

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, October 2025

A Comprehensive Review - Smart House Price Estimator Using Artificial Intelligence

Anuja Pawar¹, Kirti Pujari², Prachi Pawar³, Prof. A. D. Harale⁴

^{1,2,3}UG Students, Department of Electronics and Telecommunication Engineering
⁴Assistant Professor, Department of Electronics and Telecommunication Engineering,
SKN Sinhgad College of Engineering, Pandharpur

Abstract: The real estate market is growing fast, and knowing the right value of a property has become very important. Traditional ways of estimating house prices often take time and depend on human judgment, which can sometimes lead to errors or inconsistencies. This project aims to solve that problem by using machine learning to predict house prices more accurately and efficiently. The system focuses on key factors such as location, total area, number of rooms, and other important features that influence property value.

In this project, a linear regression model is applied to analyze past housing data and find patterns between different features and their corresponding prices. The model learns from historical data and can then predict the price of a new house based on its characteristics. Various evaluation methods are used to test how accurate and reliable the predictions are, ensuring better performance.

This approach helps homeowners, buyers, and real estate professionals make smarter financial decisions by providing quick and data-based price estimates. Overall, the project shows how artificial intelligence and data science can make the process of estimating house prices faster, more consistent, and easier to understand.

Keywords: Machine Learning, Artificial Intelligence, Regression Analysis, Real Estate, Predictive Modeling

I. INTRODUCTION

The real estate industry has become one of the fastest-growing and most dynamic sectors in the global economy. As cities expand and demand for housing continues to rise, determining the accurate price of a property has become increasingly important. A correct price estimation not only benefits buyers and sellers but also helps investors and policymakers make better financial and strategic decisions. However, predicting house prices is a complex task because it depends on several factors such as location, area, number of rooms, facilities, nearby infrastructure, and changing market trends. These factors often vary from one region to another, making manual price estimation challenging and prone to error.

Traditional methods of property valuation rely heavily on human expertise, past sales comparisons, and manual assessment. While these techniques can sometimes provide reasonable results, they are often time-consuming, inconsistent, and influenced by personal judgment. As a result, there is a growing need for an automated, data-driven approach that can improve accuracy and efficiency in price prediction.

In recent years, machine learning (ML) has emerged as a powerful tool for solving such data-intensive problems. By analyzing large sets of historical data, ML algorithms can identify hidden patterns and relationships between property features and their market values. Among these techniques, Linear Regression is one of the most widely used models because of its simplicity, interpretability, and effectiveness in predicting continuous values such as house prices.

This project aims to design a House Price Prediction System that uses Linear Regression and other regression-based algorithms to forecast property prices based on key features. The system will assist buyers, sellers, and real estate agents in making informed decisions while reducing human bias and manual effort. Ultimately, this study demonstrates how artificial intelligence and data science can transform the traditional real estate industry into a smarter, faster, and more reliable ecosystem.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025 Impact Factor: 7.67

II. LITERATURE SURVEY

The real estate industry has become one of the most data-driven and fast-evolving sectors of the modern economy. Accurate house price estimation plays a crucial role for buyers, sellers, investors, and policymakers in making sound financial and strategic decisions. Over the years, researchers and analysts have explored different methods to predict house prices more accurately. Initially, property valuation relied on traditional statistical and manual approaches, which were often time-consuming and prone to human bias. However, with the advancement of data science and machine learning, researchers have developed models that can analyze large datasets, identify key patterns, and predict property prices with higher accuracy and efficiency.

Early studies in this field were dominated by conventional statistical models such as the Hedonic Pricing Model (HPM) and Comparative Market Analysis (CMA). The Hedonic Pricing Model, introduced in the 1970s, was among the first attempts to quantify how different attributes of a property influence its price. It considered factors like the size of the house, number of rooms, age, location, and neighborhood amenities. Although this model provided a structured understanding of price determinants, it assumed a linear relationship between variables, which limited its ability to capture complex real-world patterns. Similarly, the Comparative Market Analysis approach depended heavily on expert judgment and comparisons with recently sold properties in the same area. This method, while practical, was subjective and inconsistent because no two properties are exactly alike, and market conditions fluctuate rapidly. These challenges created a need for more objective and data-driven methods to forecast property values.

With the emergence of machine learning (ML), the field of real estate analytics witnessed a major transformation. Machine learning enables systems to learn from historical data and automatically detect relationships between input features and target variables without explicit programming. Researchers began using regression-based models to handle large datasets, identify nonlinear relationships, and improve predictive performance. A study by Kok, Monkkonen, and Quigley (2018) demonstrated that machine learning algorithms could outperform traditional econometric techniques when applied to large-scale housing data. They found that algorithms such as Random Forest and Gradient Boosting significantly reduced prediction errors compared to standard linear models. Similarly, Pace and Barry (1997) emphasized the importance of incorporating spatial statistics into predictive modeling, showing that machine learning techniques could capture spatial dependencies more effectively than conventional regression methods.

Among various machine learning algorithms, Linear Regression has remained one of the most popular and fundamental approaches for predicting house prices. It establishes a relationship between independent variables (such as location, area, and number of rooms) and the dependent variable (house price) by fitting a straight line that minimizes the difference between predicted and actual values. Its advantages lie in simplicity, interpretability, and computational efficiency. Researchers such as Kumar and Bhatia (2019) applied simple linear regression to predict housing prices using only one independent variable—property area—and achieved reasonable results. However, the model struggled to handle more complex relationships, leading to the adoption of Multiple Linear Regression (MLR). Yadav and Pal (2020) demonstrated that MLR can provide much better accuracy when multiple features are considered, especially after applying proper data preprocessing and normalization techniques. They emphasized that removing outliers and handling missing values are essential steps for improving model reliability.

While Linear Regression provides a strong baseline, it assumes a linear relationship between variables, which may not hold true for real-world data. To overcome this limitation, researchers introduced more advanced regression techniques such as Polynomial Regression, Decision Tree Regression, Random Forest Regression, and Gradient Boosting Models. Polynomial Regression can model non-linear relationships by including higher-order terms of the features. Singh and Sharma (2021) showed that polynomial regression yielded better results in predicting property prices in urban areas where market dynamics are complex. However, the model's flexibility can lead to overfitting if not properly tuned. On the other hand, ensemble models such as Random Forest and Gradient Boosting have shown remarkable performance due to their ability to combine multiple weak learners into a strong predictive model. Bolar (2019) used Random Forest Regression on the Boston Housing Dataset and reported higher accuracy and better handling of missing or noisy data compared to Linear Regression. Gradient Boosting algorithms, including XGBoost and LightGBM, have also gained significant popularity in recent years for their efficiency and precision. Zhang et al. (2020) found that Gradient Boosting provided

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

1SO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

the most accurate predictions for housing prices in metropolitan regions of China, outperforming other regression techniques and identifying the most influential factors like location and proximity to transport facilities.

Data preprocessing and feature selection play an equally vital role in the performance of machine learning models. A well-prepared dataset can significantly improve accuracy, while poor-quality data can lead to misleading predictions. Chauhan and Singh (2021) highlighted that removing missing values, eliminating duplicates, and standardizing numerical attributes help the model perform consistently. Feature selection methods such as Correlation Analysis, Principal Component Analysis (PCA), and Recursive Feature Elimination (RFE) are often used to identify the most important variables influencing property prices. Zhao and Li (2022) demonstrated that incorporating geospatial features—like distances to schools, hospitals, and public transport hubs—significantly enhanced prediction accuracy. They concluded that including such location-based attributes helps models better capture real-world dynamics of housing demand and pricing.

