

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Chatbot Using Artificial Intelligence

Nikita Gore¹, Prerana Jawale², Pranali Kawade³, Prof. Siddheshwar Gangonda⁴ ^{1,2,3}UG Students, Department of Electronics and Telecommunication Engineering ⁴Assistant Professor, Department of Electronics and Telecommunication Engineering SKN Sinhgad College of Engineering, Pandharpur

kawadepranali09@gmail.com, gorenikita2004@gmail.com, preranajawale04@gmail.com, siddheshwar.gangonda@sknscoe.ac.in

Abstract: The way people interact with computers has been completely transformed by artificial intelligence (AI), which has led to the development of sophisticated conversational devices called chatbots. These AI- powered systems are designed to replicate human speech through text or voice

interfaces, enabling automated medical assistance, education, customer service, and more.

The evolution, design, and application of AI-based chatbots are examined in this study, with a focus on the models used for machine learning (ML), natural language processing (NLP), and chatbot architecture. It discusses the underlying technologies, looks at several AI frameworks, and highlights the advantages and ethical quandaries of adopting AI chatbots. The report concludes with an outlook on future developments in human-AI conversational systems. Artificial intelligence (AI) has revolutionized human-computer interaction with the introduction of intelligent conversational agents known as

By simulating real human conversation through text or speech interfaces, these AI-powered solutions allow for automation in fields like healthcare, education, and customer service. With an emphasis on the systems architecture, machine learning (ML) models, and natural language processing (NLP) techniques, this paper provides a comprehensive analysis of the creation, design, and application of AIbased chatbots. It also evaluates the effectiveness and flexibility of conversational systems, examines the underlying frameworks that support them, and tackles the ethical concerns related to AI-driven communication. The study's conclusion offers insights into future directions and research directions in the development of conversational robots that are more emotionally intelligent, context aware, and morally aligned. Chatbots are intelligent conversational agents that simulate human-like interactions through text or voice interfaces. From simple rule-based systems to adaptive, context-aware conversational agents that can understand user intent and offer customized responses, modern chatbots have advanced because of the integration of artificial intelligence (AI), natural language processing (NLP), and machine learning. This study examines the creation and uses of AI-based chatbots, emphasizing its applicability in e-commerce, healthcare, education, and customer support. The fundamental techniques, such as data gathering, NLP processing, model training, and deployment, are also covered. While describing future approaches for more intelligent, sympathetic, and multimodal conversational agents, the study also discusses issues including context retention, ambiguity handling, ethical considerations, and data privacy.

Keywords: Chatbots, Artificial Intelligence, Natural Language Processing, Machine Learning, Deep Learning, Conversational Agents, Generative AI

I. INTRODUCTION

The rapid development of natural language processing (NLP) and artificial intelligence (AI) has revolutionized human interaction with digital systems, resulting in the widespread use of chatbots— intelligent conversational agents. A chatbot is a software application designed to engage users in dialogue using natural language, either through text or voice-based interfaces. The early generations of chatbots, such as ELIZA (1966) and ALICE (1995), were primarily

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

rule-based systems that relied on pattern matching and scripted responses. Although ground-breaking for their time, these early chatbots were limited in contextual understanding and adaptability.

Large language models (LLMs) and sophisticated natural language processing (NLP) approaches enable contemporary conversational systems, such as ChatGPT, Siri, Google Assistant, and Amazon Alexa, to produce context-aware, human-like responses. These systems offer efficient, scalable, and customized user interactions and are being utilized in a wide range of industries, including e- commerce, healthcare, education, and customer support. A major change from static rule-based systems to dynamic, self-learning conversational agents that may continuously improve through data-driven learning processes is represented by this metamorphosis.

Artificial Intelligence (AI) has transformed human-machine interaction in recent years, creating intelligent systems that can comprehend, reason, and react to human input. The creation of chatbots— computer programs created to mimic human-like conversations through text or voice interactions—is one of the most well-known uses of artificial intelligence. Artificial intelligence (AI) tools like Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning are used by chatbots to understand customer inquiries and deliver pertinent information.

In sectors like customer service, education, healthcare, e-commerce, and entertainment, chatbots are now a crucial component due to the growing need for automation and individualized digital help. Conventional rule-based chatbots, which depended on preset scripts and small decision trees, have progressively developed into intelligent, learning conversational agents.

The main goal of this research is to create and deploy an AI-based chatbot that can facilitate meaningful and efficient human—machine interaction. By combining natural language processing (NLP) and machine learning (ML) algorithms, the chatbot can process natural language, learn from user inputs, and produce dynamic responses instead of relying only on static rule-based replies. This innovation not only improves user engagement but also lessens the workload for human operators, increases response accuracy, and provides round-the-clock service availability. Additionally, the paper discusses the underlying architecture of AI chatbots, including data pre-processing, intent recognition, and response generation. It also looks at real-world applications, performance evaluation techniques, and the difficulties encountered when creating conversational systems, including ambiguity in language, contextual understanding, and data privacy.

In recent years, artificial intelligence (AI) has revolutionized human–computer interaction with the development of intelligent systems such as chatbots. A chatbot is an artificial intelligence-powered conversational assistant that uses text or speech interfaces to simulate human communication. These systems are able to understand user queries, parse natural language, and generate intelligent real-time responses. The integration of Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning algorithms is making modern chatbots more efficient, contextually aware, and capable of learning from user interactions. These days, AI chatbots are commonly used to automate monotonous tasks and provide real-time support in a range of industries, including banking, e-commerce, healthcare, and education. AI-driven chatbots, as opposed to conventional rule-based chatbots, are able to comprehend user intent, analyse complicated words, and customize responses, all of which enhance user experience and operational effectiveness. AI chatbots have become a crucial element in the digital transformation process due to the growing demand for 24/7 automated communication and personalized services.

All things considered, the creation of AI-powered chatbots is a big step toward the creation of intelligent, flexible, and human-like digital assistants that improve usability, accessibility, and user pleasure across a range of industries.

II. LITERATURE SURVEY

1. Background information on history

Simple pattern matching and templates were shown to be effective in simulating conversation in early systems such as ELIZA (Weizenbaum, 1966). Task-focused dialogue management was introduced by later rule- and frame-based systems (such as spoken-dialogue systems and expert systems). While neural network models in the 2010s reshaped NLU and generation, leading to transformer-based language models (e.g., Vaswani et al., 2017) that drive contemporary generative chatbots, statistical techniques (n-grams, HMMs) were introduced in the 1990s and 2000s.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

2. Classification of AI chatbot methodologies

Hand-crafted, deterministic rules or decision trees are quite precise for activities with limited scope, but they are not very scalable or cost-effective to maintain. Using similarity criteria or ranking algorithms, select an appropriate response from a pre-existing database. Curated repositories tend to retain factual truth and produce safe but limited answers. To create replies token-by-token, use sequence-to-sequence (seq2seq) and later transformer designs. Allow for creativity and adaptability, but run the risk of producing dangerous results and hallucinations. To obtain the factual foundation of retrieval and the fluency of generation, combine the two processes (e.g., retrieval-augmented generation). Semantic parsing, slot filling, and intent identification are all components of natural language understanding (NLU). Modern systems rely on pretrained encoders (BERT, RoBERTa) that have been optimized for classification and sequence tagging, while earlier methods used CRFs and SVMs.Dialogue State Tracking & Management: Preserves context and user goals at every round. Among the techniques are hand-crafted state machines, reinforcement learning, and partially observable Markov decision processes (POMDPs). Response Generation/NLG: Neural Sequence-to-Sequence (NSS) or transformer decoders, template-based generation, and controlled generation techniques (e.g., persona, style, safety limitations). Memory & Context: Long-term and short-term (turn-level) memory modules to preserve user customization and coherence. Safety & Moderation: To lessen detrimental outputs, use filters, restricted decoding, and external knowledge retrieval.

3. Important models and turning points

Seq2Seq + Attention — Early neural conversational models developed encoder—decoder frameworks (e.g., Sutskever et al.; Bahdanau attention). Persona and Hierarchical Models: These models use persona conditioning and conversation history at several levels to preserve a consistent style and personality. The transformer was first shown by Vaswani et al. (2017), and later huge pretrained models (BERT for encoding and GPT series for autoregressive generation) transformed capabilities. Retrieval-Augmented Systems: These systems anchor responses in outside knowledge by combining generative decoders (similar to RAG) with intensive retrieval. discourse RL and POMDPs: Using reinforcement learning to optimize discourse policies for task success and effective interaction.

4. Benchmarks and datasets

Task-oriented datasets include the ATIS (slot filling), MultiWOZ (multi-domain task dialogues), and DSTC series. Chitchat and open-domain datasets include Persona-Chat, DailyDialog, Cornell Movie Dialogs, and corpora produced from Reddit or Twitter. Specialized/Domain datasets include customer service logs, medical dialogue datasets, and the Ubuntu Dialogue Corpus (technical support). ConvAI and DSTC contests are examples of evaluation suites that offer benchmark tasks and metrics for comparison.

