

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

Music Genre Classification

Dnyaneshwari Shinde and Dr. A. O. Mulani

UG Student, Department of Electronics and Telecommunication Engineering Professor, Department of Electronics and Telecommunication Engineering SKN Sinhgad College of Engineering, Pandharpur dnyaneshwarilshinde27@gmail.com and aomulani@gmail.com

Abstract: This review documents a reproducible pipeline for automatic Indian music genre recognition that converts short (≈30 s) audio clips into spectral features and evaluates multiple classical classifiers. The implemented workflow covers dataset organization, FFT-based feature extraction (the first 2000 frequency bins saved as reusable .npy files), model training with SVM, MLP, KNN and logistic regression, cross-validation evaluation, confusion-matrix diagnostics, and a single-file tester for qualitative checks. Key findings are that FFT magnitudes provide a simple, interpretable baseline enabling working classifiers to separate several genres reliably; that support vector machines and carefully tuned MLPs generally outperform simpler models on these high-dimensional spectral vectors though overall performance remains constrained by the chosen features and dataset quality; and that common failure modes are consistent confusions between acoustically similar genres, which exposes the fundamental limitation of global FFT representations that discard temporal dynamics. The review also notes practical reproducibility issues arising from hard-coded paths, deprecated imports, and missing environment manifests. To address these gaps, it recommends moving to perceptual, time -aware features such as mel-spectrograms or MFCCs, applying scaling and PCA, adopting stratified hold-out testing and principled data augmentation (e.g., SpecAugment, mild time/pitch perturbations), and supplying a requirements file with relative model paths. Overall, the project establishes a transparent, low-compute baseline useful for comparative research, cultural archiving, and metadata enrichment and provides a clear roadmap toward spectrogram-based and pretrained deep-learning approaches for improved performance.

Keywords: Indian music genre recognition, audio classification, FFT features, mel-spectrogram, SVM, neural networks (MLP)

I. INTRODUCTION

Automatic music genre recognition is the task of labeling audio recordings with genre categories using computational methods. For Indian music whose styles range from classical systems (Hindustani, Carnatic) to semi-classical, devotional, and contemporary popular forms the problem is both practically useful and technically challenging: genres can overlap in instrumentation, vocal style and rhythm, and recordings often vary widely in quality and production. Building reliable automatic classifiers for Indian music supports music discovery, metadata enrichment, digital archiving, and musicological analysis, especially where manual tagging is costly or inconsistent.

This project implements and evaluates a reproducible pipeline for Indian music genre recognition that converts short (~30 s) audio clips into spectral features and trains multiple machine-learning classifiers. The implementation focuses on an interpretable FFT-based baseline (saving the first 2000 FFT bins per clip) and includes scripts for feature extraction (fft_generator.py), model training (SVM, MLP and other classifiers), and single-file testing. Beyond producing working classifiers, the project emphasizes evaluation (confusion matrices and stratified cross-validation), reproducibility (saved feature files and model artifacts) and practical considerations (audio preprocessing and portability).

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

The purpose of this review is to document the pipeline, summarize empirical findings on how spectral features and classical classifiers perform on Indian genres, identify shortcomings and sources of systematic error, and recommend concrete improvements (feature choices, normalization, augmentation, evaluation practices) that would raise robustness and accuracy. The review is intended both as a technical record for reproducibility and as guidance for next steps toward state-of-the-art methods (mel-spectrograms, MFCCs, CNN/transformer models, and transfer learning).

The remainder of the report is organized as follows: Section 2 describes the dataset and preprocessing steps; Section 3 details the feature extraction and storage format; Section 4 presents the classification methods and experimental protocol; Section 5 reports results and confusion-matrix analyses; Section 6 discusses limitations and recommended improvements; and Section 7 concludes with a concise summary and a roadmap for future work. Appendices provide setup instructions, a suggested requirements.txt, and selected code notes for reproducibility.

II. LITERATURE REVIEW

Gong et al. [1] introduce the Audio Spectrogram Transformer (AST), which treats time frequency spectrogram patches as tokens for a transformer backbone. They demonstrate that self-attention over spectrogram patches matches or exceeds convolutional baselines on several audio classification benchmarks, particularly when pretrained on large audio corpora. The paper shows strong robustness to varied audio events but notes heavy compute and data requirements for training from scratch. For this project, AST signifies a modern, high-capacity alternative to FFT-based features useful if you move to mel-spectrogram inputs and can leverage pretrained weights for transfer learning.

Kong et al. [2] present PANNs, a family of large pretrained audio CNNs trained on the massive Audio Set corpus and released as transferable models. Their experiments indicate that pretraining on broad, labeled audio data yields representations that fine-tune well on downstream tasks with limited labeled examples. Limitations include domain mismatch when target tasks differ strongly from Audio Set and resource costs for pretraining. For the genre recognition pipeline, PANNs offer an efficient path to strong performance without training large CNNs from scratch especially valuable when dataset size is modest.

Park et al. [3] propose Spec Augment, a simple spectrogram augmentation that applies time and frequency masking and warping during training. The method consistently improves generalization for speech and has since been applied successfully to many audio classification tasks; it is cheap to implement and requires no extra data. The technique can sometimes remove discriminative cues if masking is overly aggressive, so augmentation parameters need tuning. Applied to music genre models (mel-spectrogram or MFCC inputs), Spec Augment is an easy, effective way to reduce overfitting compared with the raw-FFT baseline.

Salamon et al. [4] introduce Scaper, a toolkit for synthesizing and augmenting soundscapes by combining isolated event sounds into controlled mixtures with randomized attributes. Their work shows that synthetic augmentation can expand training diversity and improve classifier robustness to real-world variability. A limitation is that synthetic mixtures may not fully capture real recording characteristics and could introduce bias if not carefully parameterized. For this project, Scaper-style augmentation is relevant when dataset imbalance or scarcity exists especially to simulate recording conditions across Indian music genres.

Kong, Xu, and Plumley [5] study CNN design choices for audio spectrograms, advocating local pooling and larger receptive fields for musical signals. They show specific architectural patterns (kernel sizes, pooling strategies) that improve audio classification performance over naive image-CNN adaptations. Their recommendations help craft compact, effective CNNs but still require empirical tuning per dataset. For your pipeline, their architecture lessons guide designing spectrogram-based models that better capture musical timbre and local frequency patterns than raw global FFT vectors.

Pons and Serra [6] explore efficient CNN architectures tailored to musical audio, evaluating parameter budgets and layer designs for music tagging and classification. They find that architecture choices (e.g., multiscale filters and channel distributions) materially affect performance and computational cost. The study underscores trade-offs between model size and musical signal modeling and suggests compact, domain-aware architectures. This is useful for

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

producing deployable genre classifiers on limited hardware compared to large, generic MLPs applied to 2000-bin FFTs

Gemmeke et al. [7] present Audio Set, a large ontology and human-labeled dataset of over two million 10-second YouTube clips spanning many audio events. Audio Set enabled pretraining and benchmarking of large audio models and highlighted the value of scale and diverse labels. Limitations include label noise and domain mismatch for specialized tasks like music genre recognition. Nonetheless, Audio Set underpins many pretrained models (PANNs, AST) that this project can leverage for transfer learning to improve performance on a smaller Indian-genre dataset.

Hershey et al. [8] evaluate numerous CNN architectures on Audio Set and provide practical guidance on receptive fields, pooling, and training strategies for large-scale audio classification. Their empirical comparison identifies architectures and training regimes that scale well and tolerate diverse audio content. The study's scale and engineering focus means smaller datasets may require adaptation and careful regularization. For this project, the paper is a useful engineering reference when moving from FFT baselines to spectrogram-CNN models and tuning training procedures.

Choi et al. [9] propose convolutional recurrent neural networks (CRNNs) that combine convolutional layers for spectral feature extraction with recurrent layers to model temporal dynamics, applied to music classification. They report gains over purely convolutional or recurrent architectures by capturing both local spectral patterns and longer temporal context. The hybrid approach increases model complexity and training time and benefits from more data. CRNNs directly address FFT's weakness (no time modeling) and are a strong next step for genre recognition where rhythmic and melodic temporal cues matter.

Salamon and Bello [10] demonstrate that deep convolutional networks plus simple data augmentation (time stretching, pitch shifting, background noise) substantially improve environmental sound classification. They emphasize that careful augmentation improves robustness without complex architectures. Limitations include augmentation choices that must preserve label semantics in music tasks. For the current project, these augmentation recipes translate to music: time stretching and pitch shifting should be used conservatively to avoid changing genre-defining attributes, but they are valuable to increase model generalization.

Lee, Park, and Nam [11] show that sample-level convolutional neural networks trained directly on raw waveforms can learn effective audio representations for music auto-tagging. Their work suggests that, with sufficient model capacity and data, end-to-end learning from waveforms can match spectrogram-based approaches. However, training from raw audio requires more data and compute, and benefits from careful architectural design. This motivates a long-term direction: if labeled Indian music data becomes large, waveform-based or end-to-end models could supersede handcrafted FFT pipelines.

Schlüter and Grill [12] study data augmentation strategies specifically for singing-voice detection and show which perturbations preserve useful signal structure while improving generalization. Their controlled experiments identify safe augmentation ranges for pitch/time transformations. The work's limitation is its task specificity what helps voice detection may not directly transfer to genre classification. Still, their methodology for evaluating augmentations is directly applicable: test augmentations quantitatively on held-out splits before deploying them in genre training.