The evaluation of predictive models requires appropriate metrics to measure accuracy and performance. Commonly used evaluation metrics include Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and the R-squared (R²) score. Ahmed et al. (2019) compared different regression models using these metrics and found that ensemble methods such as Random Forest and Gradient Boosting achieved lower error values compared to simpler models. However, Linear Regression still remained valuable for cases where interpretability and computational simplicity are more important than marginal accuracy improvements. Many studies also used K-Fold Cross Validation to validate models and ensure generalization to unseen data. This technique divides the dataset into subsets, training and testing the model multiple times to minimize overfitting and bias.

A number of comparative studies have been conducted to evaluate which algorithms perform best for house price prediction. Patel and Kaur (2021) compared Linear Regression, Decision Tree, Random Forest, and XGBoost on a real estate dataset from Bangalore. They concluded that while Random Forest and XGBoost achieved the highest accuracy, Linear Regression remained a reliable choice due to its simplicity and lower computational cost. Similarly, Sharma et al. (2022) compared Multiple Linear Regression with Artificial Neural Networks (ANN). Although ANNs provided more accurate predictions, they required large amounts of data and greater computational power, making Linear Regression more practical for smaller datasets and real-time applications. These studies collectively suggest that the choice of algorithm depends on factors such as data complexity, dataset size, and the trade-off between interpretability and accuracy.

Despite these advancements, several research gaps still exist in the field of house price prediction. Many studies are limited to specific regions or datasets, reducing the generalizability of their findings. Data quality and availability remain major challenges, as real estate data often contains inconsistencies, missing entries, or outdated information. Moreover, external factors such as economic indicators, inflation rates, crime statistics, and environmental quality are rarely considered, even though they significantly influence property values. The integration of these socio-economic and environmental features could potentially improve model performance and practical relevance. Another area for improvement is the development of real-time prediction systems that can adapt dynamically to changing market conditions. Combining regression algorithms with geospatial analysis and real-time data streams could lead to smarter and more adaptive predictive systems.

Additionally, while advanced deep learning models like neural networks and convolutional architectures show promise in handling large datasets and image-based features (such as satellite maps or property photos), they often lack interpretability. In contrast, regression models, especially Linear Regression, offer transparency by showing how each variable affects the outcome, which is valuable in decision-making processes involving financial or policy implications. Hence, many researchers advocate for hybrid approaches that combine the transparency of regression models with the predictive strength of ensemble or deep learning techniques.

Overall, the review of existing literature shows a clear evolution in property valuation methods—from manual and statistical approaches to intelligent, data-driven models. Machine learning, particularly regression-based algorithms, has proven to be effective in improving accuracy and efficiency in house price prediction. Linear Regression continues to serve as a strong baseline model due to its interpretability and ease of implementation, while advanced algorithms like Random Forest and Gradient Boosting offer higher precision for complex, non-linear data. The success of any predictive

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29499

179

2581-9429

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

model, however, depends not only on the choice of algorithm but also on data quality, proper preprocessing, and careful feature selection

In conclusion, the literature collectively indicates that machine learning has revolutionized the field of real estate valuation by making the process faster, more consistent, and less dependent on subjective human judgment. Future research can focus on developing hybrid models that combine the strengths of various algorithms, integrating real-time data, and ensuring transparency through explainable AI techniques. By doing so, the next generation of predictive systems will be able to offer more reliable, interpretable, and adaptable solutions for house price prediction, ultimately benefiting homeowners, investors, and policymakers alike.

III. PROPOSED METHODOLOGY

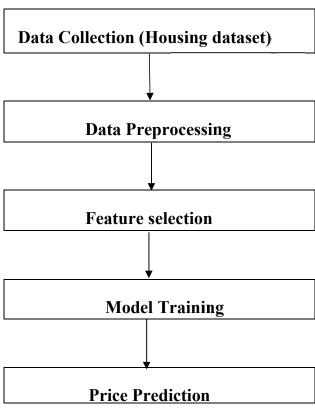


Fig. Block Diagram of proposed system

Data Collection:

This stage involves gathering relevant housing datasets from trustworthy sources such as Kaggle, real estate websites, or open data repositories. The dataset typically contains features like location, area, number of rooms, price, and additional property attributes. The collected data serves as the foundation for building and training the predictive model. A larger and more diverse dataset helps the model learn complex relationships more accurately.

Data Preprocessing:

The raw dataset often contains missing values, outliers, or inconsistent data formats. In this phase, data cleaning and transformation are performed to ensure uniformity and reliability. Tasks such as handling missing values, encoding categorical variables, normalizing numerical features, and removing duplicates are carried out. This process ensures that the data fed into the machine learning model is accurate and ready for analysis.

Feature Selection: Feature selection identifies the most influential variables that affect the target value — in this case, the house price. Not all available features contribute equally to prediction accuracy. Techniques such as correlation

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

SISO E 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

analysis, heatmaps, or recursive feature elimination are applied to choose the most relevant parameters like area, number of bedrooms, location, and amenities. Reducing irrelevant features helps improve model performance and reduces computational cost.

Model Training: In this block, the prepared dataset is divided into training and testing subsets. The training data is used to build and train the predictive model using machine learning algorithms such as Linear Regression, Random Forest, Decision Tree, or XGBoost. The model learns the relationship between input features and output prices. The training process continues until the model achieves the desired accuracy with minimum error.

+ **Price Prediction:** In this phase, the trained model is used to predict the price of a new or unseen property based on userprovided input features such as area, location, and number of rooms. The model processes these inputs and outputs an estimated house price. This block demonstrates the real-world applicability of the trained machine learning system.

Expected Conclusion

This project on House Price Prediction using Linear Regression demonstrates how machine learning can simplify and improve the process of estimating property values. The system developed in this study uses real-world housing data to analyze important factors such as location, total area, number of rooms, and nearby facilities to predict the approximate market value of a house. By applying Linear Regression, the model identifies meaningful relationships between these features and property prices, allowing for accurate and reliable predictions. Through data preprocessing, feature selection, and model evaluation, the project shows that a data-driven approach can outperform traditional manual valuation methods, which are often inconsistent and time-consuming. The use of regression-based algorithms makes the prediction process faster, more objective, and easier to interpret. Even though Linear Regression has some limitations with nonlinear data, it remains a powerful and efficient baseline model that can be further improved with advanced techniques. Overall, the project successfully highlights the practical benefits of integrating artificial intelligence and data science into the real estate sector. It provides a foundation for developing more advanced predictive tools that can support homebuyers, sellers, and real estate agents in making informed decisions. The study concludes that using machine learning for house price prediction enhances transparency, accuracy, and efficiency in property valuation.