5. Methods of evaluation

Automatic metrics that are helpful but have limitations for dialogue quality include BLEU, ROUGE, and METEOR (n-gram overlap). Measures based on embedding, such as BERTScore, which gauge semantic similarity. Task completion and slot accuracy: Assess if the task is finished and the slot values are accurately recorded in task-oriented systems. The gold criterion for human evaluation is fluency, coherence, relevance, informativeness, and safety. Safety and toxicity checks: To identify hazardous outputs, employ red-teaming and specialized classifiers.

6. Important issues noted in the literature

Hallucination and factuality: Generative models are capable of producing inaccurate facts with assurance. Fairness, bias, and safety: Models may generate objectionable results and reflect biases in training data. Long-term memory and coherence: It's still challenging to keep context and persona consistent across time. Evaluation challenge human judgments and automated measures frequently have a weak correlation. Data privacy and compliance strict guidelines and methods, such as differential privacy or on-device processing, are necessary when handling sensitive user data, particularly in the healthcare industry. Domain adaptation in low-resource domains: Few-shot techniques and transfer learning are beneficial, but they present performance and reliability issue

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

III. METHODOLOGY

The methodical stages involved in developing an AI-based chatbot use Deep Learning, Machine Learning, and Natural Language Processing (NLP) approaches to create a conversational agent that is responsive and intelligent. The primary phases are data gathering, pre-processing, model building, training, and deployment.

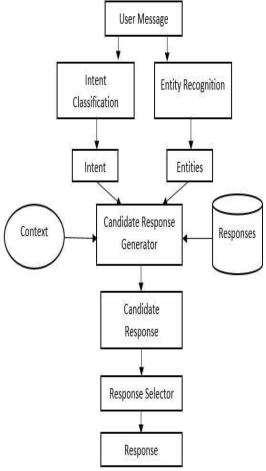


FIG.1: BLOCK DIAGRAM

Raw textual data frequently include irrelevant material, spelling mistakes, and noise. Preprocessing guarantees the input data's cleanliness and organization. This stage consists of Tokenization is the process of dividing text into smaller chunks, such as words or phrases. Eliminating common but uninformative terms (such as is, the, and an) is known as stop-word removal. Lemmatization and stemming breaking down words into their most basic forms. Text normalization includes managing emojis, case sensitivity, and punctuation. After processing, this data is transformed into numerical form for the AI model's input by employing word embeddings like Word2Vec, GloVe NLP is used by the chatbot to decipher user messages and retrieve pertinent data. While entity extraction records important data pieces like dates, names, or locations, intent recognition determines the user's goal (e.g., requesting assistance, scheduling an appointment).

Models like spaCy, NLTK, or Transformer-based architectures are commonly used to process and understand human language. The chatbot's intelligence is developed by machine learning. There are two main approaches: according to retrieval Chatbot: Utilizes pre-programmed responses stored in a database. Using ranking algorithms or similarity metrics, it chooses the best response. Deep learning is used by generative-based chatbots to produce fresh answers on the fly. To predict the next likely response, models like Transformer models (e.g., GPT, BERT), Long Short-Term

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

Memory (LSTM) networks, or Recurrent Neural Networks (RNNs) are trained using conversational data. The chatbot's performance is assessed after it has been trained. Among the evaluation metrics are similarity between generated and reference responses is measured by the BLEU Score (Bilingual Evaluation Understudy).

Perplexity: Assesses the degree of model uncertainty in response prediction.

Human Evaluation: Uses user feedback to assess coherence, relevance, and fluency.

An essential step in getting raw text data ready for model training is data preparation. To guarantee high accuracy in intent identification, entity extraction, and dialogue comprehension, the chatbot depends on clear, standardized, and domain-specific language. Rephrasing: To improve the model's comprehension of a variety of user inputs, sentences are rephrased utilizing back-translation or paraphrase generation models.

Entity Substitution: Similar alternatives are used to replace medical entities (such as medication or symptom names) while preserving semantic validity (e.g., "paracetamol" → "ibuprofen").

Template-based Generation: To ensure fair training data, structured templates are developed to produce synthetic instances for underrepresented intents.

IV. RESULT

FIG.2 CHATBOT USING ARTIFICIAL INTELGENCE

V. DISCUSSIONS

The development of AI-powered chatbots has greatly improved human-computer interaction, particularly in the areas of conversation automation and tailored response delivery. This study shows that by using deep learning models and Natural Language Processing (NLP), modern chatbots can reliably produce relevant responses, understand context, and determine user intent. ELIZA (Weizenbaum, 1966) and ALICE (Wallace, 1995) were two early chatbots that mostly depended on rule- based systems and pattern matching. They were able to mimic simple dialogues, but their answers lacked context awareness and were static. On the other hand, AI chatbots that employ transformer-based designs, such as GPT and BERT, are able to comprehend human intent, carry on multi-turn discussions, and adjust to a variety of language inputs. A paradigm change from scripted interactions to context- driven conversational intelligence is represented by the capacity to produce dynamic responses. These uses demonstrate how AI chatbots enhance user

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

experience by offering dependable, tailored, and easily available conversations in addition to increasing operational efficiency. Because of their adaptability, AI chatbots are being used in a variety of industries, including banking, healthcare, education, and customer service.

For example, in healthcare, chatbots can schedule appointments, provide mental health support, and provide initial medical guidance, reducing the workload on human staff. In customer service, chatbots improve response time and enhance user satisfaction through instant support. Despite their advantages, AI chatbots have a number of disadvantages. Restrictions on training data can sometimes result in skewed or inappropriate outputs from generative models, even though they can generate fluid responses. Furthermore, maintaining long-term context throughout longer conversations is still challenging. Ambiguous or caustic inputs may lead to misunderstandings, highlighting the need for improved context modeling and sentiment analysis. Careful attention must also be paid to ethical issues like algorithmic bias and data privacy, especially in delicate fields like healthcare and finance. The results of this study are consistent with earlier research (Zhou et al., 2020; Siddique et al., 2019), which demonstrates that combining huge conversational datasets, reinforcement learning, and emotion recognition improves chatbot accuracy and engagement. As new linguistic patterns and changing conversational styles are introduced via real-time user interactions, the study also emphasizes the significance of ongoing model training and evaluation. The discussion focuses on the likelihood that future chatbots will possess multimodal (text, voice, and vision) capabilities, emotional intelligence, and crosslingual support. Advances in large language models (LLMs) and reinforcement learning can further improve context memory and personalized responses. Moreover, hybrid models that blend retrieval-based and generative methods may minimize superfluous outputs while maintaining flexibility and adaptability. In summary, AI chatbots bridge the gap between human expectations and computer engagement, representing a substantial technological leap. Even though there are still obstacles to overcome, ongoing research and development is opening the door to conversational agents that are more intelligent, sympathetic, and context-aware and that can improve user experience in a variety of fields.

VI. CONCLUSION

Chatbots with AI capabilities have revolutionized human-computer contact by offering individualized, intelligent, and effective communication in a variety of fields. This study shows how chatbots may overcome the constraints of conventional rule-based systems by combining Natural Language Processing (NLP), machine learning, and deep learning models to comprehend user intent, preserve conversational context, and produce dynamic responses. The study demonstrates the diverse range of uses for AI chatbots, from customer service and e-commerce to healthcare and education, highlighting their potential to lower operating costs, increase user engagement, and provide round-the-clock support.

Advances in transformer topologies, reinforcement learning, and large language models (LLMs) offer promise solutions for more accurate and context-aware interaction, despite obstacles including context preservation, ambiguity handling, data privacy, and potential biases.

To sum up, AI chatbots represent a major development in conversational technology. These systems are become more intelligent, sympathetic, and adaptable as learning algorithms, data quality, and ethical protections advance. In a variety of fields and applications, they have the potential to improve user experience, accessibility, and human productivity.

