

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, October 2025

A Comprehensive Review- Adaptive Snake Game with AI Control

Diksha Waghmare¹, Alisha Mulani², Prof. S. R. Takale³

1,2UG Students, Department of Electronics and Telecommunication Engineering Professor, Department of Electronics and Telecommunication Engineering SKN Sinhgad College of Engineering, Pandharpur

Abstract: A complex browser-based game called Advanced Snake was created to improve the traditional Snake experience by combining AI-controlled and manual gameplay. A growing snake must be guided across a small grid in traditional snake games, avoiding collisions with the walls or with itself. This project adds some cutting-edge elements to make the game more entertaining and instructive while maintaining the fundamental mechanics of the original.

Players can choose between two main ways of play: AI-controlled mode, which uses the A* pathfinding algorithm to automatically figure out the best way to get food while avoiding obstacles, and player-controlled mode, where players move the snake using keyboard inputs (arrow keys or WASD). Users are able to see how pathfinding and collision avoidance algorithms work in a dynamic, real-time setting with this AI setup. As the snake's position and the game board alter, the AI constantly recalculates its course, illustrating basic ideas of artificial intelligence decision-making.

The project incorporates customizable speed options to improve the user experience by enabling players to adjust the game's tempo to suit their skill level. You can apply different visual skins (Classic, Neon, and Retro) to change how the snake and game grid look. Furthermore, a toggleable grid overlay can be turned on to help AI or players better visualize the game area.

Keywords: AI in games, A* pathfinding, JavaScript, Snake games, browser-based games, interactive user interfaces, and game development

I. INTRODUCTION

A staple of arcade gaming, Snake has remained popular for many years because of its straightforward yet incredibly captivating principles. The basic idea behind the game is simple: the player controls a snake that has constant movement inside a small rectangular space. Gathering food items that show up at random spots on the game board is the goal; as you eat them, the snake gets longer. Because the player must avoid colliding with the game board's walls and the snake's own ever longer body, the task increases as the snake gets bigger. The game is fun and intellectually stimulating despite its straightforward rules, which successfully test players' reflexes, strategic planning, and spatial awareness.

Many iterations and modifications of the Snake game have surfaced over time on a variety of platforms, including console games, online browsers, and mobile phones. Although these versions include some modest gameplay adjustments or visual improvements, the most still maintain the fundamental fundamentals and do not incorporate sophisticated technological or computational ideas.

The Advanced Snake project aims to update the classic Snake game by adding a number of cutting-edge features while maintaining the game's intuitive, captivating gameplay. A prominent improvement is the addition of AI-controlled gaming. The A (A-star) pathfinding algorithm*, a popular technique in computer science and artificial intelligence, is employed in this AI mode to determine the shortest path between points in a space while taking obstacles into account. As the gaming environment changes as a result of the snake's growth or the development of new obstacles, the AI-controlled snake in the Snake game dynamically calculates the best path to the closest food item.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

Furthermore, the AI guarantees collision avoidance by anticipating possible collisions with walls and self-intersections, illustrating the usefulness of algorithmic decision-making in real-time settings. Learners and users can learn about basic AI principles like adaptive decision-making, pathfinding, and problem-solving in dynamic and constrained systems by watching the AI behavior.

The project integrates a number of elements to improve user personalization and engagement in addition to AI. Players may adapt the game's tempo to suit their skill level thanks to features like the customizable speed control. Beginners can begin at slower speeds to get a feel for the game's principles, while more experienced players can push themselves to play at faster speeds, which makes the game more challenging and thrilling. Users can also choose from a variety of visual skins, such as Classic, Neon, and Retro, to alter the design of the game board and snake. In addition to adding to the game's visual attractiveness, these skins provide players a sense of customization and immersion that suits their own tastes.

Furthermore, the optional grid overlay functions as a visual aid that is especially helpful for comprehending movement patterns and strategy because it clearly divides the playing area into cells. This helps the AI, which uses the grid layout for pathfinding calculations, as well as human players, who can better plan their movements.

The Advanced Snake project is technically implemented using HTML5, CSS, and JavaScript as a browser-based application. All game elements, including the snake, food, and grid, are rendered by a responsive canvas element that is part of HTML5, which serves as the application's structural basis. By managing color palettes, implementing various skins, and creating aesthetically pleasing layouts, CSS gives the game a polished and expert appearance. The essential game logic, such as level progression, AI pathfinding methods, score computation, snake movement, collision detection, and user input processing, is handled by JavaScript. To make sure the snake moves effectively and securely in the direction of the goal meal, the JavaScript-implemented AI module continuously assesses the game situation and makes decisions based on the A* pathfinding principles.

The buttons and controls for halting the game, beginning a new one, changing speed, flipping the grid, and alternating between player-controlled and AI-controlled modes are all part of the engaging and intuitive game interface. In player mode, the movement of the snake can be responsively and intuitively controlled by keyboard inputs such as WASD or arrow keys. In addition to enabling players to try out various gameplay setups, these design decisions guarantee a flawless user experience.

Data persistence via localStorage is another important component of the concept. The game may save user-specific information, including high scores, current score, and selected settings, thanks to this browser feature, which lets players keep improving during sessions. Without the need for server-side data storage or an internet connection, the game offers a continuous and customized experience by utilizing localStorage.

There is significant instructional value in the Advanced Snake project. By incorporating AI into a straightforward and well-known game, the project develops a practical learning and experimentation platform. In addition to learning how pathfinding algorithms function in dynamic situations, players can watch the AI make decisions in real time and investigate the effects of various speed and strategy combinations. The project additionally shows how web technologies such as HTML5, CSS, and JavaScript may be used to provide interactive, aesthetically pleasing, and computationally intelligent.

II. LITERATURE SURVEY

Chen (2025) et al. [1] evaluated K-Nearest Neighbors, Decision Tree, and Linear Regression models in a comparative research titled "Car Price Prediction Using Machine Learning." Despite being centered on predictive modeling in automobiles, this study highlights the significance of algorithm selection and decision-making procedures, which are directly related to using AI logic in games. "In order to give a comparative analysis that can guide real-time decision systems, akin to pathfinding in AI-controlled games, the primary goal was to ascertain the model's correctness and efficiency.

Harris (2023) et al. [2] created an AI pathfinding Snake game for the browser that showcases grid-based movement and obstacle avoidance. Making an autonomous snake that can move effectively in the direction of food without running

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

SISO POOT:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

into obstacles was the goal. The primary goal was to demonstrate the use of pathfinding algorithms in real-time gameplay, providing information on useful AI applications for online games.

Parsons (2022) et al. [3] investigated autopilot methods for Snake in more detail with the goal of demonstrating autonomous navigation. The ability of AI to dynamically modify movement methods in response to game-state changes is demonstrated in this work, with a focus on route optimization and decision-making.

Johar (2021) et al. [4] developed a reinforcement learning Snake AI to show how to make adaptive decisions based on input from the surroundings. In order to maximize rewards and minimize collisions, the study sought to investigate how AI might gradually learn the best routes.

Zhou (2021) et al. [5] examined using reward-based pathfinding techniques to teach an AI to play Snake through reinforcement learning. Both research highlight how intelligent, self-governing games that dynamically increases performance with experience can be made possible via reinforcement learning.

Schoberg (2019) et al. [6] Schoberg's research centered on applying AI to the vintage Snake game and examined how algorithmic tactics might improve gameplay. The study focused on methods for effective food gathering and collision avoidance, two crucial facets of Snake AI. The AI could dynamically modify its travel direction and anticipate possible collisions with walls or its own tail by utilizing rule-driven logic and heuristic-based techniques. The research also focused on optimization techniques that minimized dangerous actions while enabling the AI to prioritize food items. By showing how comparatively basic algorithms may provide intelligent, adaptive gaming

Kharrufa (2021) et al. [7]aimed at using pathfinding methods that are designed for grid navigation to improve Snake's AI performance. Methods for choosing the best pathways in a limited area were presented in the study, which focused on dynamic obstacle avoidance, including the snake's tail and environmental restrictions. In contrast to heuristic-based methods that depend on preset rules, pathfinding algorithms such as A* or Dijkstra's method enabled the AI to assess several possible routes and assign scores based on factors like distance, risk, and food collection possibility. This study demonstrated the significance of computational foresight and algorithmic efficiency by demonstrating that meticulous route optimization greatly increased survival time and overall performance. In order to better grasp algorithmic decision-making in dynamic, limited surroundings, Kharrufa's AI displayed a more strategic, intelligent gameplay style by methodically balancing the trade-off between risk (collision probability) and reward (food acquisition).

Mase (2021) et al.[8]aimed to show how pathfinding algorithms react in real-time to changing game states by showing AI-controlled Snake gameplay. The primary goal was to demonstrate how AI functions in a real-world setting with dynamic barriers and snake growth. According to the study, algorithms such as A* could effectively recalculate trajectories as the game state changed, preventing collisions and maximizing routes for food collection. The visualization technique made it possible for developers and consumers to examine how AI decision-making changes depending on the situation. The use of pathfinding logic in dynamic systems is better understood thanks to this study. The application of pathfinding logic in dynamic systems is better understood thanks to this study. Incorporating AI visualization techniques into instructional tools is another use for it. The study highlighted adaptability and real-time response as crucial measures for assessing AI performance. All things considered, it connects theoretical AI ideas with real-world application in interactive online games.