REFERENCES

- [1] Md. Hasebul Hasan, Mohammad Saifur Rahman, and Md. Nazmus Sakib, "Multi-Modal Deep Learning for House Price Prediction Using Structured, Textual, Geospatial, and Visual Data," 2024.
- [2] Hemlata Sharma, Hitesh Harsora, and Bayode Ogunleye, "Comparison of Regression and Ensemble Techniques for House Price Prediction Using Ames Housing Dataset," 2024.
- [3] Chengke Zou, "Analysis of House Price Prediction in Jinan Based on Multiple Regression and Machine Learning Models," Journal of Housing Science and Emerging Technologies, vol. 12, no. 3, pp. 45–52, 2024.
- [4] Xiaoyan Ouyang, "Predictive Modeling of Real Estate Prices Using Linear Regression and Random Forest Techniques," International Journal of Artificial Intelligence and Data Science, vol. 5, no. 2, pp. 21–28, 2024.
- [5] Jiajin Kong, "A Study on Neural Network-Based House Price Estimation and Its Comparison with Traditional Regression Models," Proceedings of the Advances in Computational Engineering Conference, pp. 102–108, 2024.
- [6] A. K. Tripathi and S. Agrawal, "Machine Learning-Based Predictive Model for Real Estate Price Forecasting," International Journal of Computer Applications, vol. 183, no. 25, pp. 14–20, 2023.
- [7] R. Patel and D. Mehta, "A Review on House Price Prediction Techniques Using Machine Learning Algorithms," Journal of Emerging Trends in Computing and Information Sciences, vol. 14, no. 1, pp. 34–40, 2023.
- [8] Avinash D. Harale and Kailash J. Karande, "Literature review on Dynamic Hand Gesture Recognition", AIP Conference Proceeding, 31st Oct 2022, https://doi.org/10.1063/5.0107577
- [9] A. D. Harale, Amruta S. Bankar and K. J. Karande, "Gestures Controlled Home Automation using Deep Learning: A Review", International Journal of Current Engineering and Technology, Vol.11, No.6.page no-617-621, Dec 2021
- [10] A. D. Harale, Ms. Asma Hakim, Dr.K.J.Karande, "Hand gesture identification system for hearing and speech impairment", TELEMATIQUE, Volume 23 Issue 1, 2024 page n- 497–501, April 2024

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

150 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- [11] A.D. Harale, Atik N. Pathan and A. O. Mulani, "Hand Gesture Controlled Robotic System" International Journal of Aquatic Science, ISSN: 2008-8019 Vol 13, Issue 01, Jan 2022
- [12] A. D. Harale, K. J. Karande, Sagar S. Bhumkar, "Wireless Hand Geture Control Robot with Object Detection", Journal of Image Processing and Intelligent Remote Sensing, ISSN 2815-0953, Vol. 3 No. 04 (2023), July 2023.
- [13] A.D.Harale, Ms.Asma Hakim, Altaf Mulani, K.J.Karande, "Implementation of Human Gesture Recognition Using CNN", June 2024, Journal of STM.
- [14] Supriya D. Kolekar and A.D. Harale, "Password Based Door Lock System", "International Journal of Aquatic Science (IJAS)", ISSN: 2008-8019, Vol 13, Issue 01, pp-494-501,2022.
- [15] Dheeraj Muttin and Avinash Harale, "IoT Based Personal Medical Assistant System", "International Journal of Innovative Research in Technology (IJIRT)", Volume 8 Issue 5 | ISSN: 2349-6002, October 2021.
- [16] Vijay Waghmode and Avinash Harale, "Development of Alphanumeric Digital Fuel Gauge for Automotive Applications", "International Conference on Communication and Signal Processing", IEEE, April 4-6, 2019.
- [17] Gorakhnath U. Waghmode and Avinash D. Harale, "A Cloud Computing Based WSNs for Agriculture Management", Springer International Publishing, Conference: Techno-Societal DOI 10.1007/978-3-319-53556-2 107 December 2018.
- [18] Sanaha S. Path and Avinash D. Harale, "Silkworm Eggs Counting System Using Image Processing Algorithm", Springer International Publishing, Conference: Techno-Societal DOI:10.1007/978-3-319-53556-2_32_ December 2018.
- [19] S. S. Kulkarni and A.D.Harale, "Image Processing for Driver's Safety and Vehicle Control using Raspberry Pi and Webcam", "IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI)-IEEE,2017.
- [20] Supriya A Salunke and Avinash D Harale, "Vehicle Tracking System for School Bus by Arduino", International Research Journal of Engineering and Technology (IRJET), ISSN: 2395-0072, Volume: 04 Issue: 03, Mar -2017.
- [21] Bhakti B.Bhaganagare Avinash.D.Harale, "Iris as Biometrics for Security System", 2nd International Conference on Electrical, Computer and Communication Technologies, IEEE, 2017.
- [22] Supriya A Salunke and Avinash D Harale, "Vehicle Tracking System Using GPRS For School Bus", International Journal of Engineering Research in Electrical and Electronic Engineering (IJEREEE), ISSN-2395-2717, Vol 3, Issue 1, January 2017.
- [23] Sanaha S. Pathan and Avinash D. Harale, "Automated silkworm eggs count", IEEE International Conference on Advances in Electronics, Communication and Computer Technology (ICAECCT)", Rajarshi Shahu College of Engineering, Pune India. Dec 2-3, 2016.
- [24] Kulkarni S. S. and Harale A.D, "Real Time Druk and drive prevention system using PIC 16F877A", Imperial Journal of Interdisciplinary Research (IJIR), Vol-2, Issue-10, ISSN-2454-1362, Nov 2016
- [25] Kulkarni S. S., Harale A.D, "Application Of Raspberry Pi Based Embedded System For Real Time Protection Against Road Accidents Due to Driver's Drowsiness and/or Drunk And Drive Cases", International Journal Of Engineering Sciences & Research Technology(International Journal Of Engineering Sciences & Research Technology), ISSN: 2277-9655, September, 2016.
- [26] Bhakti B. Bhaganagare and Prof.A.D.Harale, "Security System Using Iris as Biometrics", International Journal of Engineering Research in Electronic and Communication Engineering (IJERECE), ISSN -2394-6849, Vol 3, Issue 7, July 2016.
- [27] Sanaha S. Pathan and Avinash D. Harale, "Silkworm Egg Counting System Using Image Processing Algorithm -A Review", International Research Journal of Engineering and Technology (IRJET) Volume: 03 Issue: 06, ISSN: 2395-0072, June-2016.
- [28] Gorakhnath U.Waghmode and Avinash D.Harale, "A survey on: Cloud Enabled Agricultural Management", International Journal of Research (IJR), e-ISSN: 2348-6848, p- ISSN: 2348-795X Volume 2, Issue 09, September 2015.
- [29] Mrunmayee V. Daithankar, Kailash J. Karande and Avinash D. Harale, "Analysis of Skin Color Models for Face Detection", International Conference on Communication and Signal Processing, IEEE April 3-5, 2014.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