This study shows how AI chatbots can revolutionize customer service, banking, e-commerce, healthcare, and education by offering round-the-clock support, individualized help, and increased operational efficiency. More dependable and adaptable systems are becoming possible thanks to ongoing advancements in model architectures, training datasets, and ethical protections, despite obstacles including context retention, ambiguity handling, potential biases, and data privacy issues. To sum up, AI chatbots have the potential to develop into more sophisticated, sympathetic, and adaptable conversational agents, which will improve human productivity, accessibility, and engagement in a variety of fields. Their powers will only grow with continued study and development, making them essential tools for human-computer interaction in the future.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, October 2025

REFERENCES

- 1. Yang, S. J. H., Huang, A. Y. Q., and Lin, C.-C. (2023). A Survey of Implementation Techniques and Difficulties for AI-Powered Conversational Chatbots (1999–2022). 15(5), Sustainability, 4012.
- 2. Oh, Y. J., Fukuoka, Y., & Fang, M.-L., et al. (2021). A comprehensive analysis of AI chatbots that support weight loss, exercise, and a balanced diet. Behavioural Nutrition and Physical Activity International Journal, 18(1), 160.
- 3. Insuasti, J., Delgado, S., and Villamarin, A. (2025). A Comprehensive Review of the Literature on AI-Powered Chatbots in Organizations. Journal of Engineering and Management for Information Systems, 10(22s).
- 4. Li, Y., Yin, H. B., Zhou, X., et al. (2025). Create chatbots for language learning using artificial intelligence (AI) based on a systematic review's activity theory. Article 24 of Smart Learning Environments, 12.
- 5. H.-K. Kim and colleagues (2024). A systematic review and meta-analysis of the impact of AI chatbots on women's health. Medical Journal, 12(5), 534.
- 6. Kovari and colleagues (2025). A review of explainable AI chatbots for XAI ChatGPT. e42077 in Heliyon, 11(2).
- 7. Shafie, M. R., Hajiabadi, M., Raihan, A. S., Ahmed, I., & Khosravi, H. (2023). A Bibliometric Analysis and Systematic Review of Publications in Web of Science and Scopus Databases Concerning Chatbots and ChatGPT. arXiv:2304.05436.
- 8. Al-Amin, M., alam, N., Chowdhury, S. K., Ullah, A., Ali, A., Khan, A., Salam, A., and Shazed Ali, M. (2024). Past, present, and future developments in generative artificial intelligence (AI) chatbots. arXiv:2402.05122.
- 9. Benton, M. C., and Radziwill, N. M. (2017). Assessing the quality of intelligent conversational agents and chatbots. arXiv:1704.04579
- 10. Yan, R., and Wu, W. (2018). Deep Chit-Chat: Chatbots Using Deep Learning. Abstracts of the Proceedings of the EMNLP Tutorial, ACL.
- 11. A survey on the use of AI in chatbots for customer and public administration-based services (2021). Electrical Engineering and Computer Science & Engineering, Scientia Iranica Series F.
- 12. Alkhatib, M., Shaalan, K., & Alazzam, B. A. (2023). An analysis of deep versus classical machine learning approaches for AI chatbots. Letters on Information Sciences, 12(4).
- 13. Xu and associates (2021). A review of oncology's AI-chatbot literature on chatbots in cancer care. JMIR Cancer.
- 14. Zhang, C., Qiao, Y., Hong, C. S., & Dam, S. K. (2024). A Comprehensive Analysis of AI Chatbots Based on LLM. Review of Current Chatbot Developments (2022). arXiv:2201.06657v1.
- 15. Maher, S., Nimbhore, S., & Kayte, S. (2020). A Review of Chatbots and Their AI-Powered Techniques. 4363 is the EasyChair Preprint.
- 16. Deep Learning Methods for Machine Learning Chatbots: A Meta-Analysis (2024). 11832 is the EasyChair Preprint.
- 17. Sutar, P. P., Liu, W., Bai, J. W., Xiao, H. W., Okaiyeto, S. A., and Mujumdar, A. S. (2024). Chatbots: a critical examination of academia's future. 17(2), 287-288, International Journal of Agricultural & Biological Engineering.
- 18. Godase, M. V., Mulani, A., Ghodak, M. R., Birajadar, M. G., Takale, M. S., & Kolte, M. A MapReduce and Kalman Filter based Secure IIoT Environment in Hadoop. Sanshodhak, Volume 19, June 2024.
- 19. Mulani, A. O., & Mane, P. B. (2017). Watermarking and cryptography based image authentication on reconfigurable platform. Bulletin of Electrical Engineering and Informatics, 6(2), 181-187.
- 20. Gadade, B., Mulani, A. O., & Harale, A. D. IoT Based Smart School Bus and Student Tracking System. Sanshodhak, Volume 19, June 2024.
- 21. Dhanawadel, A., Mulani, A. O., & Pise, A. C. IOT based Smart farming using Agri BOT. Sanshodhak, Volume 20, June 2024.
- 22. Mulani, A., & Mane, P. B. (2016). DWT based robust invisible watermarking. Scholars' Press.
- 23. R. G. Ghodke, G. B. Birajdar, A.O. Mulani, G.N. Shinde, R.B. Pawar, Design and Development of an Efficient and Cost-Effective surveillance Quadcopter using Arduino, Sanshodhak, Volume 20, June 2024.
- 24. R. G. Ghodke, G. B. Birajdar, A.O. Mulani, G.N. Shinde, R.B. Pawar, Design and Development of Wireless Controlled ROBOT using Bluetooth Technology, Sanshodhak, Volume 20, June 2024.

International Journal of Advanced Research in Science, Communication and Technology