Patel (2020) et al. [9]highlighted the significance of canvas rendering and interactive user interfaces in their analysis of HTML5, CSS, and JavaScript-based browser-based game development. The study sought to give programmers methods for making visually appealing and responsive web games. According to Patel's research, CSS improves appearance and interactivity while HTML5 canvas allows dynamic rendering of game elements. Showing off best practices for game logic management, layout design, and performance optimization were among the goals. Other issues covered in the article included synchronization between game rendering and user input. This study offers a methodical approach to web-based game design, which is helpful for creating interactive games like Snake. It acts as a technical basis for integrating browser-based implementations of AI.

Li (2019) et al. [10]examined AI algorithms by contrasting the BFS, DFS, and A* pathfinding techniques in straightforward grid-based games. The goal was to assess each algorithm's efficacy and efficiency in navigating dynamic gaming situations. The study discovered that A*'s heuristic-based strategy, which balanced accuracy and speed, produced the best pathfinding result. Li showed that while BFS and DFS were capable of basic navigation, they

DOI: 10.48175/IJARSCT-29522

Copyright to IJARSCT www.ijarsct.co.in

ISSN 2581-9429

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

were less effective in bigger or dynamic grids. Informing developers about algorithm selection for real-time games that require adaptive decision-making was the primary goal. The study also demonstrated how these algorithms might be used in game contexts to teach students about computational problem-solving. A fundamental guide for putting AI-controlled Snake games into practice is provided by this work.

Singh (2022)et al. [11]applied adaptive AI to arcade games, emphasizing independent mobility through pathfinding and collision avoidance. To increase task efficiency and survival, the goal was to create AI that could dynamically modify its behavior based on game conditions. According to the study, adaptive AI might adjust its course in real time and respond to shifting obstacles. Singh underlined how crucial it is to combine decision-making logic with pathfinding algorithms in order to produce intelligent agents in video games. The study advances the idea that AI may learn from its surroundings and predict future conditions, which is relevant to Snake AI. Performance indicators including accuracy, speed, and flexibility were also emphasized. The results back the incorporation of AI into interactive learning resources. Overall, the research connects autonomous game theory and practice.

Kumar (2021) et al.[12]investigated customizing the user interface (UI) of web games, including interactive panels, themes, and speed control. The study sought to improve player involvement and offer more customization in the gaming experience. Kumar showed how user-friendly interfaces enhance user happiness and let players modify game settings based on their preferences and skill level. Design techniques for interactive buttons, dynamic content updates, and web-based gaming panels were highlighted in the study. Incorporating technological elements like event management and real-time rendering with a simple layout was one of the goals. The primary contribution was demonstrating the impact of UI elements on usability and gameplay perception. Because visual feedback and control accessibility are essential in browser-based games like Snake, this study is especially pertinent. For the best possible user experience, it combines interactive game dynamics with UI design.

III. PROPOSED METHODOLOGY

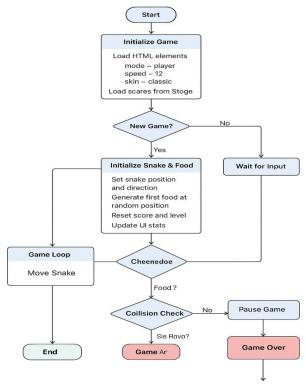


Fig. Flow chart of Adaptive Snake Game with AI Control

International Journal of Advanced Research in Science, Communication and Technology

150 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

The Advanced Snake Game with AI Pathfinding flowchart illustrates the game's logical structure and execution flow from setup to the conclusion of playtime. Through the use of A* pathfinding, artificial intelligence is incorporated into this project to create an improved version of the traditional Snake game that allows for autonomous gameplay. Initialization, player or AI control, continuous repeating of game activities, collision detection, and game termination are just a few of the ways that the flowchart illustrates how different game elements interact.

The Start node, which denotes the beginning of the game on a web browser, is the first step in the flowchart. The HTML, CSS, and JavaScript files are loaded when the player launches the game. These files comprise the foundational functionality found in app.js and ai.js, the visual styling specified in style.css, and the index.html structure. Before the user interacts with the interface, this stage guarantees that all required components are available. The flow moves on to the Initialize Game step, when the game environment is initially built up, after the resources have been loaded.

During Initialize Game, the system carries out a number of important tasks. The JavaScript code is first recognized and linked to the necessary HTML components, including the canvas for rendering graphics, the control buttons for launching and stopping the game, and the display areas for the score, level, and mode. At this point, default settings are also established for the skin (Classic), speed (12), and mode (Player). In order for players to keep track of their highest scores, the system also pulls the saved high score from the local storage of the browser. The system asks the user if they would like to start a new game after initialization is finished and the game is ready.

During Initialize Game, the system carries out a number of important tasks. The JavaScript code is first recognized and linked to the necessary HTML components, including the canvas for rendering graphics, the control buttons for launching and stopping the game, and the display areas for the score, level, and mode. At this point, default settings are also established for the skin (Classic), speed (12), and mode (Player). In order for players to keep track of their highest scores, the system also pulls the saved high score from the local storage of the browser. The system asks the user if they would like to start a new game after initialization is finished and the game is ready.

All dynamic game elements are reset by the Initialize Snake & Food phase when a new game is launched. The snake is positioned and oriented according to its initial values, which are usually in the middle of the canvas. The initial food is created at random on the grid, making sure it doesn't cross over into the snake's body. The interface is updated to reflect the new values while the score and level counts are reset simultaneously. The initialization stage guarantees that every game session begins with a clear state and reliable performance. Following this setup, the game's most crucial phase, the Game Loop, is reached.

The key component of the Snake game is the Game Loop, which runs continually until a stopping condition—like pausing or quitting the game—is satisfied. The snake's movement, interactions with food, and collisions with objects are all controlled by this loop in real time. Based on the active mode, the system chooses the snake's movement for each loop cycle.

Whether the player is in control of the snake or if the AI mode is on is determined by the Check Mode choice. When the mode is set to "Player," the application watches for keyboard inputs to change the snake's direction, usually the arrow keys or WASD. In contrast, the system uses the A* pathfinding method, which is implemented in ai.js, if the mode is set to "AI." Through an analysis of the game grid and the treatment of impediments like walls or the snake's own body as barriers, this algorithm determines the quickest and safest path to the food. The AI then determines the path of the snake's subsequent move, thereby enabling it to play on its own.

Once the direction has been established, the Move Snake method modifies the snake's grid position. In the present direction, the head advances one step, and each body segment travels to the location of the one before it. The snake grows if it has just consumed food since its tail does not move. The system assesses different interactions in the flowchart's next section, Collision and Event Checking. Checking for a food collision is the first step. A fresh food item is created at a different random place, the snake becomes longer, and the score rises if the head position of the snake matches the location of the food. Additionally, based on the score, the level may rise, which makes the snake faster and more challenging.

The second crucial check is for self-collision or walls. The game detects a collision event when the snake's head crosses the canvas' edge or comes into contact with its own body. The loop is immediately broken by entering the Game Over state. The loop carries on as usual if no collision is found. After the checks, the system runs the Render Canvas

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO POOT:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

procedure, which updates the game's visual representation. After clearing the canvas, new items are drawn, such as the location of the food, the snake's updated position, and any active grid that the player may have toggled on. The snake's color and design are determined by its skin type (Classic, Neon, or Retro).

The pause function is particularly helpful during longer sessions or when the player needs to temporarily stop. The Pause / Resume decision in the flowchart represents the player's ability to pause the game at any time during gameplay. When the pause command is triggered, the game loop temporarily halts, freezing all movements and actions, allowing players to take a break without losing progress. When the player resumes, the game continues from the exact same state, adding convenience and control to the gameplay experience.

Upon detecting a collision, the system enters the Game Over condition. The game loop ends at this point, and the player is presented with the phrase "Game Over." The system determines if the score now surpasses the high score that was saved. In local storage, the old record is replaced by the new value if it does. Users are incentivized to enhance their performance during sessions by this permanent rating system. The player has two options after the game over event: either exit the game or resume by selecting "New Game," which returns the flow to the startup stage.

The End state is the last node in the flowchart. The current game session is either ended or nearing its conclusion. Local storage guarantees that progress, including high scores, is preserved for use in subsequent games even when the session ends. The player feels a sense of accomplishment and continuity long after the game window has been closed because to this design.

The Advanced Snake Game's logical structure is depicted in the flowchart, which also shows how user involvement, AI-driven automation, and system procedures are all balanced. It begins with initialization, moves through player- or AI-controlled real-time gameplay, manages dynamic events like collisions and scoring, and ends with termination. The seamless transition between choices and actions guarantees fluid gameplay and consistent behavior. This project successfully blends the concepts of artificial intelligence and web-based interactive design by incorporating pathfinding intelligence, numerous skins and modes, and local data persistence. Thus, the flowchart offers a visual representation of how each step adds to the Advanced Snake Game's overall functionality in addition to a technical summary of the game's logic.