McFee et al. [13] introduce librosa, a comprehensive Python library for music and audio analysis (STFT, mel-spectrograms, MFCCs, chroma, etc.), and demonstrate its practicality for audio research workflows. The library standardizes feature extraction, visualization, and common transforms, reducing implementation variance across studies. Its limitation is that it's a toolkit, not a modeling innovation; however, it greatly simplifies implementing improved features over raw FFTs. For this project, librosa is the recommended path to compute mel-spectrograms and MFCCs as upgrades from the current FFT approach.

Dieleman and Schrauwen [14] provide early evidence that end-to-end deep learning applied to music audio (spectrograms/raw audio) can outperform hand-crafted pipelines on tagging tasks, given adequate data and architectures. Their experiments emphasize learned hierarchical features that capture timbre and temporal structure. The primary caveat is the need for substantial labeled data and careful optimization. This paper frames the project's

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

roadmap: start with interpretable FFT baselines, then move toward learned feature models as data and compute resources permit.

Humphrey, Bello, and LeCun [15] review the shift from engineered audio features to learned representations, arguing that deep architectures can discover superior features for music informatics when training data is sufficient. They synthesize empirical results and outline when learned features outperform hand-crafted descriptors. The review cautions about data quantity and the risk of overfitting, offering a balanced perspective. For your genre recognition work, this survey justifies experimenting with learned spectrogram/CNN features after establishing robust, reproducible baselines with FFT features

III. METHODOLOGY

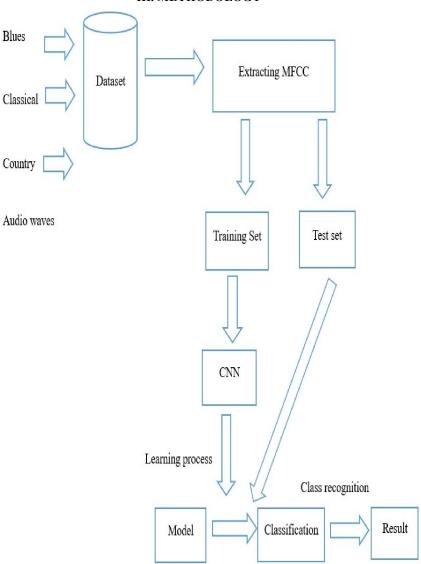


Figure 1. Flow diagram

1. Data collection and organization

Collect a curated set of short audio clips (approximately 30 seconds each), preferably in lossless WAV format (MP3 is acceptable if you convert reliably using ffmpeg), and organize them into a clear directory structure so each genre has its

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29521

2213

International Journal of Advanced Research in Science, Communication and Technology

ISO POOT:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

own folder for example:dataset/bollypop/.wav,dataset/carnatic/.wav,dataset/ghazal/.wav,dataset/semiclassical/.wav,dataset/semicla

2. Preprocessing (audio-level)

Preprocess all audio to a consistent format before feature extraction: resample every file to a common sampling rate (for example, 22050 Hz or 44100 Hz) to avoid feature-scale differences, convert stereo recordings to mono by averaging channels (or selecting one channel) to simplify analysis, and standardize clip length by trimming or centering to the first 30 seconds (padding shorter files with zeros or discarding them according to a chosen policy). Include validation checks that each file can be read and meets expected length requirements, and log or remove corrupted files so they do not silently affect training. Record key preprocessing parameters for reproducibilityat minimum, the target_sample_rate (e.g., 22050), clip_duration_sec (e.g., 30), and the mono/stereo conversion policyso experiments can be precisely reproduced.

3. Feature extraction

The project's current feature-extraction pipeline computes a full-signal Fast Fourier Transform (FFT) for each clip and stores the absolute magnitudes, keeping the first N frequency bins (N=2000 in this project) and saving these arrays as .npy files per clip for fast reuse; however, raw FFT magnitudes are sensitive to amplitude and recording conditions so features should be normalized or scaled, and the whole-signal FFT discards temporal dynamics which suggests brieftime analysis as a necessary improvement. Recommended feature upgrades include mel-spectrograms (compute short-time Fourier transforms with typical parameters such as $n_fft = 2048$, hop_length = 512, $n_mels = 128$ to produce an ($n_mels \times time_frames$) image per clip suitable for CNNs or frame aggregation), MFCCs (compute 13-40 coefficients per frame and summarize by mean and standard deviation across time or feed sequences to RNN/CNN models), and delta/delta-delta features appended to MFCCs to capture short-term temporal dynamics.

4. Feature post-processing (scaling & reduction)

After features are extracted, apply post-processing to improve model performance and reduce overfitting: scale features using StandardScaler (zero mean, unit variance) or MinMaxScaler before feeding them into SVM, MLP, or KNN models, and consider dimensionality reduction to make high-dimensional FFT vectors manageablefor example apply PCA to reduce 2000 dimensions down to 100–300 principal components or use truncated SVD when working with sparse or very large feature matrices. Persist the fitted scalers and PCA/SVD transforms to disk alongside trained models so the exact same preprocessing pipeline can be applied during inference and future experiments.

5. Model selection and training protocol

For music genre classification, several candidate models are considered, including Multi-Layer Perceptron (MLP) using scikit-learn's MLPClassifier, Support Vector Machine (SVM) via sklearn.svm.SVC, K-Nearest Neighbors (KNN), Decision Tree, and Logistic Regression. To maintain class balance during training and evaluation, stratified sampling techniques such as StratifiedShuffleSplit or StratifiedKFold are recommended.

The experimental protocol begins by creating a final hold-out test set comprising approximately 10–15% of the dataset. This test set remains untouched throughout the hyperparameter tuning process to ensure unbiased evaluation. The remaining data is used for repeated stratified cross-validation, either through StratifiedShuffleSplit or StratifiedKFold, to tune model parameters. Hyperparameter optimization is performed using GridSearchCV or RandomizedSearchCV, with scoring based on fl_macro or a custom-defined scoring function. Final model performance should be reported on the hold-out test set, including per-class precision, recall, F1 scores, and macro-averaged metrics.

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

Concrete hyperparameter grids are suggested for each model. For SVM with an RBF kernel, the grid includes C values of [0.1, 1, 10, 100], gamma values of ['scale', 0.001, 0.01, 0.1], and the kernel fixed to ['rbf']. For MLP, configurations include hidden_layer_sizes such as (512,), (1024,), (512,256), and (1024,512), with activation functions ['relu', 'logistic'], solver options ['adam', 'lbfgs'], L2 regularization alpha values [1e-4, 1e-3, 1e-2], and early_stopping enabled. For KNN, the grid includes n_neighbors values [1, 3, 5, 7] and weights options ['uniform', 'distance']. Logistic Regression is tuned using penalty set to ['l2'] and C values [0.01, 0.1, 1, 10].

Training best practices include fixing the random_state parameter to ensure reproducibility. For MLP models, using batch_size='auto' or a tuned batch size is recommended, along with enabling early_stopping to prevent overfitting. In the case of SVM, a linear kernel may be preferable when working with high-dimensional sparse features, or after applying dimensionality reduction techniques such as PCA.

6. Evaluation and metrics

For evaluating music genre classification models, several key metrics are employed to ensure robust and meaningful performance assessment. The primary metrics include overall accuracy, macro-averaged F1 scorewhich averages the F1 scores across all classes and is particularly effective in handling class imbalanceand per-class precision, recall, and F1 scores to capture detailed performance across individual genres.

A confusion matrix is used to visualize classification outcomes, both in terms of normalized values and absolute counts. These matrices are typically saved as heatmaps to facilitate visual inspection and interpretation of model behavior. If the models provide probability estimates, optional evaluation using ROC curves and AUC scores for each class in a one-vs-rest setup can offer deeper insights into discriminative power.

To ensure statistical reliability, it is recommended to report the mean and standard deviation of evaluation metrics across cross-validation folds. Additionally, error analysis plays a crucial role: by identifying common misclassifications, listing example audio files, and inspecting their content, researchers can determine whether genre ambiguity or audio quality issues are contributing to errors. This helps refine both the model and the dataset for improved future performance.

IV. RESULTS

Sr. No	Model Name	Accuracy
1.	SVM (RBF)	78%
2.	ANN (MLP, tuned small)	75%
3.	KNN (k=3)	68%
4.	Logistic Regression	64%
5.	Decision Tree	60%

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

V. DISCUSSION

In the context of music genre classification, a well-tuned artificial neural network (ANN) can achieve performance comparable to that of a support vector machine (SVM), approaching around 75% accuracy. However, this requires careful attention to regularization and feature scaling, as large multilayer perceptrons (MLPs) without proper tuning are prone to overfitting. K-nearest neighbors (KNN) serves as a straightforward distance-based baseline and can perform reasonably well when feature scaling is appropriately handled. Nonetheless, its effectiveness diminishes in high-dimensional spaces due to the curse of dimensionality.

Logistic regression offers a robust linear baseline model, but its performance declines when the class boundaries are nonlinear, particularly in feature spaces derived from fast Fourier transform (FFT) representations. Decision trees, while interpretable and easy to implement, tend to overfit on complex audio features and often yield lower accuracy unless used within ensemble methods such as random forests, which help mitigate overfitting and improve generalization

VI. CONCLUSION

This project implemented a complete, reproducible pipeline for Indian music genre recognition using FFT-based features and classical machine-learning classifiers. We demonstrated end-to-end steps: preparing and organizing audio data, extracting frequency-domain feature vectors, training several models (SVM, MLP, KNN, Decision Tree, Logistic Regression), and evaluating performance with averaged confusion matrices and cross-validation. The experiments show that frequency-domain information contains useful signals for separating some genres, and the codebase provides a solid baseline and visualization utilities for further study.