150 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 25. Swami, S. S., & Mulani, A. O. (2017, August). An efficient FPGA implementation of discrete wavelet transform for image compression. In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS) (pp. 3385-3389). IEEE.
- 26. Mane, P. B., & Mulani, A. O. (2018). High speed area efficient FPGA implementation of AES algorithm. International Journal of Reconfigurable and Embedded Systems, 7(3), 157-165.
- 27. Mulani, A. O., & Mane, P. B. (2016). Area efficient high speed FPGA based invisible watermarking for image authentication. Indian journal of Science and Technology, 9(39), 1-6.
- 28. Kashid, M. M., Karande, K. J., & Mulani, A. O. (2022, November). IoT-based environmental parameter monitoring using machine learning approach. In Proceedings of the International Conference on Cognitive and Intelligent Computing: ICCIC 2021, Volume 1 (pp. 43-51). Singapore: Springer Nature Singapore.
- 29. Nagane, U. P., & Mulani, A. O. (2021). Moving object detection and tracking using Matlab. Journal of Science and Technology, 6(1), 2456-5660.
- 30. Kulkarni, P. R., Mulani, A. O., & Mane, P. B. (2016). Robust invisible watermarking for image authentication. In Emerging Trends in Electrical, Communications and Information Technologies: Proceedings of ICECIT-2015 (pp. 193-200). Singapore: Springer Singapore.
- 31. Ghodake, M. R. G., & Mulani, M. A. (2016). Sensor based automatic drip irrigation system. Journal for Research, 2(02).
- 32. Mandwale, A. J., & Mulani, A. O. (2015, January). Different Approaches For Implementation of Viterbi decoder on reconfigurable platform. In 2015 International Conference on Pervasive Computing (ICPC) (pp. 1-4). IEEE.
- 33. Jadhav, M. M., Chavan, G. H., & Mulani, A. O. (2021). Machine learning based autonomous fire combat turret. Turkish Journal of Computer and Mathematics Education, 12(2), 2372-2381.
- 34. Shinde, G., & Mulani, A. (2019). A robust digital image watermarking using DWT-PCA. International Journal of Innovations in Engineering Research and Technology, 6(4), 1-7.
- 35. Mane, D. P., & Mulani, A. O. (2019). High throughput and area efficient FPGA implementation of AES algorithm. International Journal of Engineering and Advanced Technology, 8(4).
- 36. Mulani, A. O., & Mane, D. P. (2017). An Efficient implementation of DWT for image compression on reconfigurable platform. International Journal of Control Theory and Applications, 10(15), 1-7.
- 37. Deshpande, H. S., Karande, K. J., & Mulani, A. O. (2015, April). Area optimized implementation of AES algorithm on FPGA. In 2015 International Conference on Communications and Signal Processing (ICCSP) (pp. 0010-0014). IEEE.
- 38. Deshpande, H. S., Karande, K. J., & Mulani, A. O. (2014, April). Efficient implementation of AES algorithm on FPGA. In 2014 International Conference on Communication and Signal Processing (pp. 1895-1899). IEEE.
- 39. Kulkarni, P., & Mulani, A. O. (2015). Robust invisible digital image mamarking using discrete wavelet transform. International Journal of Engineering Research & Technology (IJERT), 4(01), 139-141.
- 40. Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless Non invasive blood glucose concentration level estimation using PCA and machine learning. The CRC Book entitled Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications.
- 41. Mulani, A. O., & Shinde, G. N. (2021). An approach for robust digital image watermarking using DWT PCA. Journal of Science and Technology, 6(1).
- 42. Mulani, A. O., & Mane, P. B. (2014, October). Area optimization of cryptographic algorithm on less dense reconfigurable platform. In 2014 International Conference on Smart Structures and Systems (ICSSS) (pp. 86-89). IEEE.
- 43. Jadhav, H. M., Mulani, A., & Jadhav, M. M. (2022). Design and development of chatbot based on reinforcement learning. Machine Learning Algorithms for Signal and Image Processing, 219-229.
- 44. Mulani, A. O., & Mane, P. (2018). Secure and area efficient implementation of digital image watermarking on reconfigurable platform. International Journal of Innovative Technology and Exploring Engineering, 8(2), 56-61.
- 45. Kalyankar, P. A., Mulani, A. O., Thigale, S. P., Chavhan, P. G., & Jadhav, M. M. (2022). Scalable face image retrieval using AESC technique. Journal Of Algebraic Statistics, 13(3), 173-176.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 46. Takale, S., & Mulani, A. (2022). DWT-PCA based video watermarking. Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN, 2799-1156.
- 47. Kamble, A., & Mulani, A. O. (2022). Google assistant based device control. Int. J. of Aquatic Science, 13(1), 550-555.
- 48. Kondekar, R. P., & Mulani, A. O. (2017). Raspberry Pi based voice operated Robot. International Journal of Recent Engineering Research and Development, 2(12), 69-76.
- 49. Ghodake, R. G., & Mulani, A. O. (2018). Microcontroller based automatic drip irrigation system. In Techno-Societal 2016: Proceedings of the International Conference on Advanced Technologies for Societal Applications (pp. 109-115). Springer International Publishing.
- 50. Mulani, A. O., Birajadar, G., Ivković, N., Salah, B., & Darlis, A. R. (2023). Deep learning based detection of dermatological diseases using convolutional neural networks and decision trees. Traitement du Signal, 40(6), 2819.
- 51. Boxey, A., Jadhav, A., Gade, P., Ghanti, P., & Mulani, A. O. (2022). Face Recognition using Raspberry Pi. Journal of Image Processing and Intelligent Remote Sensing (JIPIRS) ISSN, 2815-0953.
- 52. Patale, J. P., Jagadale, A. B., Mulani, A. O., & Pise, A. (2023). A Systematic survey on Estimation of Electrical Vehicle. Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN, 2799-1156.
- 53. Gadade, B., & Mulani, A. (2022). Automatic System for Car Health Monitoring. International Journal of Innovations in Engineering Research and Technology, 57-62.
- 54. Shinde, M. R. S., & Mulani, A. O. (2015). Analysis of Biomedical Image Using Wavelet Transform. International Journal of Innovations in Engineering Research and Technology, 2(7), 1-7.
- 55. Mandwale, A., & Mulani, A. O. (2014, December). Implementation of convolutional encoder & different approaches for viterbi decoder. In IEEE International Conference on Communications, Signal Processing Computing and Information technologies.
- 56. Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless machine learning approach to estimate blood glucose level with non-invasive devices. In Artificial intelligence, internet of things (IoT) and smart materials for energy applications (pp. 83-100). CRC Press.
- 57. Maske, Y., Jagadale, A. B., Mulani, A. O., & Pise, A. C. (2023). Development of BIOBOT system to assist COVID patient and caretakers. European Journal of Molecular & Clinical Medicine, 10(01), 2023.
- 58. Utpat, V. B., Karande, D. K., & Mulani, D. A. Grading of Pomegranate Using Quality Analysis || . International Journal for Research in Applied Science & Engineering Technology (IJRASET), 10.
- 59. Takale, S., & Mulani, D. A. (2022). Video Watermarking System. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 10.
- 60. Mandwale, A., & Mulani, A. O. (2015, January). Different approaches for implementation of Viterbi decoder. In IEEE international conference on pervasive computing (ICPC).
- 61. Maske, Y., Jagadale, M. A., Mulani, A. O., & Pise, A. (2021). Implementation of BIOBOT System for COVID Patient and Caretakers Assistant Using IOT. International Journal of Information Technology and, 30-43.
- 62. Mulani, A. O., & Mane, D. P. (2016). Fast and Efficient VLSI Implementation of DWT for Image Compression. International Journal for Research in Applied Science & Engineering Technology, 5, 1397-1402.
- 63. Kambale, A. (2023). Home automation using google assistant. UGC care approved journal, 32(1), 1071-1077.
- 64. Pathan, A. N., Shejal, S. A., Salgar, S. A., Harale, A. D., & Mulani, A. O. (2022). Hand gesture controlled robotic system. Int. J. of Aquatic Science, 13(1), 487-493.
- 65. Korake, D. M., & Mulani, A. O. (2016). Design of Computer/Laptop Independent Data transfer system from one USB flash drive to another using ARM11 processor. International Journal of Science, Engineering and Technology Research.
- 66. Mandwale, A., & Mulani, A. O. (2016). Implementation of High Speed Viterbi Decoder using FPGA. International Journal of Engineering Research & Technology, IJERT.
- 67. Kolekar, S. D., Walekar, V. B., Patil, P. S., Mulani, A. O., & Harale, A. D. (2022). Password Based Door Lock System. Int. J. of Aquatic Science, 13(1), 494-501.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, October 2025

- 68. Shinde, R., & Mulani, A. O. (2015). Analysis of Biomedical Image || . International Journal on Recent & Innovative trend in technology (IJRITT).
- 69. Sawant, R. A., & Mulani, A. O. (2022). Automatic PCB Track Design Machine. International Journal of Innovative Science and Research Technology, 7(9).
- 70. ABHANGRAO, M. R., JADHAV, M. S., GHODKE, M. P., & MULANI, A. (2017). Design And Implementation Of 8-bit Vedic Multiplier. International Journal of Research Publications in Engineering and Technology (ISSN No: 2454-7875).
- 71. Gadade, B., Mulani, A. O., & Harale, A. D. (2024). Iot based smart school bus and student monitoring system. Naturalista Campano, 28(1), 730-737.
- 72. Mulani, D. A. O. (2024). A Comprehensive Survey on Semi-Automatic Solar-Powered Pesticide Sprayers for Farming. Journal of Energy Engineering and Thermodynamics (JEET) ISSN, 2815-0945.
- 73. Salunkhe, D. S. S., & Mulani, D. A. O. (2024). Solar Mount Design Using High-Density Polyethylene. NATURALISTA CAMPANO, 28(1).
- 74. Seth, M. (2022). Painless Machine learning approach to estimate blood glucose level of Non-Invasive device. Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications.
- 75. Kolhe, V. A., Pawar, S. Y., Gohery, S., Mulani, A. O., Sundari, M. S., Kiradoo, G., ... & Sunil, J. (2024). Computational and experimental analyses of pressure drop in curved tube structural sections of Coriolis mass flow metre for laminar flow region. Ships and Offshore Structures, 19(11), 1974-1983.
- 76. Basawaraj Birajadar, G., Osman Mulani, A., Ibrahim Khalaf, O., Farhah, N., G Gawande, P., Kinage, K., & Abdullah Hamad, A. (2024). Epilepsy identification using hybrid CoPrO-DCNN classifier. International Journal of Computing and Digital Systems, 16(1), 783-796.
- 77. Kedar, M. S., & Mulani, A. (2021). IoT Based Soil, Water and Air Quality Monitoring System for Pomegranate Farming. Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN, 2799-1156.
- 78. Godse, A. P. A.O. Mulani (2009). Embedded Systems (First Edition).
- 79. Pol, R. S., Bhalerao, M. V., & Mulani, A. O. A real time IoT based System Prediction and Monitoring of Landslides. International Journal of Food and Nutritional Sciences, Volume 11, Issue 7, 2022.
- 80. Mulani, A. O., Sardey, M. P., Kinage, K., Salunkhe, S. S., Fegade, T., & Fegade, P. G. (2025). ML-powered Internet of Medical Things (MLIOMT) structure for heart disease prediction. Journal of Pharmacology and Pharmacotherapeutics, 16(1), 38-45.
- 81. Aiwale, S., Kolte, M. T., Harpale, V., Bendre, V., Khurge, D., Bhandari, S., ... & Mulani, A. O. (2024). Non-invasive Anemia Detection and Prediagnosis. Journal of Pharmacology and Pharmacotherapeutics, 15(4), 408-416.
- 82. Mulani, A. O., Bang, A. V., Birajadar, G. B., Deshmukh, A. B., Jadhav, H. M., & Liyakat, K. K. S. (2024). IoT Based Air, Water, and Soil Monitoring System for Pomegranate Farming. Annals of Agri-Bio Research, 29(2), 71-86.
- 83. Kulkarni, T. M., & Mulani, A. O. (2024). Face Mask Detection on Real Time Images and Videos using Deep Learning. International Journal of Electrical Machine Analysis and Design (IJEMAD), 2(1).
- 84. Thigale, S. P., Jadhav, H. M., Mulani, A. O., Birajadar, G. B., Nagrale, M., & Sardey, M. P. (2024). Internet of things and robotics in transforming healthcare services. Afr J Biol Sci (S Afr), 6(6), 1567-1575.
- 85. Pol, D. R. S. (2021). Cloud Based Memory Efficient Biometric Attendance System Using Face Recognition. Stochastic Modeling & Applications, 25(2).
- 86. Nagtilak, M. A. G., Ulegaddi, M. S. N., Adat, M. A. S., & Mulani, A. O. (2021). Breast Cancer Prediction using Machine Learning.
- 87. Rahul, G. G., & Mulani, A. O. (2016). Microcontroller Based Drip Irrigation System.
- 88. Kulkarni, T. M., & Mulani, A. O. Deep Learning Based Face-Mask Detection: An Approach to Reduce Pandemic Spreads in Human Healthcare. African Journal of Biological Sciences, 6(6), 2024.
- 89. Mulani, A., & Mane, P. B. (2016). DWT based robust invisible watermarking. Scholars' Press.
- 90. Dr. Vaishali Satish Jadhav, Dr. Shweta Sadanand Salunkhe, Dr. Geeta Salunkhe, Pranali Rajesh Yawle, Dr. Rahul S. Pol, Dr. Altaf Osman Mulani, Dr. Manish Rana, Iot Based Health Monitoring System for Human, Afr. J. Biomed.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

Res. Vol. 27 (September 2024).

