mulani, A. (2019). A robust digital image watermarking using DWT-PCA. International Journal of Innovations in Engineering Research and Technology, 6(4), 1-7.
- 33. Mane, D. P., & Mulani, A. O. (2019). High throughput and area efficient FPGA implementation of AES algorithm. International Journal of Engineering and Advanced Technology, 8(4).
- 34. Mulani, A. O., & Mane, D. P. (2017). An Efficient implementation of DWT for image compression on reconfigurable platform. International Journal of Control Theory and Applications, 10(15), 1-7.
- 35. Deshpande, H. S., Karande, K. J., & Mulani, A. O. (2015, April). Area optimized implementation of AES algorithm on FPGA. In 2015 International Conference on Communications and Signal Processing (ICCSP) (pp. 0010-0014). IEEE.
- 36. Deshpande, H. S., Karande, K. J., & Mulani, A. O. (2014, April). Efficient implementation of AES algorithm on FPGA. In 2014 International Conference on Communication and Signal Processing (pp. 1895-1899). IEEE.
- 37. Kulkarni, P., & Mulani, A. O. (2015). Robust invisible digital image mamarking using discrete wavelet transform. International Journal of Engineering Research & Technology (IJERT), 4(01), 139-141.
- 38. Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless Non-invasive blood glucose concentration level estimation using PCA and machine learning. The CRC Book entitled Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications.
- 39. Mulani, A. O., & Shinde, G. N. (2021). An approach for robust digital image watermarking using DWT-PCA. Journal of Science and Technology, 6(1).
- Mulani, A. O., & Mane, P. B. (2014, October). Area optimization of cryptographic algorithm on less dense reconfigurable platform. In 2014 International Conference on Smart Structures and Systems (ICSSS) (pp. 86-89). IEEE.
- 41. Jadhav, H. M., Mulani, A., & Jadhav, M. M. (2022). Design and development of chatbot based on reinforcement learning. Machine Learning Algorithms for Signal and Image Processing, 219-229.
- 42. Mulani, A. O., & Mane, P. (2018). Secure and area efficient implementation of digital image watermarking on reconfigurable platform. International Journal of Innovative Technology and Exploring Engineering, 8(2), 56-61.
- 43. Kalyankar, P. A., Mulani, A. O., Thigale, S. P., Chavhan, P. G., & Jadhav, M. M. (2022). Scalable face image retrieval using AESC technique. Journal Of Algebraic Statistics, 13(3), 173-176.
- 44. Takale, S., & Mulani, A. (2022). DWT-PCA based video watermarking. Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN, 2799-1156.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

150 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 45. Kamble, A., & Mulani, A. O. (2022). Google assistant based device control. Int. J. of Aquatic Science, 13(1), 550-555.
- 46. Kondekar, R. P., & Mulani, A. O. (2017). Raspberry Pi based voice operated Robot. International Journal of Recent Engineering Research and Development, 2(12), 69-76.
- 47. Ghodake, R. G., & Mulani, A. O. (2018). Microcontroller based automatic drip irrigation system. In Techno-Societal 2016: Proceedings of the International Conference on Advanced Technologies for Societal Applications (pp. 109-115). Springer International Publishing.
- 48. Mulani, A. O., Birajadar, G., Ivković, N., Salah, B., & Darlis, A. R. (2023). Deep learning based detection of dermatological diseases using convolutional neural networks and decision trees. Traitement du Signal, 40(6), 2819.
- 49. Boxey, A., Jadhav, A., Gade, P., Ghanti, P., & Mulani, A. O. (2022). Face Recognition using Raspberry Pi. Journal of Image Processing and Intelligent Remote Sensing (JIPIRS) ISSN, 2815-0953.
- 50. Patale, J. P., Jagadale, A. B., Mulani, A. O., & Pise, A. (2023). A Systematic survey on Estimation of Electrical Vehicle. Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN, 2799-1156.
- 51. Gadade, B., & Mulani, A. (2022). Automatic System for Car Health Monitoring. International Journal of Innovations in Engineering Research and Technology, 57-62.
- 52. Shinde, M. R. S., & Mulani, A. O. (2015). Analysis of Biomedical Image Using Wavelet Transform. International Journal of Innovations in Engineering Research and Technology, 2(7), 1-7.
- 53. Mandwale, A., & Mulani, A. O. (2014, December). Implementation of convolutional encoder & different approaches for viterbi decoder. In IEEE International Conference on Communications, Signal Processing Computing and Information technologies.
- 54. Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless machine learning approach to estimate blood glucose level with non-invasive devices. In Artificial intelligence, internet of things (IoT) and smart materials for energy applications (pp. 83-100). CRC Press.
- 55. Maske, Y., Jagadale, A. B., Mulani, A. O., & Pise, A. C. (2023). Development of BIOBOT system to assist COVID patient and caretakers. European Journal of Molecular & Clinical Medicine, 10(01), 2023.
- 56. Utpat, V. B., Karande, D. K., & Mulani, D. A. Grading of Pomegranate Using Quality Analysisl. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 10.
- 57. Takale, S., & Mulani, D. A. (2022). Video Watermarking System. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 10.
- 58. Mandwale, A., & Mulani, A. O. (2015, January). Different approaches for implementation of Viterbi decoder. In IEEE international conference on pervasive computing (ICPC).
- Maske, Y., Jagadale, M. A., Mulani, A. O., & Pise, A. (2021). Implementation of BIOBOT System for COVID Patient and Caretakers Assistant Using IOT. International Journal of Information Technology and, 30-43.
- 60. Mulani, A. O., & Mane, D. P. (2016). Fast and Efficient VLSI Implementation of DWT for Image Compression. International Journal for Research in Applied Science & Engineering Technology, 5, 1397-1402
- 61. Kambale, A. (2023). Home automation using google assistant. UGC care approved journal, 32(1), 1071-1077.