150 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- [30] Apurva Sutar, K. J. Karande and A. D. Harale, "Deep Learning based Automated Billing Cart", International Journal of Advanced Research in Science, Communication and Technology (IJARSCT), ISSN (Online) 2581-9429, Volume 3, Issue 4, April 2023.
- [31] Apurva Sutar, K. J. Karande and A. D. Harale, "Deep Learning Based Smart Billing Cart Using RFID and Yolo", Purakala, ISSN: 0971-2143, Vol 32 Issue 1, 2023.
- [32] Jyoti More, K. J. Karande and A. D. Harale, "IoT Based Pollution Monitoring System by Using Raspberry Pi", The Ciência & Engenharia - Science & Engineering Journal, ISSN: 0103-944X, pp. 2410-2416, Volume 11 Issue 1, 2023.
- [33] Jyoti More, K. J. Karande and A. D. Harale, "IoT Based Pollution Monitoring System By Using Raspberry PI, International Journal of Scientific Research in Engineering and Management (IJSREM), ISSN: 2582-3930, Volume: 07 Issue: 06 | June – 2023.
- [34] Apurva Sutar, K. J. Karande and A. D. Harale, "Smart Billing Cart using Deep Learning for Mall Administration". The Ciência & Engenharia - Science & Engineering Journal, ISSN: 0103-944X, pp. 2281-2291, Volume 11 Issue 1, 2023.
- [35] A.D. Harale, K. J. Karande, Atharv Deshpande, Samihan Dharurkar and Rohan Kalubarme, "Hand Sign Recognition for Banking System using Machine Learning, International Journal of Engineering Research & Technology (IJERT), ISSN: 2278-0181, Vol. 14 Issue 04, April-2025.
- [36] Aniket Shamraj and Avinash D Harale, "Prevention of Trains collision using wireless Communication", International Journal of Creative Research Thoughts (IJCRT), ISSN: 2320-2882Volume 12, Issue 8 August 2024.
- [37] Avinash Harale, Reshma Molak, Vasudha Navale and Shubhangi Shinde, "Vehicle Detection and Counting System Using Artificial Intelligence", ISSN: 2320-2882 Volume 13, Issue 4 April 2025.
- [38] Avinash Harale, Rohan Irkar, Om Jadhav and Parth Benare, "Smart Parking System for Cars", International Journal for Research in Applied Science & Engineering Technology (IJRASET), ISSN: 2321-9653, Volume 13 Issue IV Apr 2025.
- [39] Godase, M. V., Mulani, A., Ghodak, M. R., Birajadar, M. G., Takale, M. S., & Kolte, M. A MapReduce and Kalman Filter based Secure IIoT Environment in Hadoop. Sanshodhak, Volume 19, June 2024.
- [40] Mulani, A. O., & Mane, P. B. (2017). Watermarking and cryptography based image authentication on reconfigurable platform. *Bulletin of Electrical Engineering and Informatics*, 6(2), 181-187.
- [41] Gadade, B., Mulani, A. O., & Harale, A. D. IoT Based Smart School Bus and Student Tracking System. Sanshodhak, Volume 19, June 2024.
- [42] Dhanawadel, A., Mulani, A. O., & Pise, A. C. IOT based Smart farming using Agri BOT. Sanshodhak, Volume 20, June 2024.
- [43] Mulani, A., & Mane, P. B. (2016). DWT based robust invisible watermarking. Scholars' Press.
- [44] R. G. Ghodke, G. B. Birajdar, A.O. Mulani, G.N. Shinde, R.B. Pawar, Design and Development of an Efficient and Cost-Effective surveillance Quadcopter using Arduino, Sanshodhak, Volume 20, June 2024.
- [45] R. G. Ghodke, G. B. Birajdar, A.O. Mulani, G.N. Shinde, R.B. Pawar, Design and Development of Wireless Controlled ROBOT using Bluetooth Technology, Sanshodhak, Volume 20, June 2024.
- [46] Swami, S. S., & Mulani, A. O. (2017, August). An efficient FPGA implementation of discrete wavelet transform for image compression. In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS) (pp. 3385-3389). IEEE.
- [47] Mane, P. B., & Mulani, A. O. (2018). High speed area efficient FPGA implementation of AES algorithm. *International Journal of Reconfigurable and Embedded Systems*, 7(3), 157-165.
- [48] Mulani, A. O., & Mane, P. B. (2016). Area efficient high speed FPGA based invisible watermarking for image authentication. *Indian journal of Science and Technology*, 9(39), 1-6.
- [49] Kashid, M. M., Karande, K. J., & Mulani, A. O. (2022, November). IoT-based environmental parameter monitoring using machine learning approach. In *Proceedings of the International Conference on Cognitive and Intelligent Computing: ICCIC 2021, Volume 1* (pp. 43-51). Singapore: Springer Nature Singapore.

International Journal of Advanced Research in Science, Communication and Technology