- 91. Dr. Vaishali Satish Jadhav, Geeta D. Salunke, Kalyani Ramesh Chaudhari, Dr. Altaf Osman Mulani, Dr. Sampada Padmakar Thigale, Dr. Rahul S. Pol, Dr. Manish Rana, Deep Learning-Based Face Mask Recognition in Real-Time Photos and Videos, Afr. J. Biomed. Res. Vol. 27 (September 2024).
- 92. Altaf Osman Mulani, Electric Vehicle Parameters Estimation Using Web Portal, Recent Trends in Electronics & Communication Systems, Volume 10, Issue 3, 2023.
- 93. Aryan Ganesh Nagtilak, Sneha Nitin Ulegaddi, Mahesh Mane, Altaf O. Mulani, Automatic Solar Powered Pesticide Sprayer for Farming, International Journal of Microwave Engineering and Technology, Volume 9 No. 2, 2023.
- 94. Annasaheb S. Dandage, Vitthal R. Rupnar, Tejas A Pise, and A. O. Mulani, Real-Time Language Translation Application Using Tkinter. International Journal of Digital Communication and Analog Signals. 2025; 11(01): -p.
- 95. AnnaSaheb S Dandage, Vitthal R. Rupnar, Tejas A Pise, and A. O. Mulani, IoT-Powered Weather Monitoring and Irrigation Automation: Transforming Modern Farming Practices. . 2025; 11(01): -p.
- 96. Mulani, A.O., Kulkarni, T.M. (2025). Face Mask Detection System Using Deep Learning: A Comprehensive Survey. In: Singh, S., Arya, K.V., Rodriguez, C.R., Mulani, A.O. (eds) Emerging Trends in Artificial Intelligence, Data Science and Signal Processing. AIDSP 2023. Communications in Computer and Information Science, vol 2439. Springer, Cham. https://doi.org/10.1007/978-3-031-88759-8 3.
- 97. Karve, S., Gangonda, S., Birajadar, G., Godase, V., Ghodake, R., Mulani, A.O. (2025). Optimized Neural Network for Prediction of Neurological Disorders. In: Singh, S., Arya, K.V., Rodriguez, C.R., Mulani, A.O. (eds) Emerging Trends in Artificial Intelligence, Data Science and Signal Processing. AIDSP 2023. Communications in Computer and Information Science, vol 2440. Springer, Cham. https://doi.org/10.1007/978-3-031-88762-8 18.
- 98. Saurabh Singh, Karm Veer Arya, Ciro Rodriguez Rodriguez, and Altaf Osman Mulani, Emerging Trends in Artificial Intelligence, Data Science and Signal Processing, Communications in Computer and Information Science (CCIS), volume 2440.
- 99. Saurabh Singh, Karm Veer Arya, Ciro Rodriguez Rodriguez, and Altaf Osman Mulani, Emerging Trends in Artificial Intelligence, Data Science and Signal Processing, Communications in Computer and Information Science (CCIS), volume 2439.
- 100. Godase, V., Mulani, A., Pawar, A., & Sahani, K. (2025). A Comprehensive Review on PIR Sensor-Based Light Automation Systems. International Journal of Image Processing and Smart Sensors, 1(1), 22-29.
- 101. Godase, V., Mulani, A., Takale, S., & Ghodake, R. (2025). Comprehensive Review on Automated Field Irrigation using Soil Image Analysis and IoT. Journal of Advance Electrical Engineering and Devices, 3(1), 46-55.
- 102. Altaf Osman Mulani, Deshmukh M., Jadhav V., Chaudhari K., Mathew A.A., Shweta Salunkhe. Transforming Drug Therapy with Deep Learning: The Future of Personalized Medicine. Drug Research. 2025 Aug 29.
- 103. Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), Image Authentication Using Cryptography and Watermarking, International Journal of Image Processing and Smart Sensors, Vol. 1, Issue 2, pp 27-34.
- 104. Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), Advancements in Artificial Intelligence: Transforming Industries and Society, International Journal of Artificial Intelligence of Things (AIoT) in Communication Industry, Vol. 1, Issue 2, pp 1-5.
- 105. Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), AI-Powered Predictive Analytics in Healthcare: Revolutionizing Disease Diagnosis and Treatment, Journal of Advance Electrical Engineering and Devices, Vol. 3, Issue 2, pp 27-34.
- 106. Godase, V., Mulani, A., Takale, S., & Ghodake, R. (2025). A Holistic Review of Automatic Drip Irrigation Systems: Foundations and Emerging Trends. Available at SSRN 5247778.
- 107. V. Godase, R. Ghodake, S. Takale, and A. Mulani, —Design and Optimization of Reconfigurable Microwave Filters Using AI Techniques, International Journal of RF and Microwave Communication Technologies, vol. 2, no. 2, pp.26–41, Aug. 2025.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

150 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 108. V. Godase, A. Mulani, R. Ghodake, S. Takale, "Automated Water Distribution Management and Leakage Mitigation Using PLC Systems," Journal of Control and Instrumentation Engineering, vol.11, no. 3, pp. 1-8, Aug. 2025. 109. V. Godase, A. Mulani, R. Ghodake, S. Takale, "PLC-Assisted Smart Water Distribution with Rapid Leakage Detection and Isolation," Journal of Control Systems and Converters, vol. 1, no. 3, pp. 1-13, Aug. 2025.
- 110. V. V. Godase, S. R. Takale, R. G. Ghodake, and A. Mulani, "Attention Mechanisms in Semantic Segmentation of Remote Sensing Images," Journal of Advancement in Electronics Signal Processing, vol. 2, no. 2, pp. 45–58, Aug. 2025.
- 111. D. Waghmare, A. Mulani, S. R. Takale, V. Godase, and A. Mulani, "A Comprehensive Review on Automatic Fruit Sorting and Grading Techniques with Emphasis on Weight-based Classification," Research & Review: Electronics and Communication Engineering, vol. 2, no. 3, pp. 1-10, Oct. 2025.
- 112. Karande, K. J., & Talbar, S. N. (2014). Independent component analysis of edge information for face recognition. Springer India.
- 113. Karande, K. J., & Talbar, S. N. (2008). Face recognition under variation of pose and illumination using independent component analysis. ICGST-GVIP, ISSN.
- 114. Gaikwad, D. S., & Karande, K. J. (2016). Image processing approach for grading and identification of diseases on pomegranate fruit: An overview. International Journal of Computer Science and Information Technologies, 7, 519-522.
- 115. Kawathekar, P. P., & Karande, K. J. (2014, July). Severity analysis of Osteoarthritis of knee joint from X-ray images: A Literature review. In 2014 International Conference on Signal propagation and computer technology (ICSPCT 2014) (pp. 648-652). IEEE.
- 116. Daithankar, M. V., Karande, K. J., & Harale, A. D. (2014, April). Analysis of skin color models for face detection. In 2014 International Conference on Communication and Signal Processing (pp. 533-537). IEEE.
- 117. Karande, J. K., Talbar, N. S., & Inamdar, S. S. (2012, May). Face recognition using oriented Laplacian of Gaussian (OLOG) and independent component analysis (ICA). In 2012 Second International Conference on Digital Information and Communication Technology and it's Applications (DICTAP) (pp. 99-103). IEEE.
- 118. Shubham Salunkhe, Pruthviraj Zambare, Sakshi Shinde, S. K. Godase. (2024). API Development for Cloud Parameter Curation International. Journal of Electrical and Communication Engineering Technology, 2(1). https://doi.org/10.37591/ijecet
- 119. Badave, A., Pawale, A., Andhale, T., Godase, S. K., & STM JOURNALS. (2024). Smart home safety using fire and gas detection system. Recent Trends in Fluid Mechanics, 1, 35–43. https://journals.stmjournals.com/rtfm
- 120. Asabe, H., Asabe, R., Lengare, O., & Godase, S. (2025). IOT- BASED STORAGE SYSTEM FOR MANAGING VOLATILE MEDICAL RESOURCES IN HEALTHCARE FACILITIES. INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN ENGINEERING MANAGEMENT AND SCIENCE (IJPREMS), 05(03), 2427–2433. https://www.ijprems.com
- 121. Karche, S. N., Mulani, A. O., Department of Electronics, SKN Sinhgad College of Engineering, Korti, & University of Solapur, Maharashtra, India. (2018). AESC Technique for Scalable Face Image Retrieval. International Journal of Innovative Research in Computer and Communication Engineering, 6(4), 3404–3405. https://doi.org/10.15680/IJIRCCE.2018.0604036
- 122. Bankar, A. S., Harale, A. D., & Karande, K. J. (2021). Gestures Controlled Home Automation using Deep Learning: A Review. International Journal of Current Engineering and Technology, 11(06), 617–621. https://doi.org/10.14741/ijcet/v.11.6.4
- 123. Mali, A. S., Ghadge, S. K., Adat, A. S., & Karande, S. V. (2024). Intelligent Medication Management System. IJSRD International Journal for Scientific Research & Development, Vol. 12(Issue 3).
- 124. Water Level Control, Monitoring and Altering System by using GSM in Irrigation Based on Season. (2019). In International Research Journal of Engineering and Technology (IRJET) (Vol. 06, Issue 04, p. 1035) [Journal-article]. https://www.irjet.net
- 125. Modi, S., Misal, V., Kulkarni, S., & Mali A.S. (2025). Hydroponic Farming Monitoring System Automated system to monitor and control nutrient and pH levels. In Journal of Microcontroller Engineering and Applications (Vol. 12, Issue 3, pp. 11–16). https://doi.org/10.37591/JoMEA