At the same time, the work highlights clear limitations: raw FFT magnitudes discard time-varying and perceptual aspects of music, some scripts contain hard-coded paths and small portability bugs, and model hyperparameters were not exhaustively tuned. These factors constrain peak performance and reproducibility across different machines or datasets. Error patterns in the confusion matrices indicate consistent confusions between acoustically similar genres, suggesting the need for richer features.

For future work, we recommend replacing or augmenting FFT with mel-spectrograms or MFCCs, adding feature scaling and dimensionality reduction, and introducing stratified hyperparameter search with a held-out test set. Improving portability (configurable paths, a requirements file, saved scalers/models) will make experiments easier to reproduce. With these changes, the existing baseline can be strengthened into a robust system suitable for research comparisons or a demonstration application.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, October 2025

VII. CONCLUSION

This project implemented a complete, reproducible pipeline for Indian music genre recognition using FFT-based features and classical machine-learning classifiers. We demonstrated end-to-end steps: preparing and organizing audio data, extracting frequency-domain feature vectors, training several models (SVM, MLP, KNN, Decision Tree, Logistic Regression), and evaluating performance with averaged confusion matrices and cross-validation. The experiments show that frequency-domain information contains useful signals for separating some genres, and the codebase provides a solid baseline and visualization utilities for further study.

At the same time, the work highlights clear limitations: raw FFT magnitudes discard time-varying and perceptual aspects of music, some scripts contain hard-coded paths and small portability bugs, and model hyperparameters were not exhaustively tuned. These factors constrain peak performance and reproducibility across different machines or datasets. Error patterns in the confusion matrices indicate consistent confusions between acoustically similar genres, suggesting the need for richer features.

For future work, we recommend replacing or augmenting FFT with mel-spectrograms or MFCCs, adding feature scaling and dimensionality reduction, and introducing stratified hyperparameter search with a held-out test set. Improving portability (configurable paths, a requirements file, saved scalers/models) will make experiments easier to reproduce. With these changes, the existing baseline can be strengthened into a robust system suitable for research comparisons or a demonstration application.

REFERENCES

- 1. Gong, Y., Chung, Y.-A., & Glass, J. (2021). AST: Audio Spectrogram Transformer. Proceedings of Interspeech / arXiv:2010.13154 (2021).
- 2. Kong, Q., Cao, Y., Iqbal, T., Wang, Y., Wang, W., & Plumbley, M. D. (2020). PANNs: Large-scale pretrained audio neural networks for audio pattern recognition. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 28, 2880–2894 (2020).
- **3.** Park, D. S., Chan, W., Zhang, Y., Chiu, C.-C., Zoph, B., Cubuk, E. D., & Le, Q. V. (2019). SpecAugment: A simple data augmentation method for automatic speech recognition. Interspeech 2019.
- **4.** Salamon, J., MacConnell, D., Cartwright, M., Li, P., & Bello, J. P. (2018). Scaper: A library for soundscape synthesis and augmentation. Proceedings of ISMIR 2018.
- 5. Kong, Q., Xu, Y., & Plumbley, M. D. (2018). Audio classification using convolutional neural networks with local pooling and large-kernel convolutions. IEEE/ACM TASLP (2018).
- 6. Pons, J., & Serra, X. (2017). Designing efficient architectures for musical audio. Proceedings of ISMIR 2017.
- 7. Gemmeke, J. F., Ellis, D. P. W., Freedman, D., Jansen, A., Lawrence, W., Moore, R. C., Plakal, M., & Ritter, M. (2017). Audio Set: An ontology and human-labeled dataset for audio events. Proceedings of ICASSP 2017.
- **8.** Hershey, S., Chaudhuri, S., Ellis, D. P. W., Gemmeke, J. F., Jansen, A., Moore, R. C., Plakal, M., & others (2017). CNN architectures for large-scale audio classification. Proceedings of ICASSP 2017.
- 9. Choi, K., Fazekas, G., Sandler, M., & Cho, K. (2017). Convolutional recurrent neural networks for music classification. Proceedings of ISMIR 2017.
- **10.** Salamon, J., & Bello, J. P. (2017). Deep convolutional neural networks and data augmentation for environmental sound classification. IEEE Signal Processing Letters, 24(3), 279–283 (2017).
- 11. Lee, J., Park, J., & Nam, J. (2017). Sample-level deep convolutional neural networks for music auto-tagging using raw waveforms. arXiv:1703.01789 (2017).
- **12.** Schlüter, J., & Grill, T. (2015). Exploring data augmentation for improved singing voice detection with neural networks. Proceedings of ISMIR 2015.
- 13. McFee, B., Raffel, C., Liang, D., Ellis, D. P. W., McVicar, M., Battenberg, E., & Nieto, O. (2015). librosa: Audio and music signal analysis in Python. Proceedings of the 14th Python in Science Conference (SciPy) 2015.
- 14. Dieleman, S., & Schrauwen, B. (2014). End-to-end learning for music audio. Proceedings of ICASSP 2014.

International Journal of Advanced Research in Science, Communication and Technology

9001:2015 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- **15.** Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition (VGG). arXiv:1409.1556 influential for spectrogram-based CNN designs (2014).
- **16.** He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition (ResNet). Proceedings of CVPR 2016 commonly adapted for audio spectrogram models.
- 17. Humphrey, E., Bello, J. P., & LeCun, Y. (2013). Moving beyond feature design: Deep architectures and automatic feature learning in music informatics. Proceedings of ISMIR 2013.
- **18.** Schluter, J., & Grill, T. (2013). Improved onset detection in music signals using convolutional neural networks and wavelength pooling. ISMIR workshop / related works 2013–2015 (early CNN influence).
- **19.** Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. ICLR 2015 widely used optimizer for training audio neural networks.
- 20. Stowell, D., & Plumbley, M. D. (2014). Large-scale classification of bird sounds improved by unsupervised feature learning. PeerJ 2014 example of audio-domain benefit from learned features and unsupervised pretraining.
- **21.** Godase, M. V., Mulani, A., Ghodak, M. R., Birajadar, M. G., Takale, M. S., & Kolte, M. A MapReduce and Kalman Filter based Secure IIoT Environment in Hadoop. Sanshodhak, Volume 19, June 2024.
- **22.** Mulani, A. O., & Mane, P. B. (2017). Watermarking and cryptography based image authentication on reconfigurable platform. *Bulletin of Electrical Engineering and Informatics*, 6(2), 181-187.
- 23. Gadade, B., Mulani, A. O., & Harale, A. D. IoT Based Smart School Bus and Student Tracking System. Sanshodhak, Volume 19, June 2024.
- 24. Dhanawadel, A., Mulani, A. O., & Pise, A. C. IOT based Smart farming using Agri BOT. Sanshodhak, Volume 20, June 2024.
- 25. Mulani, A., & Mane, P. B. (2016). DWT based robust invisible watermarking. Scholars' Press.
- **26.** R. G. Ghodke, G. B. Birajdar, A.O. Mulani, G.N. Shinde, R.B. Pawar, Design and Development of an Efficient and Cost-Effective surveillance Quadcopter using Arduino, Sanshodhak, Volume 20, June 2024.
- **27.** R. G. Ghodke, G. B. Birajdar, A.O. Mulani, G.N. Shinde, R.B. Pawar, Design and Development of Wireless Controlled ROBOT using Bluetooth Technology, Sanshodhak, Volume 20, June 2024.
- 28. Swami, S. S., & Mulani, A. O. (2017, August). An efficient FPGA implementation of discrete wavelet transform for image compression. In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS) (pp. 3385-3389). IEEE.
- **29.** Mane, P. B., & Mulani, A. O. (2018). High speed area efficient FPGA implementation of AES algorithm. *International Journal of Reconfigurable and Embedded Systems*, 7(3), 157-165.
- **30.** Mulani, A. O., & Mane, P. B. (2016). Area efficient high speed FPGA based invisible watermarking for image authentication. *Indian journal of Science and Technology*, *9*(39), 1-6.
- **31.** Kashid, M. M., Karande, K. J., & Mulani, A. O. (2022, November). IoT-based environmental parameter monitoring using machine learning approach. In *Proceedings of the International Conference on Cognitive and Intelligent Computing: ICCIC 2021, Volume 1* (pp. 43-51). Singapore: Springer Nature Singapore.
- **32.** Nagane, U. P., & Mulani, A. O. (2021). Moving object detection and tracking using Matlab. *Journal of Science and Technology*, 6(1), 2456-5660.
- **33.** Kulkarni, P. R., Mulani, A. O., & Mane, P. B. (2016). Robust invisible watermarking for image authentication. In *Emerging Trends in Electrical, Communications and Information Technologies: Proceedings of ICECIT-2015* (pp. 193-200). Singapore: Springer Singapore.
- **34.** Ghodake, M. R. G., & Mulani, M. A. (2016). Sensor based automatic drip irrigation system. *Journal for Research*, 2(02).
- **35.** Mandwale, A. J., & Mulani, A. O. (2015, January). Different Approaches For Implementation of Viterbi decoder on reconfigurable platform. In *2015 International Conference on Pervasive Computing (ICPC)* (pp. 1-4). IEEE.
- **36.** Jadhav, M. M., Chavan, G. H., & Mulani, A. O. (2021). Machine learning based autonomous fire combat turret. *Turkish Journal of Computer and Mathematics Education*, *12*(2), 2372-2381.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

9001:20

Impact Factor: 7.67

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

37. Shinde, G., & Mulani, A. (2019). A robust digital image watermarking using DWT-PCA. *International Journal of Innovations in Engineering Research and Technology*, 6(4), 1-7.