IV. CONCLUSION

The Advanced Snake Game project effectively illustrates how contemporary artificial intelligence techniques can be used with vintage arcade gaming. In addition to offering customers an interesting interactive experience, the system's integration of Player Mode and AI Mode demonstrates the usefulness of the A* (A-star) pathfinding algorithm in real-time decision-making. The AI-controlled snake exhibits intellectual behavior akin to that of human gamers by effectively calculating the best routes, avoiding obstacles, and reaching the target meal on its own.

Additionally, the project highlights the usage of web technologies like HTML5, CSS, and JavaScript, which make it responsive, lightweight, and available through a browser without the need for extra installations. The whole user experience is improved by its numerous skins, speed controls that can be adjusted, and an intuitive user interface. Furthermore, the game strikes a balance between technical innovation and simplicity by incorporating features like dynamic canvas rendering, pause/resume capabilities, and local storage for high scores.

In summary, this project successfully accomplishes its goals of fusing entertainment with web development and artificial intelligence instruction. It illustrates how cutting-edge programming techniques and clever algorithms may bring back the appeal of traditional games. Thus, the Advanced Snake Game serves as a real-world illustration of how to combine web-based game design, AI pathfinding, and user interaction into a single, integrated system. The potential of this creative endeavor could be further increased by future improvements such as more sophisticated AI learning models, multiplayer options, or variable difficulty.

REFERENCES

1. Chen, R. (2025) conducted a comparative study titled "Car Price Prediction Using Machine Learning," evaluating the performance of Linear Regression, Decision Tree, and K-Nearest Neighbors models on vehicle datasets. *Proceedings of the International Conference on Machine Learning and Data Engineering*,

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29522

ISSN 2581-9429

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025 Impact Factor: 7.67

132701.

- Harris, S. (2023) developed a browser-based Snake game with AI pathfinding, demonstrating grid-based movement and obstacle avoidance.
- Parsons, K. (2022) implemented an autopilot algorithm for Snake, illustrating how AI can autonomously navigate the game board.
- 4. Johar, S. (2021) created a reinforcement learning Snake AI, showing adaptive decision-making based on environmental feedback.
- 5. Zhou, N. Q. (2021) demonstrated teaching an AI to play Snake using reinforcement learning, analyzing reward-based pathfinding strategies.
- Schoberg, S. (2019) explored AI-controlled Snake gameplay, highlighting algorithmic approaches to avoid collisions while maximizing food collection.
- 7. Ali, A. H. (2024) developed a Snake AI project using JavaScript and pathfinding algorithms, demonstrating real-time decision-making in a browser environment.
- 8. Kharrufa, H. (2021) implemented a pathfinding-based Snake AI, focusing on grid navigation and dynamic obstacle avoidance.
- 9. Mase, S. B. (2021) visualized Snake AI gameplay, illustrating how pathfinding algorithms adapt to changes in game state in real-time.
- Patel, R. (2020) analyzed browser-based game development using HTML5, CSS, and JavaScript, emphasizing canvas rendering and interactive UI design. *International Journal of Computer Games Technology*, 45(3), 56–68.
- 11. Li, J. (2019) studied AI algorithms in simple games, comparing BFS, DFS, and A* pathfinding in grid-based environments for learning purposes. *Proceedings of the AI and Games Conference*, 1102–1110.
- 12. Singh, V. (2022) implemented adaptive AI in arcade games, demonstrating collision avoidance and autonomous movement using pathfinding algorithms. *Journal of Interactive AI Applications*, 18(2), 33–47.
- 13. Kumar, S. (2021) explored user interface customization in web games, including themes, speed adjustment, and interactive panels for enhanced engagement. *International Journal of Web Development*, 12(1), 14–28.
- 14. Nguyen, T. (2020) researched localStorage usage for browser games, showing persistent score tracking and user preference management. *Journal of Web Technologies*, 9(4), 72–85.
- 15. Martinez, L. (2023) studied the educational applications of AI in simple games, highlighting how reinforcement learning and pathfinding algorithms aid understanding of algorithmic thinking. *Proceedings of the Educational AI Conference*, 202–210.
- Godase, M. V., Mulani, A., Ghodak, M. R., Birajadar, M. G., Takale, M. S., & Kolte, M. A MapReduce and Kalman Filter based Secure IIoT Environment in Hadoop. Sanshodhak, Volume 19, June 2024.
- 17. Mulani, A. O., & Mane, P. B. (2017). Watermarking and cryptography based image authentication on reconfigurable platform. *Bulletin of Electrical Engineering and Informatics*, 6(2), 181-187.
- 18. Gadade, B., Mulani, A. O., & Harale, A. D. IoT Based Smart School Bus and Student Tracking System. Sanshodhak, Volume 19, June 2024.
- 19. Dhanawadel, A., Mulani, A. O., & Pise, A. C. IOT based Smart farming using Agri BOT. Sanshodhak, Volume 20, June 2024.
- 20. Mulani, A., & Mane, P. B. (2016). DWT based robust invisible watermarking. Scholars' Press.
- 21. R. G. Ghodke, G. B. Birajdar, A.O. Mulani, G.N. Shinde, R.B. Pawar, Design and Development of an Efficient and Cost-Effective surveillance Quadcopter using Arduino, Sanshodhak, Volume 20, June 2024.
- 22. R. G. Ghodke, G. B. Birajdar, A.O. Mulani, G.N. Shinde, R.B. Pawar, Design and Development of Wireless Controlled ROBOT using Bluetooth Technology, Sanshodhak, Volume 20, June 2024.
- 23. Swami, S. S., & Mulani, A. O. (2017, August). An efficient FPGA implementation of discrete wavelet transform for image compression. In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS) (pp. 3385-3389). IEEE.

International Journal of Advanced Research in Science, Communication and Technology

150 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 24. Mane, P. B., & Mulani, A. O. (2018). High speed area efficient FPGA implementation of AES algorithm. *International Journal of Reconfigurable and Embedded Systems*, 7(3), 157-165.
- 25. Mulani, A. O., & Mane, P. B. (2016). Area efficient high speed FPGA based invisible watermarking for image authentication. *Indian journal of Science and Technology*, 9(39), 1-6.
- 26. Kashid, M. M., Karande, K. J., & Mulani, A. O. (2022, November). IoT-based environmental parameter monitoring using machine learning approach. In *Proceedings of the International Conference on Cognitive and Intelligent Computing: ICCIC 2021, Volume 1* (pp. 43-51). Singapore: Springer Nature Singapore.
- 27. Nagane, U. P., & Mulani, A. O. (2021). Moving object detection and tracking using Matlab. *Journal of Science and Technology*, 6(1), 2456-5660.
- 28. Kulkarni, P. R., Mulani, A. O., & Mane, P. B. (2016). Robust invisible watermarking for image authentication. In *Emerging Trends in Electrical, Communications and Information Technologies: Proceedings of ICECIT-2015* (pp. 193-200). Singapore: Springer Singapore.
- 29. Ghodake, M. R. G., & Mulani, M. A. (2016). Sensor based automatic drip irrigation system. *Journal for Research*, 2(02).
- 30. Mandwale, A. J., & Mulani, A. O. (2015, January). Different Approaches For Implementation of Viterbi decoder on reconfigurable platform. In 2015 International Conference on Pervasive Computing (ICPC) (pp. 1-4). IEEE.
- 31. Jadhav, M. M., Chavan, G. H., & Mulani, A. O. (2021). Machine learning based autonomous fire combat turret. *Turkish Journal of Computer and Mathematics Education*, 12(2), 2372-2381.
- 32. Shinde, G., & Mulani, A. (2019). A robust digital image watermarking using DWT-PCA. *International Journal of Innovations in Engineering Research and Technology*, 6(4), 1-7.
- 33. Mane, D. P., & Mulani, A. O. (2019). High throughput and area efficient FPGA implementation of AES algorithm. *International Journal of Engineering and Advanced Technology*, 8(4).
- 34. Mulani, A. O., & Mane, D. P. (2017). An Efficient implementation of DWT for image compression on reconfigurable platform. *International Journal of Control Theory and Applications*, 10(15), 1-7.
- 35. Deshpande, H. S., Karande, K. J., & Mulani, A. O. (2015, April). Area optimized implementation of AES algorithm on FPGA. In 2015 International Conference on Communications and Signal Processing (ICCSP) (pp. 0010-0014). IEEE.
- 36. Deshpande, H. S., Karande, K. J., & Mulani, A. O. (2014, April). Efficient implementation of AES algorithm on FPGA. In 2014 International Conference on Communication and Signal Processing (pp. 1895-1899). IEEE.
- 37. Kulkarni, P., & Mulani, A. O. (2015). Robust invisible digital image mamarking using discrete wavelet transform. *International Journal of Engineering Research & Technology (IJERT)*, 4(01), 139-141.
- 38. Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless Non-invasive blood glucose concentration level estimation using PCA and machine learning. *The CRC Book entitled Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications*.
- 39. Mulani, A. O., & Shinde, G. N. (2021). An approach for robust digital image watermarking using DWT-PCA. *Journal of Science and Technology*, 6(1).
- 40. Mulani, A. O., & Mane, P. B. (2014, October). Area optimization of cryptographic algorithm on less dense reconfigurable platform. In 2014 International Conference on Smart Structures and Systems (ICSSS) (pp. 86-89). IEEE.
- 41. Jadhav, H. M., Mulani, A., & Jadhav, M. M. (2022). Design and development of chatbot based on reinforcement learning. *Machine Learning Algorithms for Signal and Image Processing*, 219-229.
- 42. Mulani, A. O., & Mane, P. (2018). Secure and area efficient implementation of digital image watermarking on reconfigurable platform. *International Journal of Innovative Technology and Exploring Engineering*, 8(2), 56-61.
- 43. Kalyankar, P. A., Mulani, A. O., Thigale, S. P., Chavhan, P. G., & Jadhav, M. M. (2022). Scalable face image retrieval using AESC technique. *Journal Of Algebraic Statistics*, 13(3), 173-176.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