- 62. Pathan, A. N., Shejal, S. A., Salgar, S. A., Harale, A. D., & Mulani, A. O. (2022). Hand gesture controlled robotic system. Int. J. of Aquatic Science, 13(1), 487-493.
- 63. Korake, D. M., & Mulani, A. O. (2016). Design of Computer/Laptop Independent Data transfer system from one USB flash drive to another using ARM11 processor. International Journal of Science, Engineering and Technology Research.
- 64. Mandwale, A., & Mulani, A. O. (2016). Implementation of High Speed Viterbi Decoder using FPGA. International Journal of Engineering Research & Technology, IJERT.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- 65. Kolekar, S. D., Walekar, V. B., Patil, P. S., Mulani, A. O., & Harale, A. D. (2022). Password Based Door Lock System. Int. J. of Aquatic Science, 13(1), 494-501.
- 66. Shinde, R., & Mulani, A. O. (2015). Analysis of Biomedical Imagel. International Journal on Recent & Innovative trend in technology (IJRITT).
- 67. Sawant, R. A., & Mulani, A. O. (2022). Automatic PCB Track Design Machine. International Journal of Innovative Science and Research Technology, 7(9).
- 68. ABHANGRAO, M. R., JADHAV, M. S., GHODKE, M. P., & MULANI, A. (2017). Design And Implementation Of 8-bit Vedic Multiplier. International Journal of Research Publications in Engineering and Technology (ISSN No: 2454-7875).
- 69. Gadade, B., Mulani, A. O., & Harale, A. D. (2024). Iot based smart school bus and student monitoring system. Naturalista Campano, 28(1), 730-737.
- 70. Mulani, D. A. O. (2024). A Comprehensive Survey on Semi-Automatic Solar-Powered Pesticide Sprayers for Farming. Journal of Energy Engineering and Thermodynamics (JEET) ISSN, 2815-0945.
- 71. Salunkhe, D. S. S., & Mulani, D. A. O. (2024). Solar Mount Design Using High-Density Polyethylene. NATURALISTA CAMPANO, 28(1).
- 72. Seth, M. (2022). Painless Machine learning approach to estimate blood glucose level of Non-Invasive device. Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications.
- 73. Kolhe, V. A., Pawar, S. Y., Gohery, S., Mulani, A. O., Sundari, M. S., Kiradoo, G., ... & Sunil, J. (2024). Computational and experimental analyses of pressure drop in curved tube structural sections of Coriolis mass flow metre for laminar flow region. Ships and Offshore Structures, 19(11), 1974-1983.
- 74. Basawaraj Birajadar, G., Osman Mulani, A., Ibrahim Khalaf, O., Farhah, N., G Gawande, P., Kinage, K., & Abdullah Hamad, A. (2024). Epilepsy identification using hybrid CoPrO-DCNN classifier. International Journal of Computing and Digital Systems, 16(1), 783-796.
- 75. Kedar, M. S., & Mulani, A. (2021). IoT Based Soil, Water and Air Quality Monitoring System for Pomegranate Farming, Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN, 2799-1156.
- 76. Godse, A. P. A.O. Mulani (2009). Embedded Systems (First Edition).
- 77. Pol, R. S., Bhalerao, M. V., & Mulani, A. O. A real time IoT based System Prediction and Monitoring of Landslides. International Journal of Food and Nutritional Sciences, Volume 11, Issue 7, 2022.
- 78. Mulani, A. O., Sardey, M. P., Kinage, K., Salunkhe, S. S., Fegade, T., & Fegade, P. G. (2025). ML-powered Internet of Medical Things (MLIOMT) structure for heart disease prediction. Journal of Pharmacology and Pharmacotherapeutics, 16(1), 38-45.
- 79. Aiwale, S., Kolte, M. T., Harpale, V., Bendre, V., Khurge, D., Bhandari, S., ... & Mulani, A. O. (2024). Noninvasive Anemia Detection and Prediagnosis. Journal of Pharmacology and Pharmacotherapeutics, 15(4), 408-416.
- 80. Mulani, A. O., Bang, A. V., Birajadar, G. B., Deshmukh, A. B., Jadhav, H. M., & Liyakat, K. K. S. (2024). IoT Based Air, Water, and Soil Monitoring System for Pomegranate Farming Annals of Agri-Bio Research, 29(2), 71-86.
- 81. Kulkarni, T. M., & Mulani, A. O. (2024). Face Mask Detection on Real Time Images and Videos using Deep Learning. International Journal of Electrical Machine Analysis and Design (IJEMAD), 2(1).
- 82. Thigale, S. P., Jadhay, H. M., Mulani, A. O., Birajadar, G. B., Nagrale, M., & Sardey, M. P. (2024). Internet of things and robotics in transforming healthcare services. Afr J Biol Sci (S Afr), 6(6), 1567-1575.
- 83. Pol, D. R. S. (2021). Cloud Based Memory Efficient Biometric Attendance System Using Face Recognition. Stochastic Modeling & Applications, 25(2).
- 84. Nagtilak, M. A. G., Ulegaddi, M. S. N., Adat, M. A. S., & Mulani, A. O. (2021). Breast Cancer Prediction using Machine Learning.
- 85. Rahul, G. G., & Mulani, A. O. (2016). Microcontroller Based Drip Irrigation System.

www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 86. Kulkarni, T. M., & Mulani, A. O. Deep Learning Based Face-Mask Detection: An Approach to Reduce Pandemic Spreads in Human Healthcare. African Journal of Biological Sciences, 6(6), 2024.
- 87. Mulani, A., & Mane, P. B. (2016). DWT based robust invisible watermarking. Scholars' Press.
- 88. Dr. Vaishali Satish Jadhav, Dr. Shweta Sadanand Salunkhe, Dr. Geeta Salunkhe, Pranali Rajesh Yawle, Dr. Rahul S. Pol, Dr. Altaf Osman Mulani, Dr. Manish Rana, Iot Based Health Monitoring System for Human, Afr. J. Biomed. Res. Vol. 27 (September 2024).