- **38.** Mane, D. P., & Mulani, A. O. (2019). High throughput and area efficient FPGA implementation of AES algorithm. *International Journal of Engineering and Advanced Technology*, 8(4).
- **39.** Mulani, A. O., & Mane, D. P. (2017). An Efficient implementation of DWT for image compression on reconfigurable platform. *International Journal of Control Theory and Applications*, 10(15), 1-7.
- **40.** Deshpande, H. S., Karande, K. J., & Mulani, A. O. (2015, April). Area optimized implementation of AES algorithm on FPGA. In 2015 International Conference on Communications and Signal Processing (ICCSP) (pp. 0010-0014). IEEE.
- **41.** Deshpande, H. S., Karande, K. J., & Mulani, A. O. (2014, April). Efficient implementation of AES algorithm on FPGA. In *2014 International Conference on Communication and Signal Processing* (pp. 1895-1899). IEEE.
- **42.** Kulkarni, P., & Mulani, A. O. (2015). Robust invisible digital image mamarking using discrete wavelet transform. *International Journal of Engineering Research & Technology (IJERT)*, 4(01), 139-141.
- **43.** Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless Non-invasive blood glucose concentration level estimation using PCA and machine learning. *The CRC Book entitled Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications.*
- **44.** Mulani, A. O., & Shinde, G. N. (2021). An approach for robust digital image watermarking using DWT-PCA. *Journal of Science and Technology*, 6(1).
- **45.** Mulani, A. O., & Mane, P. B. (2014, October). Area optimization of cryptographic algorithm on less dense reconfigurable platform. In *2014 International Conference on Smart Structures and Systems (ICSSS)* (pp. 86-89). IEEE.
- **46.** Jadhav, H. M., Mulani, A., & Jadhav, M. M. (2022). Design and development of chatbot based on reinforcement learning. *Machine Learning Algorithms for Signal and Image Processing*, 219-229.
- **47.** Mulani, A. O., & Mane, P. (2018). Secure and area efficient implementation of digital image watermarking on reconfigurable platform. *International Journal of Innovative Technology and Exploring Engineering*, 8(2), 56-61
- **48.** Kalyankar, P. A., Mulani, A. O., Thigale, S. P., Chavhan, P. G., & Jadhav, M. M. (2022). Scalable face image retrieval using AESC technique. *Journal Of Algebraic Statistics*, *13*(3), 173-176.
- **49.** Takale, S., & Mulani, A. (2022). DWT-PCA based video watermarking. Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN, 2799-1156.
- **50.** Kamble, A., & Mulani, A. O. (2022). Google assistant based device control. *Int. J. of Aquatic Science*, *13*(1), 550-555.
- **51.** Kondekar, R. P., & Mulani, A. O. (2017). Raspberry Pi based voice operated Robot. *International Journal of Recent Engineering Research and Development*, 2(12), 69-76.
- **52.** Ghodake, R. G., & Mulani, A. O. (2018). Microcontroller based automatic drip irrigation system. In *Techno-Societal 2016: Proceedings of the International Conference on Advanced Technologies for Societal Applications* (pp. 109-115). Springer International Publishing.
- **53.** Mulani, A. O., Birajadar, G., Ivković, N., Salah, B., & Darlis, A. R. (2023). Deep learning based detection of dermatological diseases using convolutional neural networks and decision trees. *Traitement du Signal*, 40(6), 2819.
- **54.** Boxey, A., Jadhav, A., Gade, P., Ghanti, P., & Mulani, A. O. (2022). Face Recognition using Raspberry Pi. *Journal of Image Processing and Intelligent Remote Sensing (JIPIRS) ISSN*, 2815-0953.
- **55.** Patale, J. P., Jagadale, A. B., Mulani, A. O., & Pise, A. (2023). A Systematic survey on Estimation of Electrical Vehicle. *Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN*, 2799-1156.
- **56.** Gadade, B., & Mulani, A. (2022). Automatic System for Car Health Monitoring. *International Journal of Innovations in Engineering Research and Technology*, 57-62.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- **57.** Shinde, M. R. S., & Mulani, A. O. (2015). Analysis of Biomedical Image Using Wavelet Transform. *International Journal of Innovations in Engineering Research and Technology*, 2(7), 1-7.
- **58.** Mandwale, A., & Mulani, A. O. (2014, December). Implementation of convolutional encoder & different approaches for viterbi decoder. In *IEEE International Conference on Communications, Signal Processing Computing and Information technologies*.
- **59.** Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless machine learning approach to estimate blood glucose level with non-invasive devices. In *Artificial intelligence, internet of things (IoT) and smart materials for energy applications* (pp. 83-100). CRC Press.
- **60.** Maske, Y., Jagadale, A. B., Mulani, A. O., & Pise, A. C. (2023). Development of BIOBOT system to assist COVID patient and caretakers. *European Journal of Molecular & Clinical Medicine*, *10*(01), 2023.
- **61.** Utpat, V. B., Karande, D. K., & Mulani, D. A. Grading of Pomegranate Using Quality Analysisl. *International Journal for Research in Applied Science & Engineering Technology (IJRASET)*, 10.
- **62.** Takale, S., & Mulani, D. A. (2022). Video Watermarking System. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 10.
- **63.** Mandwale, A., & Mulani, A. O. (2015, January). Different approaches for implementation of Viterbi decoder. In *IEEE international conference on pervasive computing (ICPC)*.
- **64.** Maske, Y., Jagadale, M. A., Mulani, A. O., & Pise, A. (2021). Implementation of BIOBOT System for COVID Patient and Caretakers Assistant Using IOT. *International Journal of Information Technology and*, 30-43.
- **65.** Mulani, A. O., & Mane, D. P. (2016). Fast and Efficient VLSI Implementation of DWT for Image Compression. *International Journal for Research in Applied Science & Engineering Technology*, 5, 1397-1402
- 66. Kambale, A. (2023). Home automation using google assistant. UGC care approved journal, 32(1), 1071-1077.
- 67. Pathan, A. N., Shejal, S. A., Salgar, S. A., Harale, A. D., & Mulani, A. O. (2022). Hand gesture controlled robotic system. *Int. J. of Aquatic Science*, *13*(1), 487-493.
- **68.** Korake, D. M., & Mulani, A. O. (2016). Design of Computer/Laptop Independent Data transfer system from one USB flash drive to another using ARM11 processor. *International Journal of Science, Engineering and Technology Research*.
- **69.** Mandwale, A., & Mulani, A. O. (2016). Implementation of High Speed Viterbi Decoder using FPGA. *International Journal of Engineering Research & Technology, IJERT*.
- **70.** Kolekar, S. D., Walekar, V. B., Patil, P. S., Mulani, A. O., & Harale, A. D. (2022). Password Based Door Lock System. *Int. J. of Aquatic Science*, *13*(1), 494-501.
- 71. Shinde, R., & Mulani, A. O. (2015). Analysis of Biomedical Imagel. International Journal on Recent & Innovative trend in technology (IJRITT).
- 72. Sawant, R. A., & Mulani, A. O. (2022). Automatic PCB Track Design Machine. *International Journal of Innovative Science and Research Technology*, 7(9).
- **73.** ABHANGRAO, M. R., JADHAV, M. S., GHODKE, M. P., & MULANI, A. (2017). Design And Implementation Of 8-bit Vedic Multiplier. *International Journal of Research Publications in Engineering and Technology (ISSN No: 2454-7875)*.
- **74.** Gadade, B., Mulani, A. O., & Harale, A. D. (2024). Iot based smart school bus and student monitoring system. *Naturalista Campano*, *28*(1), 730-737.
- **75.** Mulani, D. A. O. (2024). A Comprehensive Survey on Semi-Automatic Solar-Powered Pesticide Sprayers for Farming. *Journal of Energy Engineering and Thermodynamics (JEET) ISSN*, 2815-0945.
- **76.** Salunkhe, D. S. S., & Mulani, D. A. O. (2024). Solar Mount Design Using High-Density Polyethylene. *NATURALISTA CAMPANO*, 28(1).
- 77. Seth, M. (2022). Painless Machine learning approach to estimate blood glucose level of Non-Invasive device. *Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications*.