9001:2015 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 44. Takale, S., & Mulani, A. (2022). DWT-PCA based video watermarking. *Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN*, 2799-1156.
- 45. Kamble, A., & Mulani, A. O. (2022). Google assistant based device control. *Int. J. of Aquatic Science*, *13*(1), 550-555.
- 46. Kondekar, R. P., & Mulani, A. O. (2017). Raspberry Pi based voice operated Robot. *International Journal of Recent Engineering Research and Development*, 2(12), 69-76.
- 47. Ghodake, R. G., & Mulani, A. O. (2018). Microcontroller based automatic drip irrigation system. In *Techno-Societal 2016: Proceedings of the International Conference on Advanced Technologies for Societal Applications* (pp. 109-115). Springer International Publishing.
- 48. Mulani, A. O., Birajadar, G., Ivković, N., Salah, B., & Darlis, A. R. (2023). Deep learning based detection of dermatological diseases using convolutional neural networks and decision trees. *Traitement du Signal*, 40(6), 2819.
- 49. Boxey, A., Jadhav, A., Gade, P., Ghanti, P., & Mulani, A. O. (2022). Face Recognition using Raspberry Pi. *Journal of Image Processing and Intelligent Remote Sensing (JIPIRS) ISSN*, 2815-0953.
- 50. Patale, J. P., Jagadale, A. B., Mulani, A. O., & Pise, A. (2023). A Systematic survey on Estimation of Electrical Vehicle. *Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN*, 2799-1156.
- 51. Gadade, B., & Mulani, A. (2022). Automatic System for Car Health Monitoring. *International Journal of Innovations in Engineering Research and Technology*, 57-62.
- 52. Shinde, M. R. S., & Mulani, A. O. (2015). Analysis of Biomedical Image Using Wavelet Transform. *International Journal of Innovations in Engineering Research and Technology*, 2(7), 1-7.
- 53. Mandwale, A., & Mulani, A. O. (2014, December). Implementation of convolutional encoder & different approaches for viterbi decoder. In *IEEE International Conference on Communications, Signal Processing Computing and Information technologies*.
- 54. Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless machine learning approach to estimate blood glucose level with non-invasive devices. In *Artificial intelligence, internet of things (IoT) and smart materials for energy applications* (pp. 83-100). CRC Press.
- 55. Maske, Y., Jagadale, A. B., Mulani, A. O., & Pise, A. C. (2023). Development of BIOBOT system to assist COVID patient and caretakers. *European Journal of Molecular & Clinical Medicine*, *10*(01), 2023.
- 56. Utpat, V. B., Karande, D. K., & Mulani, D. A. Grading of Pomegranate Using Quality Analysisl. *International Journal for Research in Applied Science & Engineering Technology (IJRASET)*, 10.
- 57. Takale, S., & Mulani, D. A. (2022). Video Watermarking System. *International Journal for Research in Applied Science & Engineering Technology (IJRASET)*, 10.
- 58. Mandwale, A., & Mulani, A. O. (2015, January). Different approaches for implementation of Viterbi decoder. In *IEEE international conference on pervasive computing (ICPC)*.
- Maske, Y., Jagadale, M. A., Mulani, A. O., & Pise, A. (2021). Implementation of BIOBOT System for COVID Patient and Caretakers Assistant Using IOT. *International Journal of Information Technology and*, 30-43.
- Mulani, A. O., & Mane, D. P. (2016). Fast and Efficient VLSI Implementation of DWT for Image Compression. *International Journal for Research in Applied Science & Engineering Technology*, 5, 1397-1402.
- 61. Kambale, A. (2023). Home automation using google assistant. UGC care approved journal, 32(1), 1071-1077.
- 62. Pathan, A. N., Shejal, S. A., Salgar, S. A., Harale, A. D., & Mulani, A. O. (2022). Hand gesture controlled robotic system. *Int. J. of Aquatic Science*, *13*(1), 487-493.
- 63. Korake, D. M., & Mulani, A. O. (2016). Design of Computer/Laptop Independent Data transfer system from one USB flash drive to another using ARM11 processor. *International Journal of Science, Engineering and Technology Research*.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

29 Volume 5, Issue 4, October

- 64. Mandwale, A., & Mulani, A. O. (2016). Implementation of High Speed Viterbi Decoder using FPGA. *International Journal of Engineering Research & Technology, IJERT*.
- 65. Kolekar, S. D., Walekar, V. B., Patil, P. S., Mulani, A. O., & Harale, A. D. (2022). Password Based Door Lock System. *Int. J. of Aquatic Science*, *13*(1), 494-501.
- 66. Shinde, R., & Mulani, A. O. (2015). Analysis of Biomedical Image. *International Journal on Recent & Innovative trend in technology (IJRITT)*.
- 67. Sawant, R. A., & Mulani, A. O. (2022). Automatic PCB Track Design Machine. *International Journal of Innovative Science and Research Technology*, 7(9).
- 68. ABHANGRAO, M. R., JADHAV, M. S., GHODKE, M. P., & MULANI, A. (2017). Design And Implementation Of 8-bit Vedic Multiplier. *International Journal of Research Publications in Engineering and Technology (ISSN No: 2454-7875)*.
- 69. Gadade, B., Mulani, A. O., & Harale, A. D. (2024). Iot based smart school bus and student monitoring system. *Naturalista Campano*, 28(1), 730-737.
- 70. Mulani, D. A. O. (2024). A Comprehensive Survey on Semi-Automatic Solar-Powered Pesticide Sprayers for Farming. *Journal of Energy Engineering and Thermodynamics (JEET) ISSN*, 2815-0945.
- 71. Salunkhe, D. S. S., & Mulani, D. A. O. (2024). Solar Mount Design Using High-Density Polyethylene. *NATURALISTA CAMPANO*, 28(1).
- 72. Seth, M. (2022). Painless Machine learning approach to estimate blood glucose level of Non-Invasive device. *Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications*.
- 73. Kolhe, V. A., Pawar, S. Y., Gohery, S., Mulani, A. O., Sundari, M. S., Kiradoo, G., ... & Sunil, J. (2024). Computational and experimental analyses of pressure drop in curved tube structural sections of Coriolis mass flow metre for laminar flow region. *Ships and Offshore Structures*, 19(11), 1974-1983.
- 74. Basawaraj Birajadar, G., Osman Mulani, A., Ibrahim Khalaf, O., Farhah, N., G Gawande, P., Kinage, K., & Abdullah Hamad, A. (2024). Epilepsy identification using hybrid CoPrO-DCNN classifier. *International Journal of Computing and Digital Systems*, 16(1), 783-796.
- 75. Kedar, M. S., & Mulani, A. (2021). IoT Based Soil, Water and Air Quality Monitoring System for Pomegranate Farming. *Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN*, 2799-1156.
- 76. Godse, A. P. A.O. Mulani (2009). Embedded Systems (First Edition).
- 77. Pol, R. S., Bhalerao, M. V., & Mulani, A. O. A real time IoT based System Prediction and Monitoring of Landslides. International Journal of Food and Nutritional Sciences, Volume 11, Issue 7, 2022.
- 78. Mulani, A. O., Sardey, M. P., Kinage, K., Salunkhe, S. S., Fegade, T., & Fegade, P. G. (2025). ML-powered Internet of Medical Things (MLIOMT) structure for heart disease prediction. *Journal of Pharmacology and Pharmacotherapeutics*, 16(1), 38-45.
- 79. Aiwale, S., Kolte, M. T., Harpale, V., Bendre, V., Khurge, D., Bhandari, S., ... & Mulani, A. O. (2024). Non-invasive Anemia Detection and Prediagnosis. *Journal of Pharmacology and Pharmacotherapeutics*, 15(4), 408-416.
- 80. Mulani, A. O., Bang, A. V., Birajadar, G. B., Deshmukh, A. B., Jadhav, H. M., & Liyakat, K. K. S. (2024). IoT Based Air, Water, and Soil Monitoring System for Pomegranate Farming. *Annals of Agri-Bio Research*, 29(2), 71-86.
- 81. Kulkarni, T. M., & Mulani, A. O. (2024). Face Mask Detection on Real Time Images and Videos using Deep Learning. *International Journal of Electrical Machine Analysis and Design (IJEMAD)*, 2(1).
- 82. Thigale, S. P., Jadhav, H. M., Mulani, A. O., Birajadar, G. B., Nagrale, M., & Sardey, M. P. (2024). Internet of things and robotics in transforming healthcare services. *Afr J Biol Sci (S Afr)*, 6(6), 1567-1575.
- 83. Pol, D. R. S. (2021). Cloud Based Memory Efficient Biometric Attendance System Using Face Recognition. *Stochastic Modeling & Applications*, 25(2).
- 84. Nagtilak, M. A. G., Ulegaddi, M. S. N., Adat, M. A. S., & Mulani, A. O. (2021). Breast Cancer Prediction using Machine Learning.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