150 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- [50] Nagane, U. P., & Mulani, A. O. (2021). Moving object detection and tracking using Matlab. *Journal of Science and Technology*, 6(1), 2456-5660.
- [51] Kulkarni, P. R., Mulani, A. O., & Mane, P. B. (2016). Robust invisible watermarking for image authentication. In *Emerging Trends in Electrical, Communications and Information Technologies: Proceedings of ICECIT-2015* (pp. 193-200). Singapore: Springer Singapore.
- [52] Ghodake, M. R. G., & Mulani, M. A. (2016). Sensor based automatic drip irrigation system. *Journal for Research*, 2(02).
- [53] Mandwale, A. J., & Mulani, A. O. (2015, January). Different Approaches For Implementation of Viterbi decoder on reconfigurable platform. In 2015 International Conference on Pervasive Computing (ICPC) (pp. 1-4). IEEE.
- [54] Jadhav, M. M., Chavan, G. H., & Mulani, A. O. (2021). Machine learning based autonomous fire combat turret. *Turkish Journal of Computer and Mathematics Education*, 12(2), 2372-2381.
- [55] Shinde, G., & Mulani, A. (2019). A robust digital image watermarking using DWT-PCA. *International Journal of Innovations in Engineering Research and Technology*, 6(4), 1-7.
- [56] Mane, D. P., & Mulani, A. O. (2019). High throughput and area efficient FPGA implementation of AES algorithm. *International Journal of Engineering and Advanced Technology*, 8(4).
- [57] Mulani, A. O., & Mane, D. P. (2017). An Efficient implementation of DWT for image compression on reconfigurable platform. *International Journal of Control Theory and Applications*, 10(15), 1-7.
- [58] Deshpande, H. S., Karande, K. J., & Mulani, A. O. (2015, April). Area optimized implementation of AES algorithm on FPGA. In 2015 International Conference on Communications and Signal Processing (ICCSP) (pp. 0010-0014). IEEE.
- [59] Deshpande, H. S., Karande, K. J., & Mulani, A. O. (2014, April). Efficient implementation of AES algorithm on FPGA. In 2014 International Conference on Communication and Signal Processing (pp. 1895-1899). IEEE.
- [60] Kulkarni, P., & Mulani, A. O. (2015). Robust invisible digital image mamarking using discrete wavelet transform. *International Journal of Engineering Research & Technology (IJERT)*, 4(01), 139-141.
- [61] Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless Non□invasive blood glucose concentration level estimation using PCA and machine learning. *The CRC Book entitled Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications.*
- [62] Mulani, A. O., & Shinde, G. N. (2021). An approach for robust digital image watermarking using DWT PCA. *Journal of Science and Technology*, 6(1).
- [63] Mulani, A. O., & Mane, P. B. (2014, October). Area optimization of cryptographic algorithm on less dense reconfigurable platform. In 2014 International Conference on Smart Structures and Systems (ICSSS) (pp. 86-89).
- [64] Jadhav, H. M., Mulani, A., & Jadhav, M. M. (2022). Design and development of chatbot based on reinforcement learning. *Machine Learning Algorithms for Signal and Image Processing*, 219-229.
- [65] Mulani, A. O., & Mane, P. (2018). Secure and area efficient implementation of digital image watermarking on reconfigurable platform. *International Journal of Innovative Technology and Exploring Engineering*, 8(2), 56-61.
- [66] Kalyankar, P. A., Mulani, A. O., Thigale, S. P., Chavhan, P. G., & Jadhav, M. M. (2022). Scalable face image retrieval using AESC technique. *Journal Of Algebraic Statistics*, 13(3), 173-176.
- [67] Takale, S., & Mulani, A. (2022). DWT-PCA based video watermarking. *Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN*, 2799-1156.
- [68] Kamble, A., & Mulani, A. O. (2022). Google assistant based device control. *Int. J. of Aquatic Science*, *13*(1), 550-555.
- [69] Kondekar, R. P., & Mulani, A. O. (2017). Raspberry Pi based voice operated Robot. *International Journal of Recent Engineering Research and Development*, 2(12), 69-76.
- [70] Ghodake, R. G., & Mulani, A. O. (2018). Microcontroller based automatic drip irrigation system. In *Techno-Societal 2016: Proceedings of the International Conference on Advanced Technologies for Societal Applications* (pp. 109-115). Springer International Publishing.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- [71] Mulani, A. O., Birajadar, G., Ivković, N., Salah, B., & Darlis, A. R. (2023). Deep learning based detection of dermatological diseases using convolutional neural networks and decision trees. *Traitement du Signal*, 40(6), 2819.
- [72] Boxey, A., Jadhav, A., Gade, P., Ghanti, P., & Mulani, A. O. (2022). Face Recognition using Raspberry Pi. *Journal of Image Processing and Intelligent Remote Sensing (JIPIRS) ISSN*, 2815-0953.
- [73] Patale, J. P., Jagadale, A. B., Mulani, A. O., & Pise, A. (2023). A Systematic survey on Estimation of Electrical Vehicle. *Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN*, 2799-1156.
- [74] Gadade, B., & Mulani, A. (2022). Automatic System for Car Health Monitoring. *International Journal of Innovations in Engineering Research and Technology*, 57-62.
- [75] Shinde, M. R. S., & Mulani, A. O. (2015). Analysis of Biomedical Image Using Wavelet Transform. *International Journal of Innovations in Engineering Research and Technology*, 2(7), 1-7.
- [76] Mandwale, A., & Mulani, A. O. (2014, December). Implementation of convolutional encoder & different approaches for viterbi decoder. In *IEEE International Conference on Communications, Signal Processing Computing and Information technologies*.
- [77] Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless machine learning approach to estimate blood glucose level with non-invasive devices. In *Artificial intelligence, internet of things (IoT) and smart materials for energy applications* (pp. 83-100). CRC Press.
- [78] Maske, Y., Jagadale, A. B., Mulani, A. O., & Pise, A. C. (2023). Development of BIOBOT system to assist COVID patient and caretakers. *European Journal of Molecular & Clinical Medicine*, 10(01), 2023.
- [79] Utpat, V. B., Karande, D. K., & Mulani, D. A. Grading of Pomegranate Using Quality Analysisl. *International Journal for Research in Applied Science & Engineering Technology (IJRASET)*, 10.
- [80] Takale, S., & Mulani, D. A. (2022). Video Watermarking System. *International Journal for Research in Applied Science & Engineering Technology (IJRASET)*, 10.
- [81] Mandwale, A., & Mulani, A. O. (2015, January). Different approaches for implementation of Viterbi decoder. In *IEEE international conference on pervasive computing (ICPC)*.
- [82] Maske, Y., Jagadale, M. A., Mulani, A. O., & Pise, A. (2021). Implementation of BIOBOT System for COVID Patient and Caretakers Assistant Using IOT. *International Journal of Information Technology and*, 30-43.
- [83] Mulani, A. O., & Mane, D. P. (2016). Fast and Efficient VLSI Implementation of DWT for Image Compression. *International Journal for Research in Applied Science & Engineering Technology*, 5, 1397-1402.
- [84] Kambale, A. (2023). Home automation using google assistant. UGC care approved journal, 32(1), 1071-1077.
- [85] Pathan, A. N., Shejal, S. A., Salgar, S. A., Harale, A. D., & Mulani, A. O. (2022). Hand gesture controlled robotic system. *Int. J. of Aquatic Science*, *13*(1), 487-493.
- [86] Korake, D. M., & Mulani, A. O. (2016). Design of Computer/Laptop Independent Data transfer system from one USB flash drive to another using ARM11 processor. *International Journal of Science, Engineering and Technology Research*.
- [87] Mandwale, A., & Mulani, A. O. (2016). Implementation of High Speed Viterbi Decoder using FPGA. *International Journal of Engineering Research & Technology, IJERT*.
- [88] Kolekar, S. D., Walekar, V. B., Patil, P. S., Mulani, A. O., & Harale, A. D. (2022). Password Based Door Lock System. *Int. J. of Aquatic Science*, *13*(1), 494-501.
- [89] Shinde, R., & Mulani, A. O. (2015). Analysis of Biomedical Imagel. *International Journal on Recent & Innovative trend in technology (IJRITT)*.
- [90] Sawant, R. A., & Mulani, A. O. (2022). Automatic PCB Track Design Machine. *International Journal of Innovative Science and Research Technology*, 7(9).
- [91] ABHANGRAO, M. R., JADHAV, M. S., GHODKE, M. P., & MULANI, A. (2017). Design And Implementation Of 8-bit Vedic Multiplier. *International Journal of Research Publications in Engineering and Technology (ISSN No: 2454-7875)*.
- [92] Gadade, B., Mulani, A. O., & Harale, A. D. (2024). Iot based smart school bus and student monitoring system. *Naturalista Campano*, 28(1), 730-737.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