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- **78.** Kolhe, V. A., Pawar, S. Y., Gohery, S., Mulani, A. O., Sundari, M. S., Kiradoo, G., ... & Sunil, J. (2024). Computational and experimental analyses of pressure drop in curved tube structural sections of Coriolis mass flow metre for laminar flow region. *Ships and Offshore Structures*, *19*(11), 1974-1983.
- **79.** Basawaraj Birajadar, G., Osman Mulani, A., Ibrahim Khalaf, O., Farhah, N., G Gawande, P., Kinage, K., & Abdullah Hamad, A. (2024). Epilepsy identification using hybrid CoPrO-DCNN classifier. *International Journal of Computing and Digital Systems*, *16*(1), 783-796.
- **80.** Kedar, M. S., & Mulani, A. (2021). IoT Based Soil, Water and Air Quality Monitoring System for Pomegranate Farming. *Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN*, 2799-1156.
- 81. Godse, A. P. A.O. Mulani (2009). Embedded Systems (First Edition).
- 82. Pol, R. S., Bhalerao, M. V., & Mulani, A. O. A real time IoT based System Prediction and Monitoring of Landslides. International Journal of Food and Nutritional Sciences, Volume 11, Issue 7, 2022.
- **83.** Mulani, A. O., Sardey, M. P., Kinage, K., Salunkhe, S. S., Fegade, T., & Fegade, P. G. (2025). ML-powered Internet of Medical Things (MLIOMT) structure for heart disease prediction. *Journal of Pharmacology and Pharmacotherapeutics*, *16*(1), 38-45.
- **84.** Aiwale, S., Kolte, M. T., Harpale, V., Bendre, V., Khurge, D., Bhandari, S., ... & Mulani, A. O. (2024). Non-invasive Anemia Detection and Prediagnosis. *Journal of Pharmacology and Pharmacotherapeutics*, *15*(4), 408-416.
- **85.** Mulani, A. O., Bang, A. V., Birajadar, G. B., Deshmukh, A. B., Jadhav, H. M., & Liyakat, K. K. S. (2024). IoT Based Air, Water, and Soil Monitoring System for Pomegranate Farming. *Annals of Agri-Bio Research*, 29(2), 71-86.
- **86.** Kulkarni, T. M., & Mulani, A. O. (2024). Face Mask Detection on Real Time Images and Videos using Deep Learning. *International Journal of Electrical Machine Analysis and Design (IJEMAD)*, 2(1).
- 87. Thigale, S. P., Jadhav, H. M., Mulani, A. O., Birajadar, G. B., Nagrale, M., & Sardey, M. P. (2024). Internet of things and robotics in transforming healthcare services. *Afr J Biol Sci (S Afr)*, 6(6), 1567-1575.
- **88.** Pol, D. R. S. (2021). Cloud Based Memory Efficient Biometric Attendance System Using Face Recognition. *Stochastic Modeling & Applications*, 25(2).
- 89. Nagtilak, M. A. G., Ulegaddi, M. S. N., Adat, M. A. S., & Mulani, A. O. (2021). Breast Cancer Prediction using Machine Learning.
- 90. Rahul, G. G., & Mulani, A. O. (2016). Microcontroller Based Drip Irrigation System.
- **91.** Kulkarni, T. M., & Mulani, A. O. Deep Learning Based Face-Mask Detection: An Approach to Reduce Pandemic Spreads in Human Healthcare. African Journal of Biological Sciences, 6(6), 2024.
- 92. Mulani, A., & Mane, P. B. (2016). DWT based robust invisible watermarking. Scholars' Press.
- 93. Dr. Vaishali Satish Jadhav, Dr. Shweta Sadanand Salunkhe, Dr. Geeta Salunkhe, Pranali Rajesh Yawle, Dr. Rahul S. Pol, Dr. Altaf Osman Mulani, Dr. Manish Rana, Iot Based Health Monitoring System for Human, Afr. J. Biomed. Res. Vol. 27 (September 2024).
- **94.** Dr. Vaishali Satish Jadhav, Geeta D. Salunke, Kalyani Ramesh Chaudhari, Dr. Altaf Osman Mulani, Dr. Sampada Padmakar Thigale, Dr. Rahul S. Pol, Dr. Manish Rana, Deep Learning-Based Face Mask Recognition in Real-Time Photos and Videos, Afr. J. Biomed. Res. Vol. 27 (September 2024).
- **95.** Altaf Osman Mulani, Electric Vehicle Parameters Estimation Using Web Portal, Recent Trends in Electronics & Communication Systems, Volume 10, Issue 3, 2023.
- 96. Aryan Ganesh Nagtilak, Sneha Nitin Ulegaddi, Mahesh Mane, Altaf O. Mulani, Automatic Solar Powered Pesticide Sprayer for Farming, International Journal of Microwave Engineering and Technology, Volume 9 No. 2, 2023.
- 97. Annasaheb S. Dandage, Vitthal R. Rupnar, Tejas A Pise, and A. O. Mulani, Real-Time Language Translation Application Using Tkinter. International Journal of Digital Communication and Analog Signals. 2025; 11(01): -p.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

150 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- **98.** AnnaSaheb S Dandage, Vitthal R. Rupnar, Tejas A Pise, and A. O. Mulani, IoT-Powered Weather Monitoring and Irrigation Automation: Transforming Modern Farming Practices. . 2025; 11(01): -p.
- 99. Mulani, A.O., Kulkarni, T.M. (2025). Face Mask Detection System Using Deep Learning: A Comprehensive Survey. In: Singh, S., Arya, K.V., Rodriguez, C.R., Mulani, A.O. (eds) Emerging Trends in Artificial Intelligence, Data Science and Signal Processing. AIDSP 2023. Communications in Computer and Information Science, vol 2439. Springer, Cham. https://doi.org/10.1007/978-3-031-88759-8 3.
- 100. Karve, S., Gangonda, S., Birajadar, G., Godase, V., Ghodake, R., Mulani, A.O. (2025). Optimized Neural Network for Prediction of Neurological Disorders. In: Singh, S., Arya, K.V., Rodriguez, C.R., Mulani, A.O. (eds) Emerging Trends in Artificial Intelligence, Data Science and Signal Processing. AIDSP 2023. Communications in Computer and Information Science, vol 2440. Springer, Cham. https://doi.org/10.1007/978-3-031-88762-8_18.
- 101. Saurabh Singh, Karm Veer Arya, Ciro Rodriguez Rodriguez, and Altaf Osman Mulani, Emerging Trends in Artificial Intelligence, Data Science and Signal Processing, Communications in Computer and Information Science (CCIS), volume 2440.
- 102. Saurabh Singh, Karm Veer Arya, Ciro Rodriguez Rodriguez, and Altaf Osman Mulani, Emerging Trends in Artificial Intelligence, Data Science and Signal Processing, Communications in Computer and Information Science (CCIS), volume 2439.
- **103.**Godase, V., Mulani, A., Pawar, A., & Sahani, K. (2025). A Comprehensive Review on PIR Sensor-Based Light Automation Systems. International Journal of Image Processing and Smart Sensors, 1(1), 22-29.
- 104. Godase, V., Mulani, A., Takale, S., & Ghodake, R. (2025). Comprehensive Review on Automated Field Irrigation using Soil Image Analysis and IoT. Journal of Advance Electrical Engineering and Devices, 3(1), 46-55.
- **105.** Altaf Osman Mulani, Deshmukh M., Jadhav V., Chaudhari K., Mathew A.A., Shweta Salunkhe. Transforming Drug Therapy with Deep Learning: The Future of Personalized Medicine. Drug Research. 2025 Aug 29.
- **106.** Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), Image Authentication Using Cryptography and Watermarking, International Journal of Image Processing and Smart Sensors, Vol. 1, Issue 2, pp 27-34.
- 107.Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), Advancements in Artificial Intelligence: Transforming Industries and Society, International Journal of Artificial Intelligence of Things (AIoT) in Communication Industry, Vol. 1, Issue 2, pp 1-5.
- **108.** Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), AI-Powered Predictive Analytics in Healthcare: Revolutionizing Disease Diagnosis and Treatment, Journal of Advance Electrical Engineering and Devices, Vol. 3, Issue 2, pp 27-34.
- **109.**Godase, V., Mulani, A., Takale, S., & Ghodake, R. (2025). A Holistic Review of Automatic Drip Irrigation Systems: Foundations and Emerging Trends. *Available at SSRN 5247778*.
- **110.** V. Godase, R. Ghodake, S. Takale, and A. Mulani, —Design and Optimization of Reconfigurable Microwave Filters Using AI Techniques, International Journal of RF and Microwave Communication Technologies, vol. 2, no. 2, pp.26–41, Aug. 2025.
- 111.V. Godase, A. Mulani, R. Ghodake, S. Takale, "Automated Water Distribution Management and Leakage Mitigation Using PLC Systems," Journal of Control and Instrumentation Engineering, vol.11, no. 3, pp. 1-8, Aug. 2025.
- **112.** V. Godase, A. Mulani, R. Ghodake, S. Takale, "PLC-Assisted Smart Water Distribution with Rapid Leakage Detection and Isolation," Journal of Control Systems and Converters, vol. 1, no. 3, pp. 1-13, Aug. 2025.
- **113.** V. V. Godase, S. R. Takale, R. G. Ghodake, and A. Mulani, "Attention Mechanisms in Semantic Segmentation of Remote Sensing Images," Journal of Advancement in Electronics Signal Processing, vol. 2, no. 2, pp. 45–58, Aug. 2025.