- 89. Dr. Vaishali Satish Jadhav, Geeta D. Salunke, Kalyani Ramesh Chaudhari, Dr. Altaf Osman Mulani, Dr. Sampada Padmakar Thigale, Dr. Rahul S. Pol, Dr. Manish Rana, Deep Learning-Based Face Mask Recognition in Real-Time Photos and Videos, Afr. J. Biomed. Res. Vol. 27 (September 2024).
- 90. Altaf Osman Mulani, Electric Vehicle Parameters Estimation Using Web Portal, Recent Trends in Electronics & Communication Systems, Volume 10, Issue 3, 2023.
- Aryan Ganesh Nagtilak, Sneha Nitin Ulegaddi, Mahesh Mane, Altaf O. Mulani, Automatic Solar Powered Pesticide Sprayer for Farming, International Journal of Microwave Engineering and Technology, Volume 9 No. 2, 2023.
- 92. Annasaheb S. Dandage, Vitthal R. Rupnar, Tejas A Pise, and A. O. Mulani, Real-Time Language Translation Application Using Tkinter. International Journal of Digital Communication and Analog Signals. 2025; 11(01): -p.
- 93. AnnaSaheb S Dandage, Vitthal R. Rupnar, Tejas A Pise, and A. O. Mulani, IoT-Powered Weather Monitoring and Irrigation Automation: Transforming Modern Farming Practices. . 2025; 11(01): -p.
- 94. Mulani, A.O., Kulkarni, T.M. (2025). Face Mask Detection System Using Deep Learning: A Comprehensive Survey. In: Singh, S., Arya, K.V., Rodriguez, C.R., Mulani, A.O. (eds) Emerging Trends in Artificial Intelligence, Data Science and Signal Processing. AIDSP 2023. Communications in Computer and Information Science, vol 2439. Springer, Cham. https://doi.org/10.1007/978-3-031-88759-8 3.
- 95. Karve, S., Gangonda, S., Birajadar, G., Godase, V., Ghodake, R., Mulani, A.O. (2025). Optimized Neural Network for Prediction of Neurological Disorders. In: Singh, S., Arya, K.V., Rodriguez, C.R., Mulani, A.O. (eds) Emerging Trends in Artificial Intelligence, Data Science and Signal Processing. AIDSP 2023. Communications in Computer and Information Science, vol 2440. Springer, Cham. https://doi.org/10.1007/978-3-031-88762-8_18.
- 96. Saurabh Singh, Karm Veer Arya, Ciro Rodriguez Rodriguez, and Altaf Osman Mulani, Emerging Trends in Artificial Intelligence, Data Science and Signal Processing, Communications in Computer and Information Science (CCIS), volume 2440.
- 97. Saurabh Singh, Karm Veer Arya, Ciro Rodriguez Rodriguez, and Altaf Osman Mulani, Emerging Trends in Artificial Intelligence, Data Science and Signal Processing, Communications in Computer and Information Science (CCIS), volume 2439.
- 98. Godase, V., Mulani, A., Pawar, A., & Sahani, K. (2025). A Comprehensive Review on PIR Sensor-Based Light Automation Systems. International Journal of Image Processing and Smart Sensors, 1(1), 22-29.
- 99. Godase, V., Mulani, A., Takale, S., & Ghodake, R. (2025). Comprehensive Review on Automated Field Irrigation using Soil Image Analysis and IoT. Journal of Advance Electrical Engineering and Devices, 3(1), 46-55.
- 100. Altaf Osman Mulani, Deshmukh M., Jadhav V., Chaudhari K., Mathew A.A., Shweta Salunkhe. Transforming Drug Therapy with Deep Learning: The Future of Personalized Medicine. Drug Research. 2025 Aug 29.
- 101.Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), Image Authentication Using Cryptography and Watermarking, International Journal of Image Processing and Smart Sensors, Vol. 1, Issue 2, pp 27-34.
- 102.Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), Advancements in Artificial Intelligence: Transforming Industries and Society, International Journal of Artificial Intelligence of Things (AIoT) in Communication Industry, Vol. 1, Issue 2, pp 1-5.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 103. Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), AI-Powered Predictive Analytics in Healthcare: Revolutionizing Disease Diagnosis and Treatment, Journal of Advance Electrical Engineering and Devices, Vol. 3, Issue 2, pp 27-34.
- 104. Godase, V., Mulani, A., Takale, S., & Ghodake, R. (2025). A Holistic Review of Automatic Drip Irrigation Systems: Foundations and Emerging Trends. Available at SSRN 5247778.
- 105. V. Godase, R. Ghodake, S. Takale, and A. Mulani, —Design and Optimization of Reconfigurable Microwave Filters Using AI Techniques, International Journal of RF and Microwave Communication Technologies, vol. 2, no. 2, pp.26–41, Aug. 2025.
- 106. V. Godase, A. Mulani, R. Ghodake, S. Takale, "Automated Water Distribution Management and Leakage Mitigation Using PLC Systems," Journal of Control and Instrumentation Engineering, vol.11, no. 3, pp. 1-8, Aug. 2025.
- 107. V. Godase, A. Mulani, R. Ghodake, S. Takale, "PLC-Assisted Smart Water Distribution with Rapid Leakage Detection and Isolation," Journal of Control Systems and Converters, vol. 1, no. 3, pp. 1-13, Aug. 2025.
- 108. V. V. Godase, S. R. Takale, R. G. Ghodake, and A. Mulani, "Attention Mechanisms in Semantic Segmentation of Remote Sensing Images," Journal of Advancement in Electronics Signal Processing, vol. 2, no. 2, pp. 45–58, Aug. 2025.