150 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429

Volume 5, Issue 4, October 2025

- [93] Mulani, D. A. O. (2024). A Comprehensive Survey on Semi-Automatic Solar-Powered Pesticide Sprayers for Farming. *Journal of Energy Engineering and Thermodynamics (JEET) ISSN*, 2815-0945.
- [94] Salunkhe, D. S. S., & Mulani, D. A. O. (2024). Solar Mount Design Using High-Density Polyethylene. *NATURALISTA CAMPANO*, 28(1).
- [95] Seth, M. (2022). Painless Machine learning approach to estimate blood glucose level of Non-Invasive device. *Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications*.
- [96] Kolhe, V. A., Pawar, S. Y., Gohery, S., Mulani, A. O., Sundari, M. S., Kiradoo, G., ... & Sunil, J. (2024). Computational and experimental analyses of pressure drop in curved tube structural sections of Coriolis mass flow metre for laminar flow region. *Ships and Offshore Structures*, 19(11), 1974-1983.
- [97] Basawaraj Birajadar, G., Osman Mulani, A., Ibrahim Khalaf, O., Farhah, N., G Gawande, P., Kinage, K., & Abdullah Hamad, A. (2024). Epilepsy identification using hybrid CoPrO-DCNN classifier. *International Journal of Computing and Digital Systems*, *16*(1), 783-796.
- [98] Kedar, M. S., & Mulani, A. (2021). IoT Based Soil, Water and Air Quality Monitoring System for Pomegranate Farming. *Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN*, 2799-1156.
- [99] Godse, A. P. A.O. Mulani (2009). Embedded Systems (First Edition).
- [100] Pol, R. S., Bhalerao, M. V., & Mulani, A. O. A real time IoT based System Prediction and Monitoring of Landslides. International Journal of Food and Nutritional Sciences, Volume 11, Issue 7, 2022.
- [101] Mulani, A. O., Sardey, M. P., Kinage, K., Salunkhe, S. S., Fegade, T., & Fegade, P. G. (2025). ML-powered Internet of Medical Things (MLIOMT) structure for heart disease prediction. *Journal of Pharmacology and Pharmacotherapeutics*, 16(1), 38-45.
- [102] Aiwale, S., Kolte, M. T., Harpale, V., Bendre, V., Khurge, D., Bhandari, S., ... & Mulani, A. O. (2024). Non-invasive Anemia Detection and Prediagnosis. *Journal of Pharmacology and Pharmacotherapeutics*, 15(4), 408-416.
- [103] Mulani, A. O., Bang, A. V., Birajadar, G. B., Deshmukh, A. B., Jadhav, H. M., & Liyakat, K. K. S. (2024). IoT Based Air, Water, and Soil Monitoring System for Pomegranate Farming. *Annals of Agri-Bio Research*, 29(2), 71-86.
- [104] Kulkarni, T. M., & Mulani, A. O. (2024). Face Mask Detection on Real Time Images and Videos using Deep Learning. *International Journal of Electrical Machine Analysis and Design (IJEMAD)*, 2(1).
- [105] Thigale, S. P., Jadhav, H. M., Mulani, A. O., Birajadar, G. B., Nagrale, M., & Sardey, M. P. (2024). Internet of things and robotics in transforming healthcare services. *Afr J Biol Sci (S Afr)*, 6(6), 1567-1575.
- [106] Pol, D. R. S. (2021). Cloud Based Memory Efficient Biometric Attendance System Using Face Recognition. *Stochastic Modeling & Applications*, 25(2).
- [107] Nagtilak, M. A. G., Ulegaddi, M. S. N., Adat, M. A. S., & Mulani, A. O. (2021). Breast Cancer Prediction using Machine Learning.
- [108] Rahul, G. G., & Mulani, A. O. (2016). Microcontroller Based Drip Irrigation System.
- [109] Kulkarni, T. M., & Mulani, A. O. Deep Learning Based Face-Mask Detection: An Approach to Reduce Pandemic Spreads in Human Healthcare. African Journal of Biological Sciences, 6(6), 2024.
- [110] Mulani, A., & Mane, P. B. (2016). DWT based robust invisible watermarking. Scholars' Press.
- [111] Dr. Vaishali Satish Jadhav, Dr. Shweta Sadanand Salunkhe, Dr. Geeta Salunkhe, Pranali Rajesh Yawle, Dr. Rahul S. Pol, Dr. Altaf Osman Mulani, Dr. Manish Rana, Iot Based Health Monitoring System for Human, Afr. J. Biomed. Res. Vol. 27 (September 2024).
- [112] Dr. Vaishali Satish Jadhav, Geeta D. Salunke, Kalyani Ramesh Chaudhari, Dr. Altaf Osman Mulani, Dr. Sampada Padmakar Thigale, Dr. Rahul S. Pol, Dr. Manish Rana, Deep Learning-Based Face Mask Recognition in Real-Time Photos and Videos, Afr. J. Biomed. Res. Vol. 27 (September 2024).
- [113] Altaf Osman Mulani, Electric Vehicle Parameters Estimation Using Web Portal, Recent Trends in Electronics & Communication Systems, Volume 10, Issue 3, 2023.

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- [114] Aryan Ganesh Nagtilak, Sneha Nitin Ulegaddi, Mahesh Mane, Altaf O. Mulani, Automatic Solar Powered Pesticide Sprayer for Farming, International Journal of Microwave Engineering and Technology, Volume 9 No. 2, 2023.
- [115] Annasaheb S. Dandage, Vitthal R. Rupnar, Tejas A Pise, and A. O. Mulani, Real-Time Language Translation Application Using Tkinter. International Journal of Digital Communication and Analog Signals. 2025; 11(01): p.
- [116] AnnaSaheb S Dandage, Vitthal R. Rupnar, Tejas A Pise, and A. O. Mulani, IoT-Powered Weather Monitoring and Irrigation Automation: Transforming Modern Farming Practices. . 2025; 11(01): -p.
- [117] Mulani, A.O., Kulkarni, T.M. (2025). Face Mask Detection System Using Deep Learning: A Comprehensive Survey. In: Singh, S., Arya, K.V., Rodriguez, C.R., Mulani, A.O. (eds) Emerging Trends in Artificial Intelligence, Data Science and Signal Processing. AIDSP 2023. Communications in Computer and Information Science, vol 2439. Springer, Cham. https://doi.org/10.1007/978-3-031-88759-8_3.
- [118] Karve, S., Gangonda, S., Birajadar, G., Godase, V., Ghodake, R., Mulani, A.O. (2025). Optimized Neural Network for Prediction of Neurological Disorders. In: Singh, S., Arya, K.V., Rodriguez, C.R., Mulani, A.O. (eds) Emerging Trends in Artificial Intelligence, Data Science and Signal Processing. AIDSP 2023. Communications in Computer and Information Science, vol 2440. Springer, Cham. https://doi.org/10.1007/978-3-031-88762-8 18.
- [119] Saurabh Singh, Karm Veer Arya, Ciro Rodriguez Rodriguez, and Altaf Osman Mulani, Emerging Trends in Artificial Intelligence, Data Science and Signal Processing, Communications in Computer and Information Science (CCIS), volume 2440.
- [120] Saurabh Singh, Karm Veer Arya, Ciro Rodriguez Rodriguez, and Altaf Osman Mulani, Emerging Trends in Artificial Intelligence, Data Science and Signal Processing, Communications in Computer and Information Science (CCIS), volume 2439.
- [121] Godase, V., Mulani, A., Pawar, A., & Sahani, K. (2025). A Comprehensive Review on PIR Sensor-Based Light Automation Systems. International Journal of Image Processing and Smart Sensors, 1(1), 22-29.
- [122] Godase, V., Mulani, A., Takale, S., & Ghodake, R. (2025). Comprehensive Review on Automated Field Irrigation using Soil Image Analysis and IoT. Journal of Advance Electrical Engineering and Devices, 3(1), 46-55.
- [123] Altaf Osman Mulani, Deshmukh M., Jadhav V., Chaudhari K., Mathew A.A., Shweta Salunkhe. Transforming Drug Therapy with Deep Learning: The Future of Personalized Medicine. Drug Research. 2025 Aug 29.
- [124] Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), Image Authentication Using Cryptography and Watermarking, International Journal of Image Processing and Smart Sensors, Vol. 1, Issue 2, pp 27-34.
- [125] Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), Advancements in Artificial Intelligence: Transforming Industries and Society, International Journal of Artificial Intelligence of Things (AIoT) in Communication Industry, Vol. 1, Issue 2, pp 1-5.
- [126] Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), AI-Powered Predictive Analytics in Healthcare: Revolutionizing Disease Diagnosis and Treatment, Journal of Advance Electrical Engineering and Devices, Vol. 3, Issue 2, pp 27-34.
- [127] Godase, V., Mulani, A., Takale, S., & Ghodake, R. (2025). A Holistic Review of Automatic Drip Irrigation Systems: Foundations and Emerging Trends. *Available at SSRN 5247778*.
- [128] V. Godase, R. Ghodake, S. Takale, and A. Mulani, —Design and Optimization of Reconfigurable Microwave Filters Using AI Techniques, International Journal of RF and Microwave Communication Technologies, vol. 2, no. 2, pp.26–41, Aug. 2025.
- [129] V. Godase, A. Mulani, R. Ghodake, S. Takale, "Automated Water Distribution Management and Leakage Mitigation Using PLC Systems," Journal of Control and Instrumentation Engineering, vol.11, no. 3, pp. 1-8, Aug. 2025.
- [130] V. Godase, A. Mulani, R. Ghodake, S. Takale, "PLC-Assisted Smart Water Distribution with Rapid Leakage Detection and Isolation," Journal of Control Systems and Converters, vol. 1, no. 3, pp. 1-13, Aug. 2025.