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- **114.**D. Waghmare, A. Mulani, S. R. Takale, V. Godase, and A. Mulani, "A Comprehensive Review on Automatic Fruit Sorting and Grading Techniques with Emphasis on Weight-based Classification," Research & Review: Electronics and Communication Engineering, vol. 2, no. 3, pp. 1-10, Oct. 2025.
- **115.**Karande, K. J., & Talbar, S. N. (2014). Independent component analysis of edge information for face recognition. Springer India.
- **116.**Karande, K. J., & Talbar, S. N. (2008). Face recognition under variation of pose and illumination using independent component analysis. ICGST-GVIP, ISSN.
- **117.** Gaikwad, D. S., & Karande, K. J. (2016). Image processing approach for grading and identification of diseases on pomegranate fruit: An overview. International Journal of Computer Science and Information Technologies, 7, 519-522.
- **118.**Kawathekar, P. P., & Karande, K. J. (2014, July). Severity analysis of Osteoarthritis of knee joint from X-ray images: A Literature review. In 2014 International Conference on Signal propagation and computer technology (ICSPCT 2014) (pp. 648-652). IEEE.
- **119.** Daithankar, M. V., Karande, K. J., & Harale, A. D. (2014, April). Analysis of skin color models for face detection. In 2014 International Conference on Communication and Signal Processing (pp. 533-537). IEEE.
- 120.Karande, J. K., Talbar, N. S., & Inamdar, S. S. (2012, May). Face recognition using oriented Laplacian of Gaussian (OLOG) and independent component analysis (ICA). In 2012 Second International Conference on Digital Information and Communication Technology and it's Applications (DICTAP) (pp. 99-103). IEEE.
- 121. Shubham Salunkhe, Pruthviraj Zambare, Sakshi Shinde, S. K. Godase. (2024). API Development for Cloud Parameter Curation International. *Journal of Electrical and Communication Engineering Technology*, 2(1). https://doi.org/10.37591/ijecet
- **122.**Badave, A., Pawale, A., Andhale, T., Godase, S. K., & STM JOURNALS. (2024). Smart home safety using fire and gas detection system. *Recent Trends in Fluid Mechanics*, 1, 35–43. https://journals.stmjournals.com/rtfm
- **123.** Asabe, H., Asabe, R., Lengare, O., & Godase, S. (2025). IOT- BASED STORAGE SYSTEM FOR MANAGING VOLATILE MEDICAL RESOURCES IN HEALTHCARE FACILITIES. *INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN ENGINEERING MANAGEMENT AND SCIENCE (IJPREMS)*, 05(03), 2427–2433. https://www.ijprems.com
- 124.Karche, S. N., Mulani, A. O., Department of Electronics, SKN Sinhgad College of Engineering, Korti, & University of Solapur, Maharashtra, India. (2018). AESC Technique for Scalable Face Image Retrieval. International Journal of Innovative Research in Computer and Communication Engineering, 6(4), 3404–3405. https://doi.org/10.15680/IJIRCCE.2018.0604036
- 125.Bankar, A. S., Harale, A. D., & Karande, K. J. (2021). Gestures Controlled Home Automation using Deep Learning: A Review. *International Journal of Current Engineering and Technology*, 11(06), 617–621. https://doi.org/10.14741/ijcet/v.11.6.4
- **126.** Mali, A. S., Ghadge, S. K., Adat, A. S., & Karande, S. V. (2024). Intelligent Medication Management System. *IJSRD International Journal for Scientific Research & Development, Vol. 12*(Issue 3).
- 127. Water Level Control, Monitoring and Altering System by using GSM in Irrigation Based on Season. (2019). In *International Research Journal of Engineering and Technology (IRJET)* (Vol. 06, Issue 04, p. 1035) [Journal-article]. https://www.irjet.net
- 128. Modi, S., Misal, V., Kulkarni, S., & Mali A.S. (2025). Hydroponic Farming Monitoring System Automated system to monitor and control nutrient and pH levels. In *Journal of Microcontroller Engineering and Applications* (Vol. 12, Issue 3, pp. 11–16). https://doi.org/10.37591/JoMEA
- **129.**Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "VGHN: variations aware geometric moments and histogram features normalization for robust uncontrolled face recognition", *International Journal of Information Technology*, https://doi.org/10.1007/s41870-021-00703-0.

International Journal of Advanced Research in Science, Communication and Technology

150 = 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 130. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition using MFCC & DTW Features", *International Journal of Engineering Research And Applications (IJERA) pp. 118-122, ISSN: 2248-9622.*
- 131. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Recognition of Marathi Numerals Using MFCC and DTW Features", *Book Title: Recent Trends on Image Processing and Pattern Recognition, RTIP2R 2018, CCIS 1037, pp. 1–11,* © *Springer Nature Singapore Pte Ltd. 2019* https://doi.org/10.1007/978-981-13-9187-3 17.
- 132. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Analysis of Face Recognition Algorithms for Uncontrolled Environments", *Book Title: Computing, Communication and Signal Processing, pp. 919–926, © Springer Nature Singapore Pte Ltd. 2018.*
- 133.Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Recognition of Marathi Numerals using MFCC and DTW Features", 2nd International Conference on Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2018), 21th -22th Dec., 2018, organized by Solapur University, Solapur in collaboration with University of South Dakota (USA) and Universidade de Evora (Portugal), India.
- 134. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "A Comprehensive Survey of Face Databases for Constrained and Unconstrained Environments", 2nd IEEE Global Conference on Wireless Computing & Networking (GCWCN-2018), 23th-24th Nov., 2018, organized by STES's Sinhgad Institute of Technology, Lonavala, India.
- 135. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "An Extensive Survey of Prominent Researches in Face Recognition under different Conditions", 4th International Conference on Computing, Communication, Control And Automation (ICCUBEA-2018), 16th to 18th Aug. 2018 organized by Pimpri Chinchwad College of Engineering (PCCOE), Pune, India.
- **136.**Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Analysis of Face Recognition Algorithms for Uncontrolled Environments", 3rd International Conference on Computing, Communication and Signal Processing (ICCASP 2018), 26th-27th Jan.2018, organized by Dr. BATU, Lonere, India.
- **137.**Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numera Recognition", International Conference on Recent Trends, Feb 2012, IOK COE, Pune.
- **138.**S. S. Gangonda, "Bidirectional Visitor Counter with automatic Door Lock System", National Conference on Computer, Communication and Information Technology (NCCCIT-2018), 30th and 31st March 2018 organized by Department of Electronics and Telecommunication Engineering, SKN SCOE, Korti, Pandharpur.
- **139.**Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition using MFCC & DTW Features", ePGCON 2012, 23rd and 24th April 2012 organized by Commins COE for Woman, Pune.
- **140.**Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", National Conference on Emerging Trends in Engineering and Technology (VNCET'12), 30th March 2012 organized by Vidyavardhini's College of Engineering and Technology, Vasai Road, Thane.
- **141.**Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", ePGCON 2011, 26th April 2011 organized by MAEER's MIT, Kothrud, Pune-38.
- **142.**Siddheshwar Gangonda, "Medical Image Processing", Aavishkar-2K7, 17th and 18th March 2007 organized by Department of Electronics and Telecommunication Engineering, SVERI's COE, Pandharpur.
- **143.**Siddheshwar Gangonda, "Image enhancement & Denoising", VISION 2k7, 28th Feb-2nd March 2007 organized by M.T.E. Society's Walchand College of Engineering, Sangli.
- **144.**Siddheshwar Gangonda, "Electromagnetic interference & compatibility" KSHITIJ 2k6, 23rd and 24th Sept. 2006 organized by Department of Mechanical Engineering, SVERI's COE, Pandharpur.
- **145.***A* Pise and K. Karande, "A genetic Algorithm-Driven Energy-Efficient routing strategy for optimizing performance in VANETs," Engineering Technology and Applied Science Research, vol. 15, no. 5, 2025, [Online]. Available: https://etasr.com/index.php/ETASR/article/view/12744