- 109.D. Waghmare, A. Mulani, S. R. Takale, V. Godase, and A. Mulani, "A Comprehensive Review on Automatic Fruit Sorting and Grading Techniques with Emphasis on Weight-based Classification," Research & Review: Electronics and Communication Engineering, vol. 2, no. 3, pp. 1-10, Oct. 2025.
- 110.Karande, K. J., & Talbar, S. N. (2014). Independent component analysis of edge information for face recognition. Springer India.
- 111.Karande, K. J., & Talbar, S. N. (2008). Face recognition under variation of pose and illumination using independent component analysis. ICGST-GVIP, ISSN.
- 112. Gaikwad, D. S., & Karande, K. J. (2016). Image processing approach for grading and identification of diseases on pomegranate fruit: An overview. International Journal of Computer Science and Information Technologies, 7, 519-522.
- 113. Kawathekar, P. P., & Karande, K. J. (2014, July). Severity analysis of Osteoarthritis of knee joint from X-ray images: A Literature review. In 2014 International Conference on Signal propagation and computer technology (ICSPCT 2014) (pp. 648-652). IEEE.
- 114. Daithankar, M. V., Karande, K. J., & Harale, A. D. (2014, April). Analysis of skin color models for face detection. In 2014 International Conference on Communication and Signal Processing (pp. 533-537). IEEE.
- 115. Karande, J. K., Talbar, N. S., & Inamdar, S. S. (2012, May). Face recognition using oriented Laplacian of Gaussian (OLOG) and independent component analysis (ICA). In 2012 Second International Conference on Digital Information and Communication Technology and it's Applications (DICTAP) (pp. 99-103). IEEE.
- 116.Shubham Salunkhe, Pruthviraj Zambare, Sakshi Shinde, S. K. Godase. (2024).API Development for Cloud Parameter Curation International. Journal of Electrical and Communication Engineering Technology, 2(1). https://doi.org/10.37591/ijecet
- 117.Badave, A., Pawale, A., Andhale, T., Godase, S. K., & STM JOURNALS. (2024). Smart home safety using fire and gas detection system. Recent Trends in Fluid Mechanics, 1, 35–43. https://journals.stmjournals.com/rtfm
- 118.Asabe, H., Asabe, R., Lengare, O., & Godase, S. (2025). IOT- BASED STORAGE SYSTEM FOR MANAGING VOLATILE MEDICAL RESOURCES IN HEALTHCARE FACILITIES. INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN ENGINEERING MANAGEMENT AND SCIENCE (IJPREMS), 05(03), 2427–2433. https://www.ijprems.com
- 119. Karche, S. N., Mulani, A. O., Department of Electronics, SKN Sinhgad College of Engineering, Korti, & University of Solapur, Maharashtra, India. (2018). AESC Technique for Scalable Face Image Retrieval. International Journal of Innovative Research in Computer and Communication Engineering, 6(4), 3404–3405. https://doi.org/10.15680/IJIRCCE.2018.0604036

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 120.Bankar, A. S., Harale, A. D., & Karande, K. J. (2021). Gestures Controlled Home Automation using Deep Learning: A Review. International Journal of Current Engineering and Technology, 11(06), 617–621. https://doi.org/10.14741/ijcet/v.11.6.4
- 121.Mali, A. S., Ghadge, S. K., Adat, A. S., & Karande, S. V. (2024). Intelligent Medication Management System. IJSRD International Journal for Scientific Research & Development, Vol. 12(Issue 3).
- 122. Water Level Control, Monitoring and Altering System by using GSM in Irrigation Based on Season. (2019). In International Research Journal of Engineering and Technology (IRJET) (Vol. 06, Issue 04, p. 1035) [Journal-article]. https://www.irjet.net
- 123. Modi, S., Misal, V., Kulkarni, S., & Mali A.S. (2025). Hydroponic Farming Monitoring System Automated system to monitor and control nutrient and pH levels. In Journal of Microcontroller Engineering and Applications (Vol. 12, Issue 3, pp. 11–16). https://doi.org/10.37591/JoMEA
- 124. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "VGHN: variations aware geometric moments and histogram features normalization for robust uncontrolled face recognition", International Journal of Information Technology, https://doi.org/10.1007/s41870-021-00703-0.
- 125. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition using MFCC & DTW Features", International Journal of Engineering Research And Applications (IJERA) pp. 118-122, ISSN: 2248-9622.
- 126. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Recognition of Marathi Numerals Using MFCC and DTW Features", Book Title: Recent Trends on Image Processing and Pattern Recognition, RTIP2R 2018, CCIS 1037, pp. 1–11, © Springer Nature Singapore Pte Ltd. 2019 https://doi.org/10.1007/978-981-13-9187-3 17.
- 127. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Analysis of Face Recognition Algorithms for Uncontrolled Environments", Book Title: Computing, Communication and Signal Processing, pp. 919–926, © Springer Nature Singapore Pte Ltd. 2018.
- 128.Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Recognition of Marathi Numerals using MFCC and DTW Features", 2nd International Conference on Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2018), 21th -22th Dec., 2018, organized by Solapur University, Solapur in collaboration with University of South Dakota (USA) and Universidade de Evora (Portugal), India.
- 129. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "A Comprehensive Survey of Face Databases for Constrained and Unconstrained Environments", 2nd IEEE Global Conference on Wireless Computing & Networking (GCWCN-2018), 23th-24th Nov., 2018, organized by STES's Sinhgad Institute of Technology, Lonavala, India.
- 130. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "An Extensive Survey of Prominent Researches in Face Recognition under different Conditions", 4th International Conference on Computing, Communication, Control And Automation (ICCUBEA-2018), 16th to 18th Aug. 2018 organized by Pimpri Chinchwad College of Engineering (PCCOE), Pune, India.
- 131.Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Analysis of Face Recognition Algorithms for Uncontrolled Environments", 3rd International Conference on Computing, Communication and Signal Processing (ICCASP 2018), 26th-27th Jan.2018, organized by Dr. BATU, Lonere, India.