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29514

ISSN 2581-9429 IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

9001:2015 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 126. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "VGHN: variations aware geometric moments and histogram features normalization for robust uncontrolled face recognition", International Journal of Information Technology, https://doi.org/10.1007/s41870-021-00703-0.
- 127. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition using MFCC & DTW Features", International Journal of Engineering Research And Applications (IJERA) pp. 118-122, ISSN: 2248-9622.
- 128. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Recognition of Marathi Numerals Using MFCC and DTW Features", Book Title: Recent Trends on Image Processing and Pattern Recognition, RTIP2R 2018, CCIS 1037, pp. 1–11, © Springer Nature Singapore Pte Ltd. 2019 https://doi.org/10.1007/978-981-13-9187-3 17.
- 129. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Analysis of Face Recognition Algorithms for Uncontrolled Environments", Book Title: Computing, Communication and Signal Processing, pp. 919–926, © Springer Nature Singapore Pte Ltd. 2018.
- 130. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Recognition of Marathi Numerals using MFCC and DTW Features", 2nd International Conference on Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2018), 21th -22th Dec., 2018, organized by Solapur University, Solapur in collaboration with University of South Dakota (USA) and Universidade de Evora (Portugal), India.
- 131. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "A Comprehensive Survey of Face Databases for Constrained and Unconstrained Environments", 2nd IEEE Global Conference on Wireless Computing & Networking (GCWCN-2018), 23th-24th Nov., 2018, organized by STES's Sinhgad Institute of Technology, Lonavala, India
- 132. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "An Extensive Survey of Prominent Researches in Face Recognition under different Conditions", 4th International Conference on Computing, Communication, Control And Automation (ICCUBEA-2018), 16th to 18th Aug. 2018 organized by Pimpri Chinchwad College of Engineering (PCCOE), Pune, India.
- 133. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Analysis of Face Recognition Algorithms for Uncontrolled Environments", 3rd International Conference on Computing, Communication and Signal Processing (ICCASP 2018), 26th-27th Jan.2018, organized by Dr. BATU, Lonere, India.
- 134. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", International Conference on Recent Trends, Feb 2012, IOK COE, Pune.
- 135. S. S. Gangonda, "Bidirectional Visitor Counter with automatic Door Lock System", National Conference on Computer, Communication and Information Technology (NCCCIT-2018), 30th and 31st March 2018 organized by Department of Electronics and Telecommunication Engineering, SKN SCOE, Korti, Pandharpur.
- 136. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition using MFCC & DTW Features", ePGCON 2012, 23rd and 24th April 2012 organized by Commins COE for Woman, Pune.
- 137. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", National Conference on Emerging Trends in Engineering and Technology (VNCET'12), 30th March 2012 organized by Vidyavardhini's College of Engineering and Technology, Vasai Road, Thane.
- 138. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", ePGCON 2011, 26th April 2011 organized by MAEER's MIT, Kothrud, Pune-38.
- 139. Siddheshwar Gangonda, "Medical Image Processing", Aavishkar-2K7, 17th and 18th March 2007 organized by Department of Electronics and Telecommunication Engineering, SVERI's COE, Pandharpur.
- 140. Siddheshwar Gangonda, "Image enhancement & Denoising", VISION 2k7, 28th Feb-2nd March 2007 organized by M.T.E. Society's Walchand College of Engineering, Sangli.
- 141. Siddheshwar Gangonda, "Electromagnetic interference & compatibility" KSHITIJ 2k6, 23rd and 24th Sept. 2006 organized by Department of Mechanical Engineering, SVERI's COE, Pandharpur.
- 142. A. Pise and K. Karande, "A genetic Algorithm-Driven Energy-Efficient routing strategy for optimizing performance in VANETs," Engineering Technology and Applied Science Research, vol. 15, no. 5, 2025, [Online]. Available: https://etasr.com/index.php/ETASR/article/view/12744