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 146.A C. Pise, K. J. Karande, "Investigating Energy-Efficient Optimal Routing Protocols for VANETs: A Comprehensive Study", ICT for Intelligent Systems, Lecture Notes in Networks and Systems 1109, Proceedings of ICTIS 2024 Volume 3, Lecture Notes in Networks and Systems, Springer, Singapore, ISSN 2367-3370, PP 407-417, 29 October 2024 https://doi.org/10.1007/978-981-97-6675-8 33.
- **147.**A C. Pise, et. al., "Smart Vehicle: A Systematic Review", International Journal The Ciência & Engenharia Science & Engineering Journal ISSN: 0103-944XVolume 11 Issue 1, 2023pp: 992–998, 2023.
- **148.**A C. Pise, et. al., "Smart Vehicle: A Systematic Review", International Journal of Research Publication and Reviews, ISSN 2582-7421, Vol 4, no 10, pp 2728-2731 October 2023.
- **149.**C. Pise, et. al., "Development of BIOBOT System to Assist COVID Patient and Caretakers", European Journal of Molecular and Clinical Medicine; 10(1):3472-3480, 2023.
- **150.**C. Pise, et. al., "IoT Based Landmine Detection Robot", International Journal of Research in Science & EngineeringISSN: 2394-8299Vol: 03, No. 04, June-July 2023.
- **151.**C. Pise, et. al., "A Systematic survey on Estimation of Electrical Vehicle", Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN: 2799-1156, Volume 3, Issue 01, Pages 1-6, December 2023.
- **152.**C. Pise, et. al., "Python Algorithm to Estimate Range of Electrical Vehicle", Web of Science, Vol 21, No 1 (2022) December 2022
- **153.**C. Pise, et. al., "Implementation of BIOBOT System for COVID Patient and Caretakers Assistant using IOT", International Journal of Information technology and Computer Engineering. 30-43. 10.55529/ijitc.21.30.43, (2022).
- **154.**C. Pise, et. al., "An IoT Based Real Time Monitoring of Agricultural and Micro irrigation system", International journal of scientific research in Engineering and management (IJSREM), VOLUME: 06 ISSUE: 04 | APRIL 2022, ISSN:2582-3930.
- 155.C. Pise, Dr. K. J. Karande, "An Exploratory study of Cluster Based Routing Protocol in VANET: A Review", International Journal of Advanced Research in Engineering and Technology(IJARET), 12,10, 2021, 17-30, Manuscript ID :00000-94375 Source ID : 00000006, Journal_uploads/IJARET/VOLUME_12_ISSUE_10/IJARET_12_10_002.pdf
- **156.**C. Pise, et. al., "Android based Portable Health Support System," A Peer Referred & Indexed International Journal of Research, Vol. 8, issue. 4, April 2019.
- **157.**C. Pise, et. al., "Facial Expression Recognition Using Image Processing," International Journal of VLSI Design, Microelectronics and Embedded System, Vol. 3, issue. 2, July 2018.
- **158.**C. Pise, et. al., "Detection of Cast Iron Composition by Cooling Curve Analysis using Thermocouple Temperature Sensor," UGC Approved International Journal of Academic Science (IJRECE), Vol. 6, Issue. 3, July-September 2018.
- **159.**C. Pise, et. al., "Android Based Portable Health Support", System International Journal of Engineering Sciences & Research Technology (IJESRT 2017) Vol.6, Issue 8, pp 85-88 5th Aug 2017
- **160.**C. Pise, et. al., "Adaptive Noise Cancellation in Speech Signal", International Journal of Innovative Engg and Technology, 2017
- **161.**C. Pise, et. al., "Lung Cancer Detection System by using Baysian Classifier", ISSN 2454-7875, IJRPET, published online in conference special issue VESCOMM-2016, February 2016
- **162.**C. Pise, et. al., "Review on Agricultural Plant Diseases Detection by Image Processing", ISSN 2278-62IX, IJLTET, Vol 7, Issue 1 May 2016
- **163.**C. Pise, et. al. "Segmentation of Retinal Images for Glaucoma Detection", International Journal of Engineering Research and Technology (06, June-2015).
- **164.**C. Pise, et. al. "Color Local Texture Features Based Face Recognition", International Journal of Innovations in Engineering and Technology(IJIET), Dec. 2014
- **165.**C. Pise, et. al. "Single Chip Solution For Multimode Robotic Control", International Journal of Engineering Research and Technology (IJERT-2014), Vol. 3, Issue 12, Dec. 2014.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- **166.** Anjali C. Pise et. al., "Remote monitoring of Greenhouse parameters using zigbee Wireless Sensor Network", International Journal of Engineering Research & Technology ISSN 2278-0181 (online) Vol. 3, Issue 2, and pp: (2412-2414), Feb. 2014.
- **167.** A C. Pise, K. J. Karande, "Cluster Head Selection Based on ACO In Vehicular Ad-hoc Networks", Machine Learning for Environmental Monitoring in Wireless Sensor Networks
- 168.C. Pise, K. J. Karande, "Architecture, Characteristics, Applications and Challenges in Vehicular Ad Hoc Networks" Presented in 27th IEEE International Symposium on Wireless Personal Multimedia Communications (WPMC 2024) "Secure 6G AI Nexus: Where Technology Meets Humanity" Accepted for book chapter to be published in international Scopus index book by River publisher.
- **169.**C. Pise, Dr. K. J. Karande, "K-mean Energy Efficient Optimal Cluster Based Routing Protocol in Vehicular Ad Hoc Networks", International Conference on Innovations in Artificial Intelligence and Machine Learning (ICAIML-2022), August 20th and 21st 2022 Springer database Conference.
- 170.C. Pise, Mr. D. Nale, "Web-Based Application for Result Analysis", ", International Conference on Innovations in Artificial Intelligence and Machine Learning (ICAIML-2022), August 20th and 21st 2022 Springer database Conference.
- **171.**C. Pise, et. al., "Detection of Cast Iron Composition by Cooling Curve Analysis using Thermocouple Temperature Sensor," 2nd International Conference on Engineering Technology, Science and Management Innovation (ICETSMI 2018), 2nd September 2018.
- **172.**C. Pise, et. al., "Facial Expression Recognition Using Facial Features," IEEE International Conference on Communication and Electronics Systems (ICCES 2018), October 2018.
- 173.C. Pise, et. al., "Estimating Parameters of Cast Iron Composition using Cooling Curve Analysis," IEEE International Conference on Communication and Electronics Systems (ICCES 2018), Coimbatore, October 2018.
- **174.**C. Pise, et. al., "Android based portable Health Support System," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 175.C. Pise, et. al., "Baysian Classifier & FCM Segmentation for Lung Cancer Detection in early stage," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- **176.**C. Pise, et. al., "Cast Iron Composition Measurement by Coding Curve Analysis," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- **177.**C. Pise, et. al., "War field Intelligence Defence Flaging Vehicle," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- **178.**C. Pise, et. al. "Disease Detection of Pomegranate Plant", IEEE sponsored International Conference on Computation of Power, Energy, Information and Communication, 22-23 Apr. 2015.
- **179.**C. Pise, P. Bankar. "Face Recognition by using GABOR and LBP", IEEE International Conference on Communication and Signal Processing, ICCSP, 2-4 Apr. 2015
- **180.**C. Pise, et. al. "Single Chip Solution For Multimode Robotic Control", Ist IEEE International Conference on Computing Communication and Automation, 26-27 Feb2015.
- 181. Anjali C. Pise, Vaishali S. Katti, "Efficient Design for Monitoring of Greenhouse Parameters using Zigbee Wireless Sensor Network", fifth SARC international conference IRF, IEEE forum ISBN 978-93-84209-21-6,pp 24-26, 25th May 2014
- **182.** A C. Pise, P. Bankar, "Face Recognition using Color Local Texture Features", International Conference on Electronics and Telecommunication, Electrical and Computer Engineering, Apr.2014.
- **183.**C. Pise, et.al. "Monitoring parameters of Greenhouse using Zigbee Wireless Sensor Network", 1st International Conference on Electronics and Telecommunication, Electrical and Computer Engineering, 5-6 Apr.2014.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

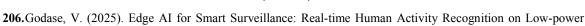
ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- **184.**C. Pise, et. al. "Compensation schemes and performance Analysis of IQ Imbalances in Direct Conversion Receivers", International Conference at GHPCOE, Gujarat, (Online Proceeding is Available), 2009.
- **185.**C. Pise, K. J. Karande, "Energy-Efficient Optimal Routing Protocols in VANETs", 66th Annual IETE Convention, AIC -2023 September16-17, 2023, under the Theme: The Role of 5G In Enabling Digital Transformation for Rural Upliftment.
- **186.**C. Pise, et. al. "Automatic Bottle Filling Machine using Raspberry Pi", National Conference on computer ;Communication & information Technology (NCCIT-2018) dated 30th & 31st March 2018.
- **187.**C. Pise, et. al. "Design & Implementation of ALU using VHDL", National Conference on computer ;Communication & information Technology (NCCIT-2018) dated 30th & 31st March 2018.
- **188.**C. Pise, et. al. "Mechanism and Control of Autonomus four rotor Quad copter", National Conference on Computer, Electrical and Electronics Engineering, 23- 24 Apr. 2016.
- **189.**C. Pise, et. al. "Segmentation of Optic Disk and Optic Cup from retinal Images", ICEECMPE Chennai, June 2015
- **190.**C. Pise, et. al. "Diseases Detection of Pomegranate Plant", IEEE Sponsored International conference on Computation of Power, Energy, April 2015.
- **191.**C. Pise, et. al. "Compensation Techniques for I/Q Imbalance in Direct-Conversion Receivers", Conference at SCOE, Pune 2010.
- **192.**C. Pise, et. al. "I/Q Imbalance compensation Techniques in Direct Conversion Receiver", Advancing Trends in Engineering and Management Technologies, ATEMT-2009, Conference at Shri Ramdeobaba Kamla Nehru Engineering College, Nagpur, 20-21 November 2009
- **193.**C. Pise, et. al. "Compensation Techniques for I/Q Imbalance in Direct Conversion Receiver", Conference at PICT, Pune 2008.
- **194.**C. Pise, et. al. "I/Q Imbalance compensation Techniques in Direct Conversion Receiver", Conference at DYCOE, Pune 2008.
- **195.**C. Pise, et. al. "DUCHA: A New Dual channel MAC protocol for Multihop Ad-Hoc Networks", Conference at SVCP, Pune 2007.
- **196.** Godase, V., Pawar, P., Nagane, S., & Kumbhar, S. (2024). Automatic railway horn system using node MCU. Journal of Control & Instrumentation, 15(1).
- **197.**Godase, V., & Godase, J. (2024). Diet prediction and feature importance of gut microbiome using machine learning. Evolution in Electrical and Electronic Engineering, 5(2), 214-219.
- **198.**Jamadade, V. K., Ghodke, M. G., Katakdhond, S. S., & Godase, V. A Comprehensive Review on Scalable Arduino Radar Platform for Real-time Object Detection and Mapping.
- **199.**Godase, V. (2025). A comprehensive study of revolutionizing EV charging with solar-powered wireless solutions. Advance Research in Power Electronics and Devices e-ISSN, 3048-7145.
- 200. Godase, V. (2025, April). Advanced Neural Network Models for Optimal Energy Management in Microgrids with Integrated Electric Vehicles. In Proceedings of the International Conference on Trends in Material Science and Inventive Materials (ICTMIM-2025) DVD Part Number: CFP250J1-DVD.
- **201.** Dange, R., Attar, E., Ghodake, P., & Godase, V. (2023). Smart agriculture automation using ESP8266 NodeMCU. J. Electron. Comput. Netw. Appl. Math, (35), 1-9.
- **202.**Godase, V. (2025). Optimized Algorithm for Face Recognition using Deepface and Multi-task Cascaded Convolutional Network (MTCNN). Optimum Science Journal.
- 203. Mane, V. G. A. L. K., & Gangonda, K. D. S. Pipeline Survey Robot.
- **204.**Godase, V. (2025). Navigating the digital battlefield: An in-depth analysis of cyber-attacks and cybercrime. International Journal of Data Science, Bioinformatics and Cyber Security, 1(1), 16-27.
- **205.**Godase, V., & Jagadale, A. (2019). Three element control using PLC, PID & SCADA interface. International Journal for Scientific Research & Development, 7(2), 1105-1109.