- 132. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", International Conference on Recent Trends, Feb 2012, IOK COE, Pune.
- 133.S. S. Gangonda, "Bidirectional Visitor Counter with automatic Door Lock System", National Conference on Computer, Communication and Information Technology (NCCCIT-2018), 30th and 31st March 2018 organized by Department of Electronics and Telecommunication Engineering, SKN SCOE, Korti, Pandharpur.
- 134.Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition using MFCC & DTW Features", ePGCON 2012, 23rd and 24th April 2012 organized by Commins COE for Woman, Pune.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

1SO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 135.Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", National Conference on Emerging Trends in Engineering and Technology (VNCET'12), 30th March 2012 organized by Vidyavardhini's College of Engineering and Technology, Vasai Road, Thane.
- 136. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", ePGCON 2011, 26th April 2011 organized by MAEER's MIT, Kothrud, Pune-38.
- 137. Siddheshwar Gangonda, "Medical Image Processing", Aavishkar-2K7, 17th and 18th March 2007 organized by Department of Electronics and Telecommunication Engineering, SVERI's COE, Pandharpur.
- 138.Siddheshwar Gangonda, "Image enhancement & Denoising", VISION 2k7, 28th Feb-2nd March 2007 organized by M.T.E. Society's Walchand College of Engineering, Sangli.
- 139. Siddheshwar Gangonda, "Electromagnetic interference & compatibility" KSHITIJ 2k6, 23rd and 24th Sept. 2006 organized by Department of Mechanical Engineering, SVERI's COE, Pandharpur.
- 140.A. Pise and K. Karande, "A genetic Algorithm-Driven Energy-Efficient routing strategy for optimizing performance in VANETs," Engineering Technology and Applied Science Research, vol. 15, no. 5, 2025, [Online]. Available: https://etasr.com/index.php/ETASR/article/view/12744
- 141.A. C. Pise, K. J. Karande, "Investigating Energy-Efficient Optimal Routing Protocols for VANETs: A Comprehensive Study", ICT for Intelligent Systems, Lecture Notes in Networks and Systems 1109, Proceedings of ICTIS 2024 Volume 3, Lecture Notes in Networks and Systems, Springer, Singapore, ISSN 2367-3370, PP 407-417, 29 October 2024 https://doi.org/10.1007/978-981-97-6675-8 33.
- 142.A. C. Pise, et. al., "Smart Vehicle: A Systematic Review", International Journal The Ciência & Engenharia Science & Engineering Journal ISSN: 0103-944XVolume 11 Issue 1, 2023pp: 992–998, 2023.
- 143.A. C. Pise, et. al., "Smart Vehicle: A Systematic Review", International Journal of Research Publication and Reviews, ISSN 2582-7421, Vol 4, no 10, pp 2728-2731 October 2023.
- 144.A. C. Pise, et. al., "Development of BIOBOT System to Assist COVID Patient and Caretakers", European Journal of Molecular and Clinical Medicine; 10(1):3472-3480, 2023.
- 145.A. C. Pise, et. al., "IoT Based Landmine Detection Robot", International Journal of Research in Science & EngineeringISSN: 2394-8299Vol: 03, No. 04, June-July 2023.
- 146.A. C. Pise, et. al., "A Systematic survey on Estimation of Electrical Vehicle", Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN: 2799-1156, Volume 3, Issue 01, Pages 1-6, December 2023.
- 147.A. C. Pise, et. al., "Python Algorithm to Estimate Range of Electrical Vehicle", Web of Science, Vol 21, No 1 (2022) December 2022
- 148.A. C. Pise, et. al., "Implementation of BIOBOT System for COVID Patient and Caretakers Assistant using IOT", International Journal of Information technology and Computer Engineering. 30-43. 10.55529/ijite.21.30.43, (2022).
- 149.A. C. Pise, et. al., "An IoT Based Real Time Monitoring of Agricultural and Micro irrigation system", International journal of scientific research in Engineering and management (IJSREM), VOLUME: 06 ISSUE: 04 | APRIL 2022, ISSN:2582-3930.
- 150.A. C. Pise, Dr. K. J. Karande, "An Exploratory study of Cluster Based Routing Protocol in VANET: A Review", International Journal of Advanced Research in Engineering and Technology(IJARET), 12,10, 2021, 17-30, Manuscript ID :00000-94375 Source ID : 00000006, Journal_uploads/IJARET/VOLUME 12 ISSUE 10/IJARET 12 10 002.pdf
- 151.A. C. Pise, et. al., "Android based Portable Health Support System," A Peer Referred & Indexed International Journal of Research, Vol. 8, issue. 4, April 2019.
- 152.A. C. Pise, et. al., "Facial Expression Recognition Using Image Processing," International Journal of VLSI Design, Microelectronics and Embedded System, Vol. 3, issue. 2, July 2018.
- 153.A. C. Pise, et. al., "Detection of Cast Iron Composition by Cooling Curve Analysis using Thermocouple Temperature Sensor," UGC Approved International Journal of Academic Science (IJRECE), Vol.6, Issue.3, July-September 2018.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ogy 3001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 154.A. C. Pise, et. al., "Android Based Portable Health Support", System International Journal of Engineering Sciences & Research Technology (IJESRT 2017) Vol.6, Issue 8, pp 85-88 5th Aug 2017
- 155.A. C. Pise, et. al., "Adaptive Noise Cancellation in Speech Signal", International Journal of Innovative Engg and Technology, 2017
- 156.A. C. Pise, et. al., "Lung Cancer Detection System by using Baysian Classifier", ISSN 2454-7875, IJRPET, published online in conference special issue VESCOMM-2016, February 2016
- 157.A. C. Pise, et. al., "Review on Agricultural Plant Diseases Detection by Image Processing", ISSN 2278-62IX, IJLTET, Vol 7, Issue 1 May 2016
- 158.A. C. Pise, et. al. "Segmentation of Retinal Images for Glaucoma Detection", International Journal of Engineering Research and Technology (06, June-2015).