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 143. A. C. Pise, K. J. Karande, "Investigating Energy-Efficient Optimal Routing Protocols for VANETs: A Comprehensive Study", ICT for Intelligent Systems, Lecture Notes in Networks and Systems 1109, Proceedings of ICTIS 2024 Volume 3, Lecture Notes in Networks and Systems, Springer, Singapore, ISSN 2367-3370, PP 407-417, 29 October 2024 https://doi.org/10.1007/978-981-97-6675-8_33.
- 144. A. C. Pise, et. al., "Smart Vehicle: A Systematic Review", International Journal The Ciência & Engenharia Science & Engineering Journal ISSN: 0103-944XVolume 11 Issue 1, 2023pp: 992–998, 2023.
- 145. A. C. Pise, et. al., "Smart Vehicle: A Systematic Review", International Journal of Research Publication and Reviews, ISSN 2582-7421, Vol 4, no 10, pp 2728-2731 October 2023.
- 146. A. C. Pise, et. al., "Development of BIOBOT System to Assist COVID Patient and Caretakers", European Journal of Molecular and Clinical Medicine; 10(1):3472-3480, 2023.
- 147. A. C. Pise, et. al., "IoT Based Landmine Detection Robot", International Journal of Research in Science & EngineeringISSN: 2394-8299Vol: 03, No. 04, June-July 2023.
- 148. A. C. Pise, et. al., "A Systematic survey on Estimation of Electrical Vehicle", Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN: 2799-1156, Volume 3, Issue 01, Pages 1-6, December 2023.
- 149. A. C. Pise, et. al., "Python Algorithm to Estimate Range of Electrical Vehicle", Web of Science, Vol 21, No 1 (2022) December 2022
- 150. A. C. Pise, et. al., "Implementation of BIOBOT System for COVID Patient and Caretakers Assistant using IOT", International Journal of Information technology and Computer Engineering. 30-43. 10.55529/ijitc.21.30.43, (2022).
- 151. A. C. Pise, et. al., "An IoT Based Real Time Monitoring of Agricultural and Micro irrigation system", International journal of scientific research in Engineering and management (IJSREM), VOLUME: 06 ISSUE: 04 | APRIL 2022, ISSN:2582-3930.
- 152. A. C. Pise, Dr. K. J. Karande, "An Exploratory study of Cluster Based Routing Protocol in VANET: A Review", International Journal of Advanced Research in Engineering and Technology(IJARET), 12,10, 2021, 17-30, Manuscript ID:00000-94375 Source ID:0000006, Journal_uploads/ IJARET/VOLUME_12_ISSUE_10/IJARET_12_10_002.pdf 153. A. C. Pise, et. al., "Android based Portable Health Support System," A Peer Referred & Indexed International Journal of Research, Vol.8, issue. 4, April 2019.
- 154. A. C. Pise, et. al., "Facial Expression Recognition Using Image Processing," International Journal of VLSI Design, Microelectronics and Embedded System, Vol. 3, issue . 2, July 2018.
- 155. A. C. Pise, et. al., "Detection of Cast Iron Composition by Cooling Curve Analysis using Thermocouple Temperature Sensor," UGC Approved International Journal of Academic Science (IJRECE), Vol.6, Issue.3, July-September 2018.
- 156. A. C. Pise, et. al., "Android Based Portable Health Support", System International Journal of Engineering Sciences & Research Technology (IJESRT 2017) Vol.6, Issue 8, pp 85-88 5th Aug 2017
- 157. A. C. Pise, et. al., "Adaptive Noise Cancellation in Speech Signal", International Journal of Innovative Engg and Technology, 2017
- 158. A. C. Pise, et. al., "Lung Cancer Detection System by using Baysian Classifier", ISSN 2454-7875, IJRPET, published online in conference special issue VESCOMM-2016, February 2016
- 159. A. C. Pise, et. al., "Review on Agricultural Plant Diseases Detection by Image Processing", ISSN 2278-62IX, IJLTET, Vol 7, Issue 1 May 2016
- 160. A. C. Pise, et. al. "Segmentation of Retinal Images for Glaucoma Detection", International Journal of Engineering Research and Technology (06, June-2015).
- 161. A. C. Pise, et. al. "Color Local Texture Features Based Face Recognition", International Journal of Innovations in Engineering and Technology(IJIET), Dec. 2014
- 162. A. C. Pise, et. al. "Single Chip Solution For Multimode Robotic Control", International Journal of Engineering Research and Technology (IJERT-2014), Vol. 3, Issue 12, Dec. 2014.
- 163. Anjali C. Pise et. al., "Remote monitoring of Greenhouse parameters using zigbee Wireless Sensor Network", International Journal of Engineering Research & Technology ISSN 2278-0181 (online) Vol. 3, Issue 2, and pp: (2412-2414), Feb. 2014.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 164. A. C. Pise, K. J. Karande, "Cluster Head Selection Based on ACO In Vehicular Ad-hoc Networks", Machine Learning for Environmental Monitoring in Wireless Sensor Networks
- 165. A. C. Pise, K. J. Karande, "Architecture, Characteristics, Applications and Challenges in Vehicular Ad Hoc Networks" Presented in 27th IEEE International Symposium on Wireless Personal Multimedia Communications (WPMC 2024) "Secure 6G AI Nexus: Where Technology Meets Humanity" Accepted for book chapter to be published in international Scopus index book by River publisher.
- 166. A. C. Pise, Dr. K. J. Karande, "K-mean Energy Efficient Optimal Cluster Based Routing Protocol in Vehicular Ad Hoc Networks", International Conference on Innovations in Artificial Intelligence and Machine Learning (ICAIML-2022), August 20th and 21st 2022 Springer database Conference.
- 167. A. C. Pise, Mr. D. Nale, "Web-Based Application for Result Analysis", ", International Conference on Innovations in Artificial Intelligence and Machine Learning (ICAIML-2022), August 20th and 21st 2022 Springer database Conference.
- 168. A. C. Pise, et. al., "Detection of Cast Iron Composition by Cooling Curve Analysis using Thermocouple Temperature Sensor," 2nd International Conference on Engineering Technology, Science and Management Innovation (ICETSMI 2018), 2nd September 2018.
- 169. A. C. Pise, et. al., "Facial Expression Recognition Using Facial Features," IEEE International Conference on Communication and Electronics Systems (ICCES 2018), October 2018.
- 170. A. C. Pise, et. al., "Estimating Parameters of Cast Iron Composition using Cooling Curve Analysis," IEEE International Conference on Communication and Electronics Systems (ICCES 2018), Coimbatore, October 2018.
- 171. A. C. Pise, et. al., "Android based portable Health Support System," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 172. A. C. Pise, et. al., "Baysian Classifier & FCM Segmentation for Lung Cancer Detection in early stage," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 173. A. C. Pise, et. al., "Cast Iron Composition Measurement by Coding Curve Analysis," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 174. A. C. Pise, et. al., "War field Intelligence Defence Flaging Vehicle," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 175. A. C. Pise, et. al. "Disease Detection of Pomegranate Plant", IEEE sponsored International Conference on Computation of Power, Energy, Information and Communication, 22-23 Apr. 2015.
- 176. A. C. Pise, P. Bankar. "Face Recognition by using GABOR and LBP", IEEE International Conference on Communication and Signal Processing, ICCSP, 2-4 Apr. 2015
- 177. A. C. Pise, et. al. "Single Chip Solution For Multimode Robotic Control", Ist IEEE International Conference on Computing Communication and Automation, 26-27 Feb2015.
- 178. Anjali C. Pise, Vaishali S. Katti, "Efficient Design for Monitoring of Greenhouse Parameters using Zigbee Wireless Sensor Network", fifth SARC international conference IRF,IEEE forum ISBN 978-93-84209-21-6,pp 24-26, 25th May 2014
- 179. A. C. Pise, P. Bankar, "Face Recognition using Color Local Texture Features", International Conference on Electronics and Telecommunication, Electrical and Computer Engineering, Apr.2014.
- 180. A. C. Pise, et.al. "Monitoring parameters of Greenhouse using Zigbee Wireless Sensor Network", 1st International Conference on Electronics and Telecommunication, Electrical and Computer Engineering, 5-6 Apr.2014.
- 181. A. C. Pise, et. al. "Compensation schemes and performance Analysis of IQ Imbalances in Direct Conversion Receivers", International Conference at GHPCOE, Gujarat, (Online Proceeding is Available), 2009.
- 182. A. C. Pise, K. J. Karande, "Energy-Efficient Optimal Routing Protocols in VANETs", 66th Annual IETE Convention, AIC -2023 September16-17, 2023, under the Theme: The Role of 5G In Enabling Digital Transformation for Rural Upliftment.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

ISSN: 2581-9429

Volume 5, Issue 4, October 2025

- 183. A. C. Pise, et. al. "Automatic Bottle Filling Machine using Raspberry Pi", National Conference on computer :Communication & information Technology (NCCIT-2018) dated 30th & 31st March 2018.
- 184. A. C. Pise, et. al. "Design & Implementation of ALU using VHDL", National Conference on computer ;Communication & information Technology (NCCIT-2018) dated 30th & 31st March 2018.
- 185. A. C. Pise, et. al. "Mechanism and Control of Autonomus four rotor Quad copter", National Conference on Computer, Electrical and Electronics Engineering, 23-24 Apr. 2016.
- 186. A. C. Pise, et. al. "Segmentation of Optic Disk and Optic Cup from retinal Images", ICEECMPE Chennai, June 2015
- 187. A. C. Pise, et. al. "Diseases Detection of Pomegranate Plant", IEEE Sponsored International conference on Computation of Power, Energy, April 2015.
- 188. A. C. Pise, et. al. "Compensation Techniques for I/Q Imbalance in Direct-Conversion Receivers", Conference at SCOE, Pune 2010.
- 189. A. C. Pise, et. al. "I/Q Imbalance compensation Techniques in Direct Conversion Receiver", Advancing Trends in Engineering and Management Technologies, ATEMT-2009, Conference at Shri Ramdeobaba Kamla Nehru Engineering College, Nagpur, 20-21 November 2009
- 190. A. C. Pise, et. al. "Compensation Techniques for I/Q Imbalance in Direct Conversion Receiver", Conference at PICT, Pune 2008.
- 191. A. C. Pise, et. al. "I/Q Imbalance compensation Techniques in Direct Conversion Receiver", Conference at DYCOE, Pune 2008.
- 192. A. C. Pise, et. al. "DUCHA: A New Dual channel MAC protocol for Multihop Ad-Hoc Networks", Conference at SVCP, Pune 2007.
- 193. Godase, V., Pawar, P., Nagane, S., & Kumbhar, S. (2024). Automatic railway horn system using node MCU. Journal of Control & Instrumentation, 15(1).
- 194. Godase, V., & Godase, J. (2024). Diet prediction and feature importance of gut microbiome using machine learning. Evolution in Electrical and Electronic Engineering, 5(2), 214-219.
- 195. Jamadade, V. K., Ghodke, M. G., Katakdhond, S. S., & Godase, V. A Comprehensive Review on Scalable Arduino Radar Platform for Real-time Object Detection and Mapping.
- 196. Godase, V. (2025). A comprehensive study of revolutionizing EV charging with solar-powered wireless solutions. Advance Research in Power Electronics and Devices e-ISSN, 3048-7145.
- 197. Godase, V. (2025, April). Advanced Neural Network Models for Optimal Energy Management in Microgrids with Integrated Electric Vehicles. In Proceedings of the International Conference on Trends in Material Science and Inventive Materials (ICTMIM-2025) DVD Part Number: CFP250J1-DVD.
- 198. Dange, R., Attar, E., Ghodake, P., & Godase, V. (2023). Smart agriculture automation using ESP8266 NodeMCU. J. Electron. Comput. Netw. Appl. Math, (35), 1-9.
- 199. Godase, V. (2025). Optimized Algorithm for Face Recognition using Deepface and Multi-task Cascaded Convolutional Network (MTCNN). Optimum Science Journal.
- 200. Mane, V. G. A. L. K., & Gangonda, K. D. S. Pipeline Survey Robot.
- 201. Godase, V. (2025). Navigating the digital battlefield: An in-depth analysis of cyber-attacks and cybercrime. International Journal of Data Science, Bioinformatics and Cyber Security, 1(1), 16-27.
- 202. Godase, V., & Jagadale, A. (2019). Three element control using PLC, PID & SCADA interface. International Journal for Scientific Research & Development, 7(2), 1105-1109.
- 203. Godase, V. (2025). Edge AI for Smart Surveillance: Real-time Human Activity Recognition on Low-power Devices. International Journal of AI and Machine Learning Innovations in Electronics and Communication Technology, 1(1), 29-46.
- 204. Godase, V., Modi, S., Misal, V., & Kulkarni, S. (2025). LoRaEdge-ESP32 synergy: Revolutionizing farm weather data collection with low-power, long-range IoT. Advance Research in Analog and Digital Communications, 2(2), 1-11.
- 205. Godase, V. (2025). Comparative study of ladder logic and structured text programming for PLC. Available at SSRN 5383802. DOI: 10.48175/IJARSCT-29514