toher 2025 Impact Factor: 7.67

ISSN: 2581-9429 Volume 5, Issue 4, October 2025

- 85. Rahul, G. G., & Mulani, A. O. (2016). Microcontroller Based Drip Irrigation System.
- 86. Kulkarni, T. M., & Mulani, A. O. Deep Learning Based Face-Mask Detection: An Approach to Reduce Pandemic Spreads in Human Healthcare. African Journal of Biological Sciences, 6(6), 2024.
- 87. Mulani, A., & Mane, P. B. (2016). DWT based robust invisible watermarking. Scholars' Press.
- 88. Dr. Vaishali Satish Jadhav, Dr. Shweta Sadanand Salunkhe, Dr. Geeta Salunkhe, Pranali Rajesh Yawle, Dr. Rahul S. Pol, Dr. Altaf Osman Mulani, Dr. Manish Rana, Iot Based Health Monitoring System for Human, Afr. J. Biomed. Res. Vol. 27 (September 2024).
- 89. Dr. Vaishali Satish Jadhav, Geeta D. Salunke, Kalyani Ramesh Chaudhari, Dr. Altaf Osman Mulani, Dr. Sampada Padmakar Thigale, Dr. Rahul S. Pol, Dr. Manish Rana, Deep Learning-Based Face Mask Recognition in Real-Time Photos and Videos, Afr. J. Biomed. Res. Vol. 27 (September 2024).
- 90. Altaf Osman Mulani, Electric Vehicle Parameters Estimation Using Web Portal, Recent Trends in Electronics & Communication Systems, Volume 10, Issue 3, 2023.
- Aryan Ganesh Nagtilak, Sneha Nitin Ulegaddi, Mahesh Mane, Altaf O. Mulani, Automatic Solar Powered Pesticide Sprayer for Farming, International Journal of Microwave Engineering and Technology, Volume 9 No. 2, 2023.
- 92. Annasaheb S. Dandage, Vitthal R. Rupnar, Tejas A Pise, and A. O. Mulani, Real-Time Language Translation Application Using Tkinter. International Journal of Digital Communication and Analog Signals. 2025; 11(01): -p.
- 93. AnnaSaheb S Dandage, Vitthal R. Rupnar, Tejas A Pise, and A. O. Mulani, IoT-Powered Weather Monitoring and Irrigation Automation: Transforming Modern Farming Practices. . 2025; 11(01): -p.
- 94. Mulani, A.O., Kulkarni, T.M. (2025). Face Mask Detection System Using Deep Learning: A Comprehensive Survey. In: Singh, S., Arya, K.V., Rodriguez, C.R., Mulani, A.O. (eds) Emerging Trends in Artificial Intelligence, Data Science and Signal Processing. AIDSP 2023. Communications in Computer and Information Science, vol 2439. Springer, Cham. https://doi.org/10.1007/978-3-031-88759-8 3.
- 95. Karve, S., Gangonda, S., Birajadar, G., Godase, V., Ghodake, R., Mulani, A.O. (2025). Optimized Neural Network for Prediction of Neurological Disorders. In: Singh, S., Arya, K.V., Rodriguez, C.R., Mulani, A.O. (eds) Emerging Trends in Artificial Intelligence, Data Science and Signal Processing. AIDSP 2023. Communications in Computer and Information Science, vol 2440. Springer, Cham. https://doi.org/10.1007/978-3-031-88762-8 18.
- 96. Saurabh Singh, Karm Veer Arya, Ciro Rodriguez Rodriguez, and Altaf Osman Mulani, Emerging Trends in Artificial Intelligence, Data Science and Signal Processing, Communications in Computer and Information Science (CCIS), volume 2440.
- 97. Saurabh Singh, Karm Veer Arya, Ciro Rodriguez Rodriguez, and Altaf Osman Mulani, Emerging Trends in Artificial Intelligence, Data Science and Signal Processing, Communications in Computer and Information Science (CCIS), volume 2439.
- 98. Godase, V., Mulani, A., Pawar, A., & Sahani, K. (2025). A Comprehensive Review on PIR Sensor-Based Light Automation Systems. International Journal of Image Processing and Smart Sensors, 1(1), 22-29.
- 99. Godase, V., Mulani, A., Takale, S., & Ghodake, R. (2025). Comprehensive Review on Automated Field Irrigation using Soil Image Analysis and IoT. Journal of Advance Electrical Engineering and Devices, 3(1), 46-55.
- 100. Altaf Osman Mulani, Deshmukh M., Jadhav V., Chaudhari K., Mathew A.A., Shweta Salunkhe. Transforming Drug Therapy with Deep Learning: The Future of Personalized Medicine. Drug Research. 2025 Aug 29.
- 101.Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), Image Authentication Using Cryptography and Watermarking, International Journal of Image Processing and Smart Sensors, Vol. 1, Issue 2, pp 27-34.
- 102. Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), Advancements in Artificial Intelligence: Transforming Industries and Society, International Journal of Artificial Intelligence of Things (AIoT) in Communication Industry, Vol. 1, Issue 2, pp 1-5.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO POUT:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 103. Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), AI-Powered Predictive Analytics in Healthcare: Revolutionizing Disease Diagnosis and Treatment, Journal of Advance Electrical Engineering and Devices, Vol. 3, Issue 2, pp 27-34.
- 104. Godase, V., Mulani, A., Takale, S., & Ghodake, R. (2025). A Holistic Review of Automatic Drip Irrigation Systems: Foundations and Emerging Trends. *Available at SSRN 5247778*.
- 105. V. Godase, R. Ghodake, S. Takale, and A. Mulani, —Design and Optimization of Reconfigurable Microwave Filters Using AI Techniques, International Journal of RF and Microwave Communication Technologies, vol. 2, no. 2, pp.26–41, Aug. 2025.
- 106. V. Godase, A. Mulani, R. Ghodake, S. Takale, "Automated Water Distribution Management and Leakage Mitigation Using PLC Systems," Journal of Control and Instrumentation Engineering, vol.11, no. 3, pp. 1-8, Aug. 2025.
- 107. V. Godase, A. Mulani, R. Ghodake, S. Takale, "PLC-Assisted Smart Water Distribution with Rapid Leakage Detection and Isolation," Journal of Control Systems and Converters, vol. 1, no. 3, pp. 1-13, Aug. 2025.
- 108. V. V. Godase, S. R. Takale, R. G. Ghodake, and A. Mulani, "Attention Mechanisms in Semantic Segmentation of Remote Sensing Images," Journal of Advancement in Electronics Signal Processing, vol. 2, no. 2, pp. 45–58, Aug. 2025.
- 109.D. Waghmare, A. Mulani, S. R. Takale, V. Godase, and A. Mulani, "A Comprehensive Review on Automatic Fruit Sorting and Grading Techniques with Emphasis on Weight-based Classification," Research & Review: Electronics and Communication Engineering, vol. 2, no. 3, pp. 1-10, Oct. 2025.
- 110.Karande, K. J., & Talbar, S. N. (2014). Independent component analysis of edge information for face recognition. Springer India.
- 111.Karande, K. J., & Talbar, S. N. (2008). Face recognition under variation of pose and illumination using independent component analysis. ICGST-GVIP, ISSN.
- 112. Gaikwad, D. S., & Karande, K. J. (2016). Image processing approach for grading and identification of diseases on pomegranate fruit: An overview. International Journal of Computer Science and Information Technologies, 7, 519-522.
- 113. Kawathekar, P. P., & Karande, K. J. (2014, July). Severity analysis of Osteoarthritis of knee joint from X-ray images: A Literature review. In 2014 International Conference on Signal propagation and computer technology (ICSPCT 2014) (pp. 648-652). IEEE.
- 114. Daithankar, M. V., Karande, K. J., & Harale, A. D. (2014, April). Analysis of skin color models for face detection. In 2014 International Conference on Communication and Signal Processing (pp. 533-537). IEEE.
- 115. Karande, J. K., Talbar, N. S., & Inamdar, S. S. (2012, May). Face recognition using oriented Laplacian of Gaussian (OLOG) and independent component analysis (ICA). In 2012 Second International Conference on Digital Information and Communication Technology and it's Applications (DICTAP) (pp. 99-103). IEEE.
- 116. Shubham Salunkhe, Pruthviraj Zambare, Sakshi Shinde, S. K. Godase. (2024). API Development for Cloud Parameter Curation International. *Journal of Electrical and Communication Engineering Technology*, 2(1). https://doi.org/10.37591/ijecet
- 117.Badave, A., Pawale, A., Andhale, T., Godase, S. K., & STM JOURNALS. (2024). Smart home safety using fire and gas detection system. *Recent Trends in Fluid Mechanics*, 1, 35–43. https://journals.stmjournals.com/rtfm
- 118. Asabe, H., Asabe, R., Lengare, O., & Godase, S. (2025). IOT- BASED STORAGE SYSTEM FOR MANAGING VOLATILE MEDICAL RESOURCES IN HEALTHCARE FACILITIES. *INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN ENGINEERING MANAGEMENT AND SCIENCE (IJPREMS)*, 05(03), 2427–2433. https://www.ijprems.com
- 119. Karche, S. N., Mulani, A. O., Department of Electronics, SKN Sinhgad College of Engineering, Korti, & University of Solapur, Maharashtra, India. (2018). AESC Technique for Scalable Face Image Retrieval. International Journal of Innovative Research in Computer and Communication Engineering, 6(4), 3404–3405.