- 159.A. C. Pise, et. al. "Color Local Texture Features Based Face Recognition", International Journal of Innovations in Engineering and Technology(IJIET), Dec. 2014
- 160.A. C. Pise, et. al. "Single Chip Solution For Multimode Robotic Control", International Journal of Engineering Research and Technology (IJERT-2014), Vol. 3, Issue 12, Dec. 2014.
- 161. Anjali C. Pise et. al., "Remote monitoring of Greenhouse parameters using zigbee Wireless Sensor Network", International Journal of Engineering Research & Technology ISSN 2278-0181 (online) Vol. 3, Issue 2, and pp: (2412-2414), Feb. 2014.
- 162.A. C. Pise, K. J. Karande, "Cluster Head Selection Based on ACO In Vehicular Ad-hoc Networks", Machine Learning for Environmental Monitoring in Wireless Sensor Networks
- 163.A. C. Pise, K. J. Karande, "Architecture, Characteristics, Applications and Challenges in Vehicular Ad Hoc Networks" Presented in 27th IEEE International Symposium on Wireless Personal Multimedia Communications (WPMC 2024) "Secure 6G AI Nexus: Where Technology Meets Humanity" Accepted for book chapter to be published in international Scopus index book by River publisher.
- 164.A. C. Pise, Dr. K. J. Karande, "K-mean Energy Efficient Optimal Cluster Based Routing Protocol in Vehicular Ad Hoc Networks", International Conference on Innovations in Artificial Intelligence and Machine Learning (ICAIML-2022), August 20th and 21st 2022 Springer database Conference.
- 165.A. C. Pise, Mr. D. Nale, "Web-Based Application for Result Analysis", ", International Conference on Innovations in Artificial Intelligence and Machine Learning (ICAIML-2022), August 20th and 21st 2022 Springer database Conference.
- 166.A. C. Pise, et. al., "Detection of Cast Iron Composition by Cooling Curve Analysis using Thermocouple Temperature Sensor," 2nd International Conference on Engineering Technology, Science and Management Innovation (ICETSMI – 2018), 2nd September 2018.
- 167.A. C. Pise, et. al., "Facial Expression Recognition Using Facial Features," IEEE International Conference on Communication and Electronics Systems (ICCES 2018), October 2018.
- 168.A. C. Pise, et. al., "Estimating Parameters of Cast Iron Composition using Cooling Curve Analysis," IEEE International Conference on Communication and Electronics Systems (ICCES 2018), Coimbatore, October 2018
- 169.A. C. Pise, et. al., "Android based portable Health Support System," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 170.A. C. Pise, et. al., "Baysian Classifier & FCM Segmentation for Lung Cancer Detection in early stage," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 171.A. C. Pise, et. al., "Cast Iron Composition Measurement by Coding Curve Analysis," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 172.A. C. Pise, et. al., "War field Intelligence Defence Flaging Vehicle," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 173.A. C. Pise, et. al. "Disease Detection of Pomegranate Plant", IEEE sponsored International Conference on Computation of Power, Energy, Information and Communication, 22- 23 Apr. 2015.
- 174.A. C. Pise, P. Bankar. "Face Recognition by using GABOR and LBP", IEEE International Conference on Communication and Signal Processing, ICCSP, 2-4 Apr. 2015
- 175.A. C. Pise, et. al. "Single Chip Solution For Multimode Robotic Control", Ist IEEE International Conference on Computing Communication and Automation, 26-27 Feb2015.
- 176. Anjali C. Pise, Vaishali S. Katti, "Efficient Design for Monitoring of Greenhouse Parameters using Zigbee Wireless Sensor Network", fifth SARC international conference IRF, IEEE forum ISBN 978-93-84209-21-6,pp 24-26, 25th May 2014
- 177.A. C. Pise, P. Bankar, "Face Recognition using Color Local Texture Features", International Conference on Electronics and Telecommunication, Electrical and Computer Engineering, Apr.2014.
- 178.A. C. Pise, et.al. "Monitoring parameters of Greenhouse using Zigbee Wireless Sensor Network", 1st International Conference on Electronics and Telecommunication, Electrical and Computer Engineering, 5-6 Apr.2014.
- 179.A. C. Pise, et. al. "Compensation schemes and performance Analysis of IQ Imbalances in Direct Conversion Receivers", International Conference at GHPCOE, Gujarat, (Online Proceeding is Available), 2009.
- 180.A. C. Pise, K. J. Karande, "Energy-Efficient Optimal Routing Protocols in VANETs", 66th Annual IETE Convention, AIC -2023 September16-17, 2023, under the Theme: The Role of 5G In Enabling Digital Transformation for Rural Upliftment.
- 181.A. C. Pise, et. al. "Automatic Bottle Filling Machine using Raspberry Pi", National Conference on computer ;Communication & information Technology (NCCIT-2018) dated 30th & 31st March 2018.
- 182.A. C. Pise, et. al. "Design & Implementation of ALU using VHDL", National Conference on computer ;Communication & information Technology (NCCIT-2018) dated 30th & 31st March 2018.
- 183.A. C. Pise, et. al. "Mechanism and Control of Autonomus four rotor Quad copter", National Conference on Computer, Electrical and Electronics Engineering, 23-24 Apr. 2016.
- 184.A. C. Pise, et. al. "Segmentation of Optic Disk and Optic Cup from retinal Images", ICEECMPE Chennai, June 2015
- 185.A. C. Pise, et. al. "Diseases Detection of Pomegranate Plant", IEEE Sponsored International conference on Computation of Power, Energy, April 2015.