International Journal of Advanced Research in Science, Communication and Technology

1SO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- [131] V. V. Godase, S. R. Takale, R. G. Ghodake, and A. Mulani, "Attention Mechanisms in Semantic Segmentation of Remote Sensing Images," Journal of Advancement in Electronics Signal Processing, vol. 2, no. 2, pp. 45–58, Aug. 2025.
- [132] D. Waghmare, A. Mulani, S. R. Takale, V. Godase, and A. Mulani, "A Comprehensive Review on Automatic Fruit Sorting and Grading Techniques with Emphasis on Weight-based Classification," Research & Review: Electronics and Communication Engineering, vol. 2, no. 3, pp. 1-10, Oct. 2025.
- [133] Karande, K. J., & Talbar, S. N. (2014). Independent component analysis of edge information for face recognition. Springer India.
- [134] Karande, K. J., & Talbar, S. N. (2008). Face recognition under variation of pose and illumination using independent component analysis. ICGST-GVIP, ISSN.
- [135] Gaikwad, D. S., & Karande, K. J. (2016). Image processing approach for grading and identification of diseases on pomegranate fruit: An overview. International Journal of Computer Science and Information Technologies, 7, 519-522.
- [136] Kawathekar, P. P., & Karande, K. J. (2014, July). Severity analysis of Osteoarthritis of knee joint from X-ray images: A Literature review. In 2014 International Conference on Signal propagation and computer technology (ICSPCT 2014) (pp. 648-652). IEEE.
- [137] Daithankar, M. V., Karande, K. J., & Harale, A. D. (2014, April). Analysis of skin color models for face detection. In 2014 International Conference on Communication and Signal Processing (pp. 533-537). IEEE.
- [138] Karande, J. K., Talbar, N. S., & Inamdar, S. S. (2012, May). Face recognition using oriented Laplacian of Gaussian (OLOG) and independent component analysis (ICA). In 2012 Second International Conference on Digital Information and Communication Technology and it's Applications (DICTAP) (pp. 99-103). IEEE.
- [139] Shubham Salunkhe, Pruthviraj Zambare, Sakshi Shinde, S. K. Godase. (2024). API Development for Cloud Parameter Curation International. *Journal of Electrical and Communication Engineering Technology*, 2(1). https://doi.org/10.37591/ijecet
- [140] Badave, A., Pawale, A., Andhale, T., Godase, S. K., & STM JOURNALS. (2024). Smart home safety using fire and gas detection system. *Recent Trends in Fluid Mechanics*, 1, 35–43. https://journals.stmjournals.com/rtfm
- [141] Asabe, H., Asabe, R., Lengare, O., & Godase, S. (2025). IOT- BASED STORAGE SYSTEM FOR MANAGING VOLATILE MEDICAL RESOURCES IN HEALTHCARE FACILITIES. INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN ENGINEERING MANAGEMENT AND SCIENCE (IJPREMS), 05(03), 2427– 2433. https://www.ijprems.com
- [142] Karche, S. N., Mulani, A. O., Department of Electronics, SKN Sinhgad College of Engineering, Korti, & University of Solapur, Maharashtra, India. (2018). AESC Technique for Scalable Face Image Retrieval. International Journal of Innovative Research in Computer and Communication Engineering, 6(4), 3404–3405.

https://doi.org/10.15680/IJIRCCE.2018.0604036

- [143] Bankar, A. S., Harale, A. D., & Karande, K. J. (2021). Gestures Controlled Home Automation using Deep Learning: A Review. *International Journal of Current Engineering and Technology*, 11(06), 617–621. https://doi.org/10.14741/ijcet/v.11.6.4
- [144] Mali, A. S., Ghadge, S. K., Adat, A. S., & Karande, S. V. (2024). Intelligent Medication Management System. IJSRD - International Journal for Scientific Research & Development, Vol. 12(Issue 3).
- [145] Water Level Control, Monitoring and Altering System by using GSM in Irrigation Based on Season. (2019). In *International Research Journal of Engineering and Technology (IRJET)* (Vol. 06, Issue 04, p. 1035) [Journal-article]. https://www.irjet.net
- [146] Modi, S., Misal, V., Kulkarni, S., & Mali A.S. (2025). Hydroponic Farming Monitoring System Automated system to monitor and control nutrient and pH levels. In *Journal of Microcontroller Engineering and Applications* (Vol. 12, Issue 3, pp. 11–16). https://doi.org/10.37591/JoMEA
- [147] Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "VGHN: variations aware geometric moments and histogram features normalization for robust uncontrolled face recognition", *International Journal of Information Technology*, https://doi.org/10.1007/s41870-021-00703-0.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

150 E

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- [148] Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition using MFCC & DTW Features", *International Journal of Engineering Research And Applications (IJERA) pp. 118-122, ISSN:* 2248-9622.
- [149] Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Recognition of Marathi Numerals Using MFCC and DTW Features", *Book Title: Recent Trends on Image Processing and Pattern Recognition, RTIP2R 2018, CCIS 1037, pp. 1–11,* © *Springer Nature Singapore Pte Ltd. 2019* https://doi.org/10.1007/978-981-13-9187-3 17.
- [150] Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Analysis of Face Recognition Algorithms for Uncontrolled Environments", *Book Title: Computing, Communication and Signal Processing, pp. 919–926, © Springer Nature Singapore Pte Ltd. 2018.*
- [151] Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Recognition of Marathi Numerals using MFCC and DTW Features", 2nd International Conference on Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2018), 21th -22th Dec., 2018, organized by Solapur University, Solapur in collaboration with University of South Dakota (USA) and Universidade de Evora (Portugal), India.
- [152] Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "A Comprehensive Survey of Face Databases for Constrained and Unconstrained Environments", 2nd IEEE Global Conference on Wireless Computing & Networking (GCWCN-2018), 23th-24th Nov., 2018, organized by STES's Sinhgad Institute of Technology, Lonavala, India.
- [153] Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "An Extensive Survey of Prominent Researches in Face Recognition under different Conditions", 4th International Conference on Computing, Communication, Control And Automation (ICCUBEA-2018), 16th to 18th Aug. 2018 organized by Pimpri Chinchwad College of Engineering (PCCOE), Pune, India.
- [154] Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Analysis of Face Recognition Algorithms for Uncontrolled Environments", 3rd International Conference on Computing, Communication and Signal Processing (ICCASP 2018), 26th-27th Jan.2018, organized by Dr. BATU, Lonere, India.
- [155] Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", International Conference on Recent Trends, Feb 2012, IOK COE, Pune.
- [156] S. S. Gangonda, "Bidirectional Visitor Counter with automatic Door Lock System", National Conference on Computer, Communication and Information Technology (NCCCIT-2018), 30th and 31st March 2018 organized by Department of Electronics and Telecommunication Engineering, SKN SCOE, Korti, Pandharpur.
- [157] Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition using MFCC & DTW Features", ePGCON 2012, 23rd and 24th April 2012 organized by Commins COE for Woman, Pune.
- [158] Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", National Conference on Emerging Trends in Engineering and Technology (VNCET'12), 30th March 2012 organized by Vidyavardhini's College of Engineering and Technology, Vasai Road, Thane.
- [159] Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", ePGCON 2011, 26th April 2011 organized by MAEER's MIT, Kothrud, Pune-38.
- [160] Siddheshwar Gangonda, "Medical Image Processing", Aavishkar-2K7, 17th and 18th March 2007 organized by Department of Electronics and Telecommunication Engineering, SVERI's COE, Pandharpur.
- [161] Siddheshwar Gangonda, "Image enhancement & Denoising", VISION 2k7, 28th Feb-2nd March 2007 organized by M.T.E. Society's Walchand College of Engineering, Sangli.
- [162] Siddheshwar Gangonda, "Electromagnetic interference & compatibility" KSHITIJ 2k6, 23rd and 24th Sept. 2006 organized by Department of Mechanical Engineering, SVERI's COE, Pandharpur.
- [163] A. Pise and K. Karande, "A genetic Algorithm-Driven Energy-Efficient routing strategy for optimizing performance in VANETs," Engineering Technology and Applied Science Research, vol. 15, no. 5, 2025, [Online]. Available: https://etasr.com/index.php/ETASR/article/view/12744
- [164] A. C. Pise, K. J. Karande, "Investigating Energy-Efficient Optimal Routing Protocols for VANETs: A Comprehensive Study", ICT for Intelligent Systems, Lecture Notes in Networks and Systems 1109, Proceedings