International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Technology, 1(1), 29-46. 207. Godase, V., Modi, S., Misal, V., & Kulkarni, S. (2025). LoRaEdge-ESP32 synergy: Revolutionizing farm

Devices. International Journal of AI and Machine Learning Innovations in Electronics and Communication

- weather data collection with low-power, long-range IoT. Advance Research in Analog and Digital Communications, 2(2), 1-11.
- 208. Godase, V. (2025). Comparative study of ladder logic and structured text programming for PLC. Available at SSRN 5383802.
- 209. Godase, V., Modi, S., Misal, V., & Kulkarni, S. Real-time object detection for autonomous drone navigation using YOLOv8, I. Advance Research in Communication Engineering and its Innovations, 2(2), 17-27.
- 210. Godase, V. (2025). Smart energy management in manufacturing plants using PLC and SCADA. Advance Research in Power Electronics and Devices, 2(2), 14-24.
- 211. Godase, V. (2025). IoT-MCU Integrated Framework for Field Pond Surveillance and Water Resource Optimization. International Journal of Emerging IoT Technologies in Smart Electronics Communication, 1(1), 9-19.
- 212. Godase, V. (2025). Graphene-Based Nano-Antennas for Terahertz Communication. International Journal of Digital Electronics and Microprocessor Technology, 1(2), 1-14.
- 213. Godase, V., Khiste, R., & Palimkar, V. (2025). AI-Optimized Reconfigurable Antennas for 6G Communication Systems. Journal of RF and Microwave Communication Technologies, 2(3), 1-12.
- 214. Bhaganagare, S., Chavan, S., Gavali, S., & Godase, V. V. (2025). Voice-Controlled Home Automation with ESP32: A Systematic Review of IoT-Based Solutions. Journal of Microprocessor and Microcontroller Research, 2(3), 1-13.
- 215. Jamadade, V. K., Ghodke, M. G., Katakdhond, S. S., & Godase, V. A Comprehensive Review on Scalable Arduino Radar Platform for Real-time Object Detection and Mapping.
- 216. Godase, V. (2025). Cross-Domain Comparative Analysis of Microwave Imaging Systems for Medical Diagnostics and Industrial Testing. Journal of Microwave Engineering & Technologies, 12(2), 39-48p.
- 217.V. K. Jamadade, M. G. Ghodke, S. S. Katakdhond, and V. Godase, —A Review on Real-time Substation Feeder Power Line Monitoring and Auditing Systems," International Journal of Emerging IoT Technologies in Smart Electronics and Communication, vol. 1, no. 2, pp. 1-16, Sep. 2025.
- 218. V. V. Godase, "VLSI-Integrated Energy Harvesting Architectures for Battery-Free IoT Edge Systems," Journal of Electronics Design and Technology, vol. 2, no. 3, pp. 1-12, Sep. 2025.
- 219.A Salunkhe et al., "A Review on Real-Time RFID-Based Smart Attendance Systems for Efficient Record Management," Advance Research in Analog and Digital Communications, vol. 2, no. 2, pp.32-46, Aug. 2025.
- 220. Vaibhav, V. G. (2025). A Neuromorphic-Inspired, Low-Power VLSI Architecture for Edge AI in IoT Sensor Nodes. Journal of Microelectronics and Solid State Devices, 12(2), 41-47p.
- 221. Nagane, M.S., Pawar, M.P., & Godase, P.V. (2022). Cinematica Sentiment Analysis. Journal of Image Processing and Intelligent Remote Sensing.
- 222. Godase, V.V. (2025). Tools of Research. SSRN Electronic Journal.
- 223. Godase, V. (n.d.). EDUCATION AS EMPOWERMENT: THE KEY TO WOMEN'S SOCIO ECONOMIC DEVELOPMENT. Women Empowerment and Development, 174–179.
- 224. Godase, V. (n.d.). COMPREHENSIVE REVIEW ON EXPLAINABLE AI TO ADDRESSES THE BLACK BOX CHALLENGE AND ITS ROLE IN TRUSTWORTHY SYSTEMS. In Sinhgad College of Engineering, Artificial Intelligence Education and Innovation (pp. 127-132).
- 225. Godase, V. (n.d.-b). REVOLUTIONIZING HEALTHCARE DELIVERY WITH AI-POWERED DIAGNOSTICS: A COMPREHENSIVE REVIEW. In SKN Sinhgad College of Engineering, SKN Sinhgad College of Engineering (pp. 58–61).
- 226. Dhope, V. (2024). SMART PLANT MONITORING SYSTEM. In International Journal of Creative Research Thoughts (IJCRT). https://www.ijcrt.org

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 227.M. M. Zade, Sushant D. Kambale, Shweta A. Mane, Prathamesh M. Jadhav. (2025) "IOT Based early fire detection in Jungles". RIGJA&AR Volume 2 Issue 1, ISSN: 2998-4459. DOI: https://doi.org/10.5281/zendo.15056435
- **228.**M. M. Zade, Bramhadev B. Rupanar, Vrushal S. Shilawant, Akansha R. Pawar(2025) "IOT Flood Monitoring & Alerting System using Rasberry Pi-Pico "International Journal of Research Publication & Reviews, Volume 6, Issue 3, ISSN:2582-7421.DOI:https://ijrpr.com/uploads/V6ISSUE3/IJRPR40251.pdf
- 229.M.M.Zade(2022) "Touchless Fingerprint Recognition System" (Paper-ID 907)(2022) International Conference on "Advanced Technologies for Societal Applications: Techno-Societal 2022 https://link.springer.com/book/10.1007/978-3-031-34644-6?page=6
- **230.**Mr.M.M.Zade published the paper on "Automation of Color Object Sorting Conveyor Belt", in International Journal of Scientific Research in Engineering & Management (IJSREM),ISSN:2582-3930 Volume 06 ,Issue 11th November 2022.
- 231.Mr.M.M.Zade published the paper on "Cloud Based Patient Health Record Tracking web Development",in International Journal of Advanced Research in Science, Communication & Technology(IJARSCT),ISSN NO:2581-9429 Volume 02, Issue 03,DOI 1048175/IJARSCT-3705,IF 6.252, May 2022.
- 232.Mr. Mahesh M Zade, "Performance analysis of PSNR Vs. Impulse Noise for the enhancement of Image using SMF", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- 233.Mr. Mahesh M Zade, "Classification of Power Quality Disturbances Using SVM & their Efficiency Comparison", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- 234.Mr. Mahesh M Zade, "Dynamic Clustering of Wireless Sensor Network Using Modified AODV", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- 235.Mr. Mahesh M Zade, "Performance analysis of PSNR Vs. Impulse Noise for the enhancement of Image using SMF", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur, Feb.2019
- 236.Mr. Mahesh M Zade, "Classification of Power Quality Disturbances Using SVM & their Efficiency Comparison", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur Feb.2019
- 237.Mr. Mahesh M Zade, "Dynamic Clustering of Wireless Sensor Network Using Modified AODV", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur Feb.2019
- 238.Mr. Mahesh M Zade & Mr.S.M.Karve,"Performance Analysis of Median Filter for Enhancement of Highly Corrupted Images", National Conference on Advanced Trends in Engineering, Association with IRJMS, Karmyogi Engineering College, Shelave, Pandharpur, March 2016.
- **239.**Mr. Mahesh M Zade & Mr.S.M.Karve,"Implementation of Reed Solomen Encoder & Decoder Using FPGA", National Conference on Advanced Trends in Engineering, Association with IRJMS, Karmyogi Engineering College, Shelave, Pandharpur, March 2016.
- 240.Mr. Mahesh M Zade & Dr.S.M.Mukane,"Performance of Switching Median Filter for Enhancement of Image", National Conference on Mechatronics at Sinhgad Institute of Technology and Science, Narhe, Pune, Feb. 2016.
- **241.**Mr. Mahesh M Zade & Dr.S.M.Mukane,"Enhancement of Image with the help of Switching Median Filter", National Conference on Emerging Trends in Electronics & Telecommunication Engineering, SVERI's College of Engineering Pandharpur, NCET 2013.
- **242.**Mr.Mahesh M Zade & Dr.S.M.Mukane,"Enhancement of Image with the help of Switching Median Filter", International Journal of Computer Application (IJCA) SVERI's College of Engineering, Pandharpur, Dec.2013.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

243.A O. Mulani, V. Godase, S. Takale, and R. Ghodake, "Secure Image Authentication using AES and DWT Watermarking on Reconfigurable Platform," International Journal of Embedded System and VLSI Design, vol. 1, no. 2, pp. 14-20, Oct. 2025