https://doi.org/10.15680/IJIRCCE.2018.0604036

International Journal of Advanced Research in Science, Communication and Technology

9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 120.Bankar, A. S., Harale, A. D., & Karande, K. J. (2021). Gestures Controlled Home Automation using Deep Learning: A Review. *International Journal of Current Engineering and Technology*, 11(06), 617–621. https://doi.org/10.14741/ijcet/v.11.6.4
- 121. Mali, A. S., Ghadge, S. K., Adat, A. S., & Karande, S. V. (2024). Intelligent Medication Management System. IJSRD - International Journal for Scientific Research & Development, Vol. 12(Issue 3).
- 122. Water Level Control, Monitoring and Altering System by using GSM in Irrigation Based on Season. (2019). In *International Research Journal of Engineering and Technology (IRJET)* (Vol. 06, Issue 04, p. 1035) [Journal-article]. https://www.irjet.net
- 123. Modi, S., Misal, V., Kulkarni, S., & Mali A.S. (2025). Hydroponic Farming Monitoring System Automated system to monitor and control nutrient and pH levels. In *Journal of Microcontroller Engineering and Applications* (Vol. 12, Issue 3, pp. 11–16). https://doi.org/10.37591/JoMEA
- 124. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "VGHN: variations aware geometric moments and histogram features normalization for robust uncontrolled face recognition", *International Journal of Information Technology*, https://doi.org/10.1007/s41870-021-00703-0.
- 125. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition using MFCC & DTW Features", *International Journal of Engineering Research And Applications (IJERA) pp. 118-122, ISSN: 2248-9622.*
- 126. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Recognition of Marathi Numerals Using MFCC and DTW Features", *Book Title: Recent Trends on Image Processing and Pattern Recognition, RTIP2R 2018, CCIS 1037, pp. 1–11,* © *Springer Nature Singapore Pte Ltd. 2019* https://doi.org/10.1007/978-981-13-9187-3 17.
- 127. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Analysis of Face Recognition Algorithms for Uncontrolled Environments", *Book Title: Computing, Communication and Signal Processing, pp. 919–926*, © *Springer Nature Singapore Pte Ltd. 2018*.
- 128.Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Recognition of Marathi Numerals using MFCC and DTW Features", 2nd International Conference on Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2018), 21th -22th Dec., 2018, organized by Solapur University, Solapur in collaboration with University of South Dakota (USA) and Universidade de Evora (Portugal), India.
- 129. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "A Comprehensive Survey of Face Databases for Constrained and Unconstrained Environments", 2nd IEEE Global Conference on Wireless Computing & Networking (GCWCN-2018), 23th-24th Nov., 2018, organized by STES's Sinhgad Institute of Technology, Lonavala, India.
- 130. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "An Extensive Survey of Prominent Researches in Face Recognition under different Conditions", 4th International Conference on Computing, Communication, Control And Automation (ICCUBEA-2018), 16th to 18th Aug. 2018 organized by Pimpri Chinchwad College of Engineering (PCCOE), Pune, India.
- 131.Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Analysis of Face Recognition Algorithms for Uncontrolled Environments", 3rd International Conference on Computing, Communication and Signal Processing (ICCASP 2018), 26th-27th Jan.2018, organized by Dr. BATU, Lonere, India.
- 132. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", International Conference on Recent Trends, Feb 2012, IOK COE, Pune.
- 133.S. S. Gangonda, "Bidirectional Visitor Counter with automatic Door Lock System", National Conference on Computer, Communication and Information Technology (NCCCIT-2018), 30th and 31st March 2018 organized by Department of Electronics and Telecommunication Engineering, SKN SCOE, Korti, Pandharpur.
- 134.Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition using MFCC & DTW Features", ePGCON 2012, 23rd and 24th April 2012 organized by Commins COE for Woman, Pune.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

9001:2015 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 135.Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", National Conference on Emerging Trends in Engineering and Technology (VNCET'12), 30th March 2012 organized by Vidyavardhini's College of Engineering and Technology, Vasai Road, Thane.
- 136. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", ePGCON 2011, 26th April 2011 organized by MAEER's MIT, Kothrud, Pune-38.
- 137. Siddheshwar Gangonda, "Medical Image Processing", Aavishkar-2K7, 17th and 18th March 2007 organized by Department of Electronics and Telecommunication Engineering, SVERI's COE, Pandharpur.
- 138.Siddheshwar Gangonda, "Image enhancement & Denoising", VISION 2k7, 28th Feb-2nd March 2007 organized by M.T.E. Society's Walchand College of Engineering, Sangli.
- 139. Siddheshwar Gangonda, "Electromagnetic interference & compatibility" KSHITIJ 2k6, 23rd and 24th Sept. 2006 organized by Department of Mechanical Engineering, SVERI's COE, Pandharpur.
- 140.A. Pise and K. Karande, "A genetic Algorithm-Driven Energy-Efficient routing strategy for optimizing performance in VANETs," Engineering Technology and Applied Science Research, vol. 15, no. 5, 2025, [Online]. Available: https://etasr.com/index.php/ETASR/article/view/12744
- 141.A. C. Pise, K. J. Karande, "Investigating Energy-Efficient Optimal Routing Protocols for VANETs: A Comprehensive Study", ICT for Intelligent Systems, Lecture Notes in Networks and Systems 1109, Proceedings of ICTIS 2024 Volume 3, Lecture Notes in Networks and Systems, Springer, Singapore, ISSN 2367-3370, PP 407-417, 29 October 2024 https://doi.org/10.1007/978-981-97-6675-8 33.
- 142.A. C. Pise, et. al., "Smart Vehicle: A Systematic Review", International Journal The Ciência & Engenharia Science & Engineering Journal ISSN: 0103-944XVolume 11 Issue 1, 2023pp: 992–998, 2023.
- 143.A. C. Pise, et. al., "Smart Vehicle: A Systematic Review", International Journal of Research Publication and Reviews, ISSN 2582-7421, Vol 4, no 10, pp 2728-2731 October 2023.
- 144.A. C. Pise, et. al., "Development of BIOBOT System to Assist COVID Patient and Caretakers", European Journal of Molecular and Clinical Medicine; 10(1):3472-3480, 2023.
- 145.A. C. Pise, et. al., "IoT Based Landmine Detection Robot", International Journal of Research in Science & EngineeringISSN: 2394-8299Vol: 03, No. 04, June-July 2023.
- 146.A. C. Pise, et. al., "A Systematic survey on Estimation of Electrical Vehicle", Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN: 2799-1156, Volume 3, Issue 01, Pages 1-6, December 2023.
- 147.A. C. Pise, et. al., "Python Algorithm to Estimate Range of Electrical Vehicle", Web of Science, Vol 21, No 1 (2022) December 2022
- 148.A. C. Pise, et. al., "Implementation of BIOBOT System for COVID Patient and Caretakers Assistant using IOT", International Journal of Information technology and Computer Engineering. 30-43. 10.55529/ijite.21.30.43, (2022).
- 149.A. C. Pise, et. al., "An IoT Based Real Time Monitoring of Agricultural and Micro irrigation system", International journal of scientific research in Engineering and management (IJSREM), VOLUME: 06 ISSUE: 04 | APRIL 2022, ISSN:2582-3930.
- 150.A. C. Pise, Dr. K. J. Karande, "An Exploratory study of Cluster Based Routing Protocol in VANET: A Review", International Journal of Advanced Research in Engineering and Technology(IJARET), 12,10, 2021, 17-30, Manuscript ID :00000-94375 Source ID : 00000006, Journal_uploads/IJARET/VOLUME 12 ISSUE 10/IJARET 12 10 002.pdf
- 151.A. C. Pise, et. al., "Android based Portable Health Support System," A Peer Referred & Indexed International Journal of Research, Vol. 8, issue. 4, April 2019.
- 152.A. C. Pise, et. al., "Facial Expression Recognition Using Image Processing," International Journal of VLSI Design, Microelectronics and Embedded System, Vol. 3, issue. 2, July 2018.
- 153.A. C. Pise, et. al., "Detection of Cast Iron Composition by Cooling Curve Analysis using Thermocouple Temperature Sensor," UGC Approved International Journal of Academic Science (IJRECE), Vol.6, Issue.3, July-September 2018.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, October 2025