- 186.A. C. Pise, et. al. "Compensation Techniques for I/Q Imbalance in Direct-Conversion Receivers", Conference at SCOE, Pune 2010.
- 187.A. C. Pise, et. al. "I/Q Imbalance compensation Techniques in Direct Conversion Receiver", Advancing Trends in Engineering and Management Technologies, ATEMT-2009, Conference at Shri Ramdeobaba Kamla Nehru Engineering College, Nagpur, 20-21 November 2009
- 188.A. C. Pise, et. al. "Compensation Techniques for I/Q Imbalance in Direct Conversion Receiver", Conference at PICT, Pune 2008.
- 189.A. C. Pise, et. al. "I/Q Imbalance compensation Techniques in Direct Conversion Receiver", Conference at DYCOE, Pune 2008.
- 190.A. C. Pise, et. al. "DUCHA: A New Dual channel MAC protocol for Multihop Ad-Hoc Networks", Conference at SVCP, Pune 2007.
- 191.Godase, V., Pawar, P., Nagane, S., & Kumbhar, S. (2024). Automatic railway horn system using node MCU. Journal of Control & Instrumentation, 15(1).
- 192.Godase, V., & Godase, J. (2024). Diet prediction and feature importance of gut microbiome using machine learning. Evolution in Electrical and Electronic Engineering, 5(2), 214-219.
- 193. Jamadade, V. K., Ghodke, M. G., Katakdhond, S. S., & Godase, V. A Comprehensive Review on Scalable Arduino Radar Platform for Real-time Object Detection and Mapping.
- 194.Godase, V. (2025). A comprehensive study of revolutionizing EV charging with solar-powered wireless solutions. Advance Research in Power Electronics and Devices e-ISSN, 3048-7145.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

1SO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 195.Godase, V. (2025, April). Advanced Neural Network Models for Optimal Energy Management in Microgrids with Integrated Electric Vehicles. In Proceedings of the International Conference on Trends in Material Science and Inventive Materials (ICTMIM-2025) DVD Part Number: CFP250J1-DVD.
- 196. Dange, R., Attar, E., Ghodake, P., & Godase, V. (2023). Smart agriculture automation using ESP8266 NodeMCU. J. Electron. Comput. Netw. Appl. Math, (35), 1-9.
- 197. Godase, V. (2025). Optimized Algorithm for Face Recognition using Deepface and Multi-task Cascaded Convolutional Network (MTCNN). Optimum Science Journal.
- 198. Mane, V. G. A. L. K., & Gangonda, K. D. S. Pipeline Survey Robot.
- 199. Godase, V. (2025). Navigating the digital battlefield: An in-depth analysis of cyber-attacks and cybercrime. International Journal of Data Science, Bioinformatics and Cyber Security, 1(1), 16-27.
- 200. Godase, V., & Jagadale, A. (2019). Three element control using PLC, PID & SCADA interface. International Journal for Scientific Research & Development, 7(2), 1105-1109.
- 201.Godase, V. (2025). Edge AI for Smart Surveillance: Real-time Human Activity Recognition on Low-power Devices. International Journal of AI and Machine Learning Innovations in Electronics and Communication Technology, 1(1), 29-46.
- 202.Godase, V., Modi, S., Misal, V., & Kulkarni, S. (2025). LoRaEdge-ESP32 synergy: Revolutionizing farm weather data collection with low-power, long-range IoT. Advance Research in Analog and Digital Communications, 2(2), 1-11.
- 203.Godase, V. (2025). Comparative study of ladder logic and structured text programming for PLC. Available at SSRN 5383802.
- 204. Godase, V., Modi, S., Misal, V., & Kulkarni, S. Real-time object detection for autonomous drone navigation using YOLOv8, I. Advance Research in Communication Engineering and its Innovations, 2(2), 17-27.
- 205. Godase, V. (2025). Smart energy management in manufacturing plants using PLC and SCADA. Advance Research in Power Electronics and Devices, 2(2), 14-24.
- 206. Godase, V. (2025). IoT-MCU Integrated Framework for Field Pond Surveillance and Water Resource Optimization. International Journal of Emerging IoT Technologies in Smart Electronics and Communication, 1(1), 9-19.
- 207. Godase, V. (2025). Graphene-Based Nano-Antennas for Terahertz Communication. International Journal of Digital Electronics and Microprocessor Technology, 1(2), 1-14.
- 208. Godase, V., Khiste, R., & Palimkar, V. (2025). AI-Optimized Reconfigurable Antennas for 6G Communication Systems. Journal of RF and Microwave Communication Technologies, 2(3), 1-12.
- 209.Bhaganagare, S., Chavan, S., Gavali, S., & Godase, V. V. (2025). Voice-Controlled Home Automation with ESP32: A Systematic Review of IoT-Based Solutions. Journal of Microprocessor and Microcontroller Research, 2(3), 1-13.
- 210. Jamadade, V. K., Ghodke, M. G., Katakdhond, S. S., & Godase, V. A Comprehensive Review on Scalable Arduino Radar Platform for Real-time Object Detection and Mapping.
- 211. Godase, V. (2025). Cross-Domain Comparative Analysis of Microwave Imaging Systems for Medical Diagnostics and Industrial Testing. Journal of Microwave Engineering & Technologies, 12(2), 39-48p.
- 212.V. K. Jamadade, M. G. Ghodke, S. S. Katakdhond, and V. Godase, —A Review on Real-time Substation Feeder Power Line Monitoring and Auditing Systems," International Journal of Emerging IoT Technologies in Smart Electronics and Communication, vol. 1, no. 2, pp. 1-16, Sep. 2025.
- 213. V. V. Godase, "VLSI-Integrated Energy Harvesting Architectures for Battery-Free IoT Edge Systems," Journal of Electronics Design and Technology, vol. 2, no. 3, pp. 1-12, Sep. 2025.