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ogy 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 206. Godase, V., Modi, S., Misal, V., & Kulkarni, S. Real-time object detection for autonomous drone navigation using YOLOv8, || . Advance Research in Communication Engineering and its Innovations, 2(2), 17-27.
- 207. Godase, V. (2025). Smart energy management in manufacturing plants using PLC and SCADA. Advance Research in Power Electronics and Devices, 2(2), 14-24.
- 208. Godase, V. (2025). IoT-MCU Integrated Framework for Field Pond Surveillance and Water Resource Optimization. International Journal of Emerging IoT Technologies in Smart Electronics and Communication, 1(1), 9-19.
- 209. Godase, V. (2025). Graphene-Based Nano-Antennas for Terahertz Communication. International Journal of Digital Electronics and Microprocessor Technology, 1(2), 1-14.
- 210. Godase, V., Khiste, R., & Palimkar, V. (2025). AI-Optimized Reconfigurable Antennas for 6G Communication Systems. Journal of RF and Microwave Communication Technologies, 2(3), 1-12.
- 211. Bhaganagare, S., Chavan, S., Gavali, S., & Godase, V. V. (2025). Voice-Controlled Home Automation with ESP32: A Systematic Review of IoT-Based Solutions. Journal of Microprocessor and Microcontroller Research, 2(3), 1-13.
- 212. Jamadade, V. K., Ghodke, M. G., Katakdhond, S. S., & Godase, V. A Comprehensive Review on Scalable Arduino Radar Platform for Real-time Object Detection and Mapping.
- 213. Godase, V. (2025). Cross-Domain Comparative Analysis of Microwave Imaging Systems for Medical Diagnostics and Industrial Testing. Journal of Microwave Engineering & Technologies, 12(2), 39-48p.
- 214. V. K. Jamadade, M. G. Ghodke, S. S. Katakdhond, and V. Godase, —A Review on Real-time Substation Feeder Power Line Monitoring and Auditing Systems," International Journal of Emerging IoT Technologies in Smart Electronics and Communication, vol. 1, no. 2, pp. 1-16, Sep. 2025.
- 215. V. V. Godase, "VLSI-Integrated Energy Harvesting Architectures for Battery-Free IoT Edge Systems," Journal of Electronics Design and Technology, vol. 2, no. 3, pp. 1-12, Sep. 2025.
- 216. A. Salunkhe et al., "A Review on Real-Time RFID-Based Smart Attendance Systems for Efficient Record Management," Advance Research in Analog and Digital Communications, vol. 2, no. 2, pp.32-46, Aug. 2025.
- 217. Vaibhav, V. G. (2025). A Neuromorphic-Inspired, Low-Power VLSI Architecture for Edge AI in IoT Sensor Nodes. Journal of Microelectronics and Solid State Devices, 12(2), 41-47p.
- 218. Nagane, M.S., Pawar, M.P., & Godase, P.V. (2022). Cinematica Sentiment Analysis. Journal of Image Processing and Intelligent Remote Sensing.
- 219. Godase, V.V. (2025). Tools of Research. SSRN Electronic Journal.
- 220. Godase, V. (n.d.). EDUCATION AS EMPOWERMENT: THE KEY TO WOMEN'S SOCIO ECONOMIC DEVELOPMENT. Women Empowerment and Development, 174–179.
- 221. Godase, V. (n.d.). COMPREHENSIVE REVIEW ON EXPLAINABLE AI TO ADDRESSES THE BLACK BOX CHALLENGE AND ITS ROLE IN TRUSTWORTHY SYSTEMS. In Sinhgad College of Engineering, Artificial Intelligence Education and Innovation (pp. 127–132).
- 222. Godase, V. (n.d.-b). REVOLUTIONIZING HEALTHCARE DELIVERY WITH AI-POWERED DIAGNOSTICS: A COMPREHENSIVE REVIEW. In SKN Sinhgad College of Engineering, SKN Sinhgad College of Engineering (pp. 58–61).
- 223. Dhope, V. (2024). SMART PLANT MONITORING SYSTEM. In International Journal of Creative Research Thoughts (IJCRT). https://www.ijcrt.org
- 224. M. M. Zade, Sushant D. Kambale, Shweta A. Mane, Prathamesh M. Jadhav. (2025) "IOT Based early fire detection in Jungles". RIGJA&AR Volume 2 Issue 1, ISSN: 2998-4459. DOI: https://doi.org/10.5281/zendo.15056435
- 225. M. M. Zade, Bramhadev B. Rupanar, Vrushal S. Shilawant , Akansha R. Pawar(2025) "IOT Flood Monitoring & Alerting System using Rasberry Pi-Pico "International Journal of Research Publication & Reviews , Volume 6 ,Issue 3,ISSN:2582-7421.DOI:https://ijrpr.com/uploads/V6ISSUE3/IJRPR40251.pdf

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 226. M.M.Zade(2022) "Touchless Fingerprint Recognition System" (Paper-ID 907)(2022) International Conference on "Advanced Technologies for Societal Applications: Techno-Societal 2022 https://link.springer.com/book/10.1007/978-3-031-34644-6?page=6
- 227. Mr.M.M.Zade published the paper on "Automation of Color Object Sorting Conveyor Belt", in International Journal of Scientific Research in Engineering & Management (IJSREM),ISSN:2582-3930 Volume 06, Issue 11th November 2022.
- 228. Mr.M.M.Zade published the paper on "Cloud Based Patient Health Record Tracking web Development",in International Journal of Advanced Research in Science, Communication & Technology(IJARSCT),ISSN NO:2581-9429 Volume 02, Issue 03,DOI 1048175/IJARSCT-3705,IF 6.252, May 2022.
- 229. Mr. Mahesh M Zade, "Performance analysis of PSNR Vs. Impulse Noise for the enhancement of Image using SMF", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- 230. Mr. Mahesh M Zade, "Classification of Power Quality Disturbances Using SVM & their Efficiency Comparison", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- 231. Mr. Mahesh M Zade, "Dynamic Clustering of Wireless Sensor Network Using Modified AODV", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- 232. Mr. Mahesh M Zade, "Performance analysis of PSNR Vs. Impulse Noise for the enhancement of Image using SMF", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur, Feb.2019
- 233. Mr. Mahesh M Zade, "Classification of Power Quality Disturbances Using SVM & their Efficiency Comparison", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur Feb.2019
- 234. Mr. Mahesh M Zade, "Dynamic Clustering of Wireless Sensor Network Using Modified AODV", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur Feb.2019
- 235. Mr. Mahesh M Zade & Mr.S.M.Karve,"Performance Analysis of Median Filter for Enhancement of Highly Corrupted Images", National Conference on Advanced Trends in Engineering, Association with IRJMS, Karmyogi Engineering College, Shelave, Pandharpur, March 2016.
- 236. Mr. Mahesh M Zade & Mr.S.M.Karve,"Implementation of Reed Solomen Encoder & Decoder Using FPGA", National Conference on Advanced Trends in Engineering, Association with IRJMS, Karmyogi Engineering College, Shelave, Pandharpur, March 2016.
- 237. Mr. Mahesh M Zade & Dr.S.M.Mukane,"Performance of Switching Median Filter for Enhancement of Image", National Conference on Mechatronics at Sinhgad Institute of Technology and Science, Narhe, Pune, Feb. 2016.
- 238. Mr. Mahesh M Zade & Dr.S.M.Mukane,"Enhancement of Image with the help of Switching Median Filter", National Conference on Emerging Trends in Electronics & Telecommunication Engineering, SVERI's College of Engineering Pandharpur, NCET 2013.
- 239. Mr.Mahesh M Zade & Dr.S.M.Mukane, "Enhancement of Image with the help of Switching Median Filter", International Journal of Computer Application (IJCA) SVERI's College of Engineering, Pandharpur, Dec. 2013.
- 240. A. O. Mulani, V. Godase, S. Takale, and R. Ghodake, "Secure Image Authentication using AES and DWT Watermarking on Reconfigurable Platform," International Journal of Embedded System and VLSI Design, vol. 1, no. 2, pp. 14-20, Oct. 2025.