- 154.A. C. Pise, et. al., "Android Based Portable Health Support", System International Journal of Engineering Sciences & Research Technology (IJESRT 2017) Vol.6, Issue 8, pp 85-88 5th Aug 2017
- 155.A. C. Pise, et. al., "Adaptive Noise Cancellation in Speech Signal", International Journal of Innovative Engg and Technology, 2017
- 156.A. C. Pise, et. al., "Lung Cancer Detection System by using Baysian Classifier", ISSN 2454-7875, IJRPET, published online in conference special issue VESCOMM-2016, February 2016
- 157.A. C. Pise, et. al., "Review on Agricultural Plant Diseases Detection by Image Processing", ISSN 2278-62IX, IJLTET, Vol 7, Issue 1 May 2016
- 158.A. C. Pise, et. al. "Segmentation of Retinal Images for Glaucoma Detection", International Journal of Engineering Research and Technology (06, June-2015).
- 159.A. C. Pise, et. al. "Color Local Texture Features Based Face Recognition", International Journal of Innovations in Engineering and Technology(IJIET), Dec. 2014
- 160.A. C. Pise, et. al. "Single Chip Solution For Multimode Robotic Control", International Journal of Engineering Research and Technology (IJERT-2014), Vol. 3, Issue 12, Dec. 2014.
- 161. Anjali C. Pise et. al., "Remote monitoring of Greenhouse parameters using zigbee Wireless Sensor Network", International Journal of Engineering Research & Technology ISSN 2278-0181 (online) Vol. 3, Issue 2, and pp: (2412-2414), Feb. 2014.
- 162.A. C. Pise, K. J. Karande, "Cluster Head Selection Based on ACO In Vehicular Ad-hoc Networks", Machine Learning for Environmental Monitoring in Wireless Sensor Networks
- 163.A. C. Pise, K. J. Karande, "Architecture, Characteristics, Applications and Challenges in Vehicular Ad Hoc Networks" Presented in 27th IEEE International Symposium on Wireless Personal Multimedia Communications (WPMC 2024) "Secure 6G AI Nexus: Where Technology Meets Humanity" Accepted for book chapter to be published in international Scopus index book by River publisher.
- 164.A. C. Pise, Dr. K. J. Karande, "K-mean Energy Efficient Optimal Cluster Based Routing Protocol in Vehicular Ad Hoc Networks", International Conference on Innovations in Artificial Intelligence and Machine Learning (ICAIML-2022), August 20th and 21st 2022 Springer database Conference.
- 165.A. C. Pise, Mr. D. Nale, "Web-Based Application for Result Analysis", ", International Conference on Innovations in Artificial Intelligence and Machine Learning (ICAIML-2022), August 20th and 21st 2022 Springer database Conference.
- 166.A. C. Pise, et. al., "Detection of Cast Iron Composition by Cooling Curve Analysis using Thermocouple Temperature Sensor," 2nd International Conference on Engineering Technology, Science and Management Innovation (ICETSMI – 2018), 2nd September 2018.
- 167.A. C. Pise, et. al., "Facial Expression Recognition Using Facial Features," IEEE International Conference on Communication and Electronics Systems (ICCES 2018), October 2018.
- 168.A. C. Pise, et. al., "Estimating Parameters of Cast Iron Composition using Cooling Curve Analysis," IEEE International Conference on Communication and Electronics Systems (ICCES 2018), Coimbatore, October 2018
- 169.A. C. Pise, et. al., "Android based portable Health Support System," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 170.A. C. Pise, et. al., "Baysian Classifier & FCM Segmentation for Lung Cancer Detection in early stage," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 171.A. C. Pise, et. al., "Cast Iron Composition Measurement by Coding Curve Analysis," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 172.A. C. Pise, et. al., "War field Intelligence Defence Flaging Vehicle," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 173.A. C. Pise, et. al. "Disease Detection of Pomegranate Plant", IEEE sponsored International Conference on Computation of Power, Energy, Information and Communication, 22-23 Apr. 2015.
- 174.A. C. Pise, P. Bankar. "Face Recognition by using GABOR and LBP", IEEE International Conference on Communication and Signal Processing, ICCSP, 2-4 Apr. 2015
- 175.A. C. Pise, et. al. "Single Chip Solution For Multimode Robotic Control", Ist IEEE International Conference on Computing Communication and Automation, 26-27 Feb2015.
- 176. Anjali C. Pise, Vaishali S. Katti, "Efficient Design for Monitoring of Greenhouse Parameters using Zigbee Wireless Sensor Network", fifth SARC international conference IRF, IEEE forum ISBN 978-93-84209-21-6,pp 24-26, 25th May 2014
- 177.A. C. Pise, P. Bankar, "Face Recognition using Color Local Texture Features", International Conference on Electronics and Telecommunication, Electrical and Computer Engineering, Apr.2014.
- 178.A. C. Pise, et.al. "Monitoring parameters of Greenhouse using Zigbee Wireless Sensor Network", 1st International Conference on Electronics and Telecommunication, Electrical and Computer Engineering, 5-6 Apr.2014.
- 179.A. C. Pise, et. al. "Compensation schemes and performance Analysis of IQ Imbalances in Direct Conversion Receivers", International Conference at GHPCOE, Gujarat, (Online Proceeding is Available), 2009.
- 180.A. C. Pise, K. J. Karande, "Energy-Efficient Optimal Routing Protocols in VANETs", 66th Annual IETE Convention, AIC -2023 September16-17, 2023, under the Theme: The Role of 5G In Enabling Digital Transformation for Rural Upliftment.
- 181.A. C. Pise, et. al. "Automatic Bottle Filling Machine using Raspberry Pi", National Conference on computer ;Communication & information Technology (NCCIT-2018) dated 30th & 31st March 2018.
- 182.A. C. Pise, et. al. "Design & Implementation of ALU using VHDL", National Conference on computer ;Communication & information Technology (NCCIT-2018) dated 30th & 31st March 2018.
- 183.A. C. Pise, et. al. "Mechanism and Control of Autonomus four rotor Quad copter", National Conference on Computer, Electrical and Electronics Engineering, 23-24 Apr. 2016.
- 184.A. C. Pise, et. al. "Segmentation of Optic Disk and Optic Cup from retinal Images", ICEECMPE Chennai, June 2015
- 185.A. C. Pise, et. al. "Diseases Detection of Pomegranate Plant", IEEE Sponsored International conference on Computation of Power, Energy, April 2015.
- 186.A. C. Pise, et. al. "Compensation Techniques for I/Q Imbalance in Direct-Conversion Receivers", Conference at SCOE, Pune 2010.
- 187.A. C. Pise, et. al. "I/Q Imbalance compensation Techniques in Direct Conversion Receiver", Advancing Trends in Engineering and Management Technologies, ATEMT-2009, Conference at Shri Ramdeobaba Kamla Nehru Engineering College, Nagpur, 20-21 November 2009
- 188.A. C. Pise, et. al. "Compensation Techniques for I/Q Imbalance in Direct Conversion Receiver", Conference at PICT, Pune 2008.
- 189.A. C. Pise, et. al. "I/Q Imbalance compensation Techniques in Direct Conversion Receiver", Conference at DYCOE, Pune 2008.
- 190.A. C. Pise, et. al. "DUCHA: A New Dual channel MAC protocol for Multihop Ad-Hoc Networks", Conference at SVCP, Pune 2007.
- 191.Godase, V., Pawar, P., Nagane, S., & Kumbhar, S. (2024). Automatic railway horn system using node MCU. Journal of Control & Instrumentation, 15(1).
- 192.Godase, V., & Godase, J. (2024). Diet prediction and feature importance of gut microbiome using machine learning. Evolution in Electrical and Electronic Engineering, 5(2), 214-219.
- 193. Jamadade, V. K., Ghodke, M. G., Katakdhond, S. S., & Godase, V. A Comprehensive Review on Scalable Arduino Radar Platform for Real-time Object Detection and Mapping.
- 194. Godase, V. (2025). A comprehensive study of revolutionizing EV charging with solar-powered wireless solutions. Advance Research in Power Electronics and Devices e-ISSN, 3048-7145.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