- 214.A. Salunkhe et al., "A Review on Real-Time RFID-Based Smart Attendance Systems for Efficient Record Management," Advance Research in Analog and Digital Communications, vol. 2, no. 2, pp.32-46, Aug. 2025.
- 215. Vaibhav, V. G. (2025). A Neuromorphic-Inspired, Low-Power VLSI Architecture for Edge AI in IoT Sensor Nodes. Journal of Microelectronics and Solid State Devices, 12(2), 41-47p.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 216.Nagane, M.S., Pawar, M.P., & Godase, P.V. (2022). Cinematica Sentiment Analysis. Journal of Image Processing and Intelligent Remote Sensing.
- 217. Godase, V.V. (2025). Tools of Research. SSRN Electronic Journal.
- 218.Godase, V. (n.d.). EDUCATION AS EMPOWERMENT: THE KEY TO WOMEN'S SOCIO ECONOMIC DEVELOPMENT. Women Empowerment and Development, 174–179.
- 219. Godase, V. (n.d.). COMPREHENSIVE REVIEW ON EXPLAINABLE AI TO ADDRESSES THE BLACK BOX CHALLENGE AND ITS ROLE IN TRUSTWORTHY SYSTEMS. In Sinhgad College of Engineering, Artificial Intelligence Education and Innovation (pp. 127–132).
- 220.Godase, V. (n.d.-b). REVOLUTIONIZING HEALTHCARE DELIVERY WITH AI-POWERED DIAGNOSTICS: A COMPREHENSIVE REVIEW. In SKN Sinhgad College of Engineering, SKN Sinhgad College of Engineering (pp. 58–61).
- 221.Dhope, V. (2024). SMART PLANT MONITORING SYSTEM. In International Journal of Creative Research Thoughts (IJCRT). https://www.ijcrt.org
- 222.M. M. Zade,Sushant D.Kambale,Shweta A.Mane,Prathamesh M. Jadhav.(2025) "IOT Based early fire detection in Jungles". RIGJA&AR Volume 2 Issue 1,ISSN:2998-4459. DOI:https://doi.org/10.5281/zendo.15056435
- 223.M. M. Zade, Bramhadev B. Rupanar, Vrushal S. Shilawant , Akansha R. Pawar(2025) "IOT Flood Monitoring & Alerting System using Rasberry Pi-Pico "International Journal of Research Publication & Reviews , Volume 6 ,Issue 3,ISSN:2582-7421.DOI:https://ijrpr.com/uploads/V6ISSUE3/IJRPR40251.pdf
- 224.M.M.Zade(2022) "Touchless Fingerprint Recognition System" (Paper-ID 907)(2022) International Conference on "Advanced Technologies for Societal Applications: Techno-Societal 2022 https://link.springer.com/book/10.1007/978-3-031-34644-6?page=6
- 225.Mr.M.M.Zade published the paper on "Automation of Color Object Sorting Conveyor Belt", in International Journal of Scientific Research in Engineering & Management (IJSREM),ISSN:2582-3930 Volume 06, Issue 11th November 2022.
- 226.Mr.M.M.Zade published the paper on "Cloud Based Patient Health Record Tracking web Development",in International Journal of Advanced Research in Science, Communication & Technology(IJARSCT),ISSN NO:2581-9429 Volume 02, Issue 03,DOI 1048175/IJARSCT-3705,IF 6.252, May 2022.
- 227.Mr. Mahesh M Zade, "Performance analysis of PSNR Vs. Impulse Noise for the enhancement of Image using SMF", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- 228.Mr. Mahesh M Zade, "Classification of Power Quality Disturbances Using SVM & their Efficiency Comparison", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Eeb 2019
- 229.Mr. Mahesh M Zade, "Dynamic Clustering of Wireless Sensor Network Using Modified AODV", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- 230.Mr. Mahesh M Zade, "Performance analysis of PSNR Vs. Impulse Noise for the enhancement of Image using SMF", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur, Feb.2019
- 231.Mr. Mahesh M Zade, "Classification of Power Quality Disturbances Using SVM & their Efficiency Comparison", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur Feb.2019
- 232.Mr. Mahesh M Zade, "Dynamic Clustering of Wireless Sensor Network Using Modified AODV", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur Feb.2019
- 233.Mr. Mahesh M Zade & Mr.S.M.Karve,"Performance Analysis of Median Filter for Enhancement of Highly Corrupted Images", National Conference on Advanced Trends in Engineering, Association with IRJMS, Karmyogi Engineering College, Shelave, Pandharpur, March 2016.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

150 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 234.Mr. Mahesh M Zade & Mr.S.M.Karve,"Implementation of Reed Solomen Encoder & Decoder Using FPGA", National Conference on Advanced Trends in Engineering, Association with IRJMS, Karmyogi Engineering College, Shelave, Pandharpur, March 2016.
- 235.Mr. Mahesh M Zade & Dr.S.M.Mukane,"Performance of Switching Median Filter for Enhancement of Image", National Conference on Mechatronics at Sinhgad Institute of Technology and Science, Narhe, Pune, Feb. 2016.
- 236.Mr. Mahesh M Zade & Dr.S.M.Mukane,"Enhancement of Image with the help of Switching Median Filter", National Conference on Emerging Trends in Electronics & Telecommunication Engineering, SVERI's College of Engineering Pandharpur, NCET 2013.
- 237.Mr.Mahesh M Zade & Dr.S.M.Mukane, "Enhancement of Image with the help of Switching Median Filter", International Journal of Computer Application (IJCA) SVERI's College of Engineering, Pandharpur, Dec. 2013.
- 238.A. O. Mulani, V. Godase, S. Takale, and R. Ghodake, "Secure Image Authentication using AES and DWT Watermarking on Reconfigurable Platform," International Journal of Embedded System and VLSI Design, vol. 1, no. 2, pp. 14-20, Oct. 2025.