9001:2015 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 195.Godase, V. (2025, April). Advanced Neural Network Models for Optimal Energy Management in Microgrids with Integrated Electric Vehicles. In Proceedings of the International Conference on Trends in Material Science and Inventive Materials (ICTMIM-2025) DVD Part Number: CFP250J1-DVD.
- 196. Dange, R., Attar, E., Ghodake, P., & Godase, V. (2023). Smart agriculture automation using ESP8266 NodeMCU. J. Electron. Comput. Netw. Appl. Math, (35), 1-9.
- 197. Godase, V. (2025). Optimized Algorithm for Face Recognition using Deepface and Multi-task Cascaded Convolutional Network (MTCNN). Optimum Science Journal.
- 198. Mane, V. G. A. L. K., & Gangonda, K. D. S. Pipeline Survey Robot.
- 199. Godase, V. (2025). Navigating the digital battlefield: An in-depth analysis of cyber-attacks and cybercrime. International Journal of Data Science, Bioinformatics and Cyber Security, 1(1), 16-27.
- 200. Godase, V., & Jagadale, A. (2019). Three element control using PLC, PID & SCADA interface. International Journal for Scientific Research & Development, 7(2), 1105-1109.
- 201.Godase, V. (2025). Edge AI for Smart Surveillance: Real-time Human Activity Recognition on Low-power Devices. International Journal of AI and Machine Learning Innovations in Electronics and Communication Technology, 1(1), 29-46.
- 202.Godase, V., Modi, S., Misal, V., & Kulkarni, S. (2025). LoRaEdge-ESP32 synergy: Revolutionizing farm weather data collection with low-power, long-range IoT. Advance Research in Analog and Digital Communications, 2(2), 1-11.
- 203.Godase, V. (2025). Comparative study of ladder logic and structured text programming for PLC. Available at SSRN 5383802.
- 204. Godase, V., Modi, S., Misal, V., & Kulkarni, S. Real-time object detection for autonomous drone navigation using YOLOv8, I. Advance Research in Communication Engineering and its Innovations, 2(2), 17-27.
- 205. Godase, V. (2025). Smart energy management in manufacturing plants using PLC and SCADA. Advance Research in Power Electronics and Devices, 2(2), 14-24.
- 206. Godase, V. (2025). IoT-MCU Integrated Framework for Field Pond Surveillance and Water Resource Optimization. International Journal of Emerging IoT Technologies in Smart Electronics and Communication, 1(1), 9-19.
- 207. Godase, V. (2025). Graphene-Based Nano-Antennas for Terahertz Communication. International Journal of Digital Electronics and Microprocessor Technology, 1(2), 1-14.
- 208. Godase, V., Khiste, R., & Palimkar, V. (2025). AI-Optimized Reconfigurable Antennas for 6G Communication Systems. Journal of RF and Microwave Communication Technologies, 2(3), 1-12.
- 209.Bhaganagare, S., Chavan, S., Gavali, S., & Godase, V. V. (2025). Voice-Controlled Home Automation with ESP32: A Systematic Review of IoT-Based Solutions. Journal of Microprocessor and Microcontroller Research, 2(3), 1-13.
- 210. Jamadade, V. K., Ghodke, M. G., Katakdhond, S. S., & Godase, V. A Comprehensive Review on Scalable Arduino Radar Platform for Real-time Object Detection and Mapping.
- 211.Godase, V. (2025). Cross-Domain Comparative Analysis of Microwave Imaging Systems for Medical Diagnostics and Industrial Testing. Journal of Microwave Engineering & Technologies, 12(2), 39-48p.
- 212.V. K. Jamadade, M. G. Ghodke, S. S. Katakdhond, and V. Godase, —A Review on Real-time Substation Feeder Power Line Monitoring and Auditing Systems," International Journal of Emerging IoT Technologies in Smart Electronics and Communication, vol. 1, no. 2, pp. 1-16, Sep. 2025.
- 213. V. V. Godase, "VLSI-Integrated Energy Harvesting Architectures for Battery-Free IoT Edge Systems," Journal of Electronics Design and Technology, vol. 2, no. 3, pp. 1-12, Sep. 2025.
- 214.A. Salunkhe et al., "A Review on Real-Time RFID-Based Smart Attendance Systems for Efficient Record Management," Advance Research in Analog and Digital Communications, vol. 2, no. 2, pp.32-46, Aug. 2025.
- 215. Vaibhav, V. G. (2025). A Neuromorphic-Inspired, Low-Power VLSI Architecture for Edge AI in IoT Sensor Nodes. *Journal of Microelectronics and Solid State Devices*, *12*(2), 41-47p.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, October 2025

- 216. Nagane, M.S., Pawar, M.P., & Godase, P.V. (2022). Cinematica Sentiment Analysis. *Journal of Image Processing and Intelligent Remote Sensing*.
- 217. Godase, V.V. (2025). Tools of Research. SSRN Electronic Journal.
- 218.Godase, V. (n.d.). EDUCATION AS EMPOWERMENT: THE KEY TO WOMEN'S SOCIO ECONOMIC DEVELOPMENT. Women Empowerment and Development, 174–179.
- 219.Godase, V. (n.d.). COMPREHENSIVE REVIEW ON EXPLAINABLE AI TO ADDRESSES THE BLACK BOX CHALLENGE AND ITS ROLE IN TRUSTWORTHY SYSTEMS. In Sinhgad College of Engineering, Artificial Intelligence Education and Innovation (pp. 127–132).
- 220.Godase, V. (n.d.-b). REVOLUTIONIZING HEALTHCARE DELIVERY WITH AI-POWERED DIAGNOSTICS: A COMPREHENSIVE REVIEW. In SKN Sinhgad College of Engineering, SKN Sinhgad College of Engineering (pp. 58–61).
- 221. Dhope, V. (2024). SMART PLANT MONITORING SYSTEM. In International Journal of Creative Research Thoughts (IJCRT). https://www.ijcrt.org
- 222.M. M. Zade,Sushant D.Kambale,Shweta A.Mane,Prathamesh M. Jadhav.(2025) "IOT Based early fire detection in Jungles". RIGJA&AR Volume 2 Issue 1,ISSN:2998-4459. DOI:https://doi.org/10.5281/zendo.15056435
- 223.M. M. Zade, Bramhadev B. Rupanar, Vrushal S. Shilawant , Akansha R. Pawar(2025) "IOT Flood Monitoring & Alerting System using Rasberry Pi-Pico "International Journal of Research Publication & Reviews , Volume 6 ,Issue 3,ISSN:2582-7421.DOI:https://ijrpr.com/uploads/V6ISSUE3/IJRPR40251.pdf
- 224.M.M.Zade(2022) "Touchless Fingerprint Recognition System" (Paper-ID 907)(2022) International Conference on "Advanced Technologies for Societal Applications: Techno-Societal 2022 https://link.springer.com/book/10.1007/978-3-031-34644-6?page=6
- 225.Mr.M.M.Zade published the paper on "Automation of Color Object Sorting Conveyor Belt", in International Journal of Scientific Research in Engineering & Management (IJSREM),ISSN:2582-3930 Volume 06 ,Issue 11th November 2022.
- 226.Mr.M.M.Zade published the paper on "Cloud Based Patient Health Record Tracking web Development",in International Journal of Advanced Research in Science, Communication & Technology(IJARSCT),ISSN NO:2581-9429 Volume 02, Issue 03,DOI 1048175/IJARSCT-3705,IF 6.252, May 2022.
- 227.Mr. Mahesh M Zade, "Performance analysis of PSNR Vs. Impulse Noise for the enhancement of Image using SMF", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- 228.Mr. Mahesh M Zade, "Classification of Power Quality Disturbances Using SVM & their Efficiency Comparison", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- 229.Mr. Mahesh M Zade, "Dynamic Clustering of Wireless Sensor Network Using Modified AODV", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- 230.Mr. Mahesh M Zade, "Performance analysis of PSNR Vs. Impulse Noise for the enhancement of Image using SMF", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur, Feb.2019
- 231.Mr. Mahesh M Zade, "Classification of Power Quality Disturbances Using SVM & their Efficiency Comparison", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur Feb.2019
- 232.Mr. Mahesh M Zade, "Dynamic Clustering of Wireless Sensor Network Using Modified AODV", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur Feb.2019
- 233.Mr. Mahesh M Zade & Mr.S.M.Karve,"Performance Analysis of Median Filter for Enhancement of Highly Corrupted Images", National Conference on Advanced Trends in Engineering, Association with IRJMS, Karmyogi Engineering College, Shelave, Pandharpur, March 2016.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 234.Mr. Mahesh M Zade & Mr.S.M.Karve,"Implementation of Reed Solomen Encoder & Decoder Using FPGA", National Conference on Advanced Trends in Engineering, Association with IRJMS, Karmyogi Engineering College, Shelave, Pandharpur, March 2016.
- 235.Mr. Mahesh M Zade & Dr.S.M.Mukane,"Performance of Switching Median Filter for Enhancement of Image", National Conference on Mechatronics at Sinhgad Institute of Technology and Science, Narhe, Pune, Feb. 2016.
- 236.Mr. Mahesh M Zade & Dr.S.M.Mukane, "Enhancement of Image with the help of Switching Median Filter", National Conference on Emerging Trends in Electronics & Telecommunication Engineering, SVERI's College of Engineering Pandharpur, NCET 2013.
- 237.Mr.Mahesh M Zade & Dr.S.M.Mukane,"Enhancement of Image with the help of Switching Median Filter", International Journal of Computer Application (IJCA) SVERI's College of Engineering, Pandharpur, Dec.2013.
- 238.A. O. Mulani, V. Godase, S. Takale, and R. Ghodake, "Secure Image Authentication using AES and DWT Watermarking on Reconfigurable Platform," International Journal of Embedded System and VLSI Design, vol. 1, no. 2, pp. 14-20, Oct. 2025