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29499

180

International Journal of Advanced Research in Science, Communication and Technology

ISO POUT:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- of ICTIS 2024 Volume 3, Lecture Notes in Networks and Systems, Springer, Singapore, ISSN 2367-3370, PP 407-417, 29 October 2024 https://doi.org/10.1007/978-981-97-6675-8 33.
- [165] A. C. Pise, et. al., "Smart Vehicle: A Systematic Review", International Journal The Ciência & Engenharia Science & Engineering Journal ISSN: 0103-944XVolume 11 Issue 1, 2023pp: 992–998, 2023.
- [166] A. C. Pise, et. al., "Smart Vehicle: A Systematic Review", International Journal of Research Publication and Reviews, ISSN 2582-7421, Vol 4, no 10, pp 2728-2731 October 2023.
- [167] A. C. Pise, et. al., "Development of BIOBOT System to Assist COVID Patient and Caretakers", European Journal of Molecular and Clinical Medicine; 10(1):3472-3480, 2023.
- [168] A. C. Pise, et. al., "IoT Based Landmine Detection Robot", International Journal of Research in Science & EngineeringISSN: 2394-8299Vol: 03, No. 04, June-July 2023.
- [169] A. C. Pise, et. al., "A Systematic survey on Estimation of Electrical Vehicle", Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN: 2799-1156, Volume 3, Issue 01, Pages 1-6, December 2023.
- [170] A. C. Pise, et. al., "Python Algorithm to Estimate Range of Electrical Vehicle", Web of Science, Vol 21, No 1 (2022) December 2022
- [171] A. C. Pise, et. al., "Implementation of BIOBOT System for COVID Patient and Caretakers Assistant using IOT", International Journal of Information technology and Computer Engineering. 30-43. 10.55529/ijitc.21.30.43, (2022).
- [172] A. C. Pise, et. al., "An IoT Based Real Time Monitoring of Agricultural and Micro irrigation system", International journal of scientific research in Engineering and management (IJSREM), VOLUME: 06 ISSUE: 04 | APRIL 2022, ISSN:2582-3930.
- [173] A. C. Pise, Dr. K. J. Karande, "An Exploratory study of Cluster Based Routing Protocol in VANET: A Review", International Journal of Advanced Research in Engineering and Technology(IJARET), 12,10, 2021, 17-30, Manuscript ID :00000-94375 Source ID : 00000006, Journal_uploads/ IJARET/VOLUME 12 ISSUE 10/IJARET 12 10 002.pdf
- [174] A. C. Pise, et. al., "Android based Portable Health Support System," A Peer Referred & Indexed International Journal of Research, Vol. 8, issue. 4, April 2019.
- [175] A. C. Pise, et. al., "Facial Expression Recognition Using Image Processing," International Journal of VLSI Design, Microelectronics and Embedded System, Vol. 3, issue. 2, July 2018.
- [176] A. C. Pise, et. al., "Detection of Cast Iron Composition by Cooling Curve Analysis using Thermocouple Temperature Sensor," UGC Approved International Journal of Academic Science (IJRECE), Vol.6, Issue.3, July-September 2018.
- [177] A. C. Pise, et. al., "Android Based Portable Health Support", System International Journal of Engineering Sciences & Research Technology (IJESRT 2017) Vol.6, Issue 8, pp 85-88 5th Aug 2017
- [178] A. C. Pise, et. al., "Adaptive Noise Cancellation in Speech Signal", International Journal of Innovative Engg and Technology, 2017
- [179] A. C. Pise, et. al., "Lung Cancer Detection System by using Baysian Classifier", ISSN 2454-7875, IJRPET, published online in conference special issue VESCOMM-2016, February 2016
- [180] A. C. Pise, et. al., "Review on Agricultural Plant Diseases Detection by Image Processing", ISSN 2278-62IX, IJLTET, Vol 7, Issue 1 May 2016
- [181] A. C. Pise, et. al. "Segmentation of Retinal Images for Glaucoma Detection", International Journal of Engineering Research and Technology (06, June-2015).
- [182] A. C. Pise, et. al. "Color Local Texture Features Based Face Recognition", International Journal of Innovations in Engineering and Technology(IJIET), Dec. 2014
- [183] A. C. Pise, et. al. "Single Chip Solution For Multimode Robotic Control", International Journal of Engineering Research and Technology (IJERT-2014), Vol. 3, Issue 12, Dec. 2014.

International Journal of Advanced Research in Science, Communication and Technology

ISO POUT:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- [184] Anjali C. Pise et. al., "Remote monitoring of Greenhouse parameters using zigbee Wireless Sensor Network", International Journal of Engineering Research & Technology ISSN 2278-0181 (online) Vol. 3, Issue 2, and pp: (2412-2414), Feb. 2014.
- [185] A. C. Pise, K. J. Karande, "Cluster Head Selection Based on ACO In Vehicular Ad-hoc Networks", Machine Learning for Environmental Monitoring in Wireless Sensor Networks
- [186] A. C. Pise, K. J. Karande, "Architecture, Characteristics, Applications and Challenges in Vehicular Ad Hoc Networks" Presented in 27th IEEE International Symposium on Wireless Personal Multimedia Communications (WPMC 2024) "Secure 6G – AI Nexus: Where Technology Meets Humanity" Accepted for book chapter to be published in international Scopus index book by River publisher.
- [187] A. C. Pise, Dr. K. J. Karande, "K-mean Energy Efficient Optimal Cluster Based Routing Protocol in Vehicular Ad Hoc Networks", International Conference on Innovations in Artificial Intelligence and Machine Learning (ICAIML-2022), August 20th and 21st 2022 Springer database Conference.
- [188] A. C. Pise, Mr. D. Nale, "Web-Based Application for Result Analysis", ", International Conference on Innovations in Artificial Intelligence and Machine Learning (ICAIML-2022), August 20th and 21st 2022 Springer database Conference.
- [189] A. C. Pise, et. al., "Detection of Cast Iron Composition by Cooling Curve Analysis using Thermocouple Temperature Sensor," 2nd International Conference on Engineering Technology, Science and Management Innovation (ICETSMI 2018), 2nd September 2018.
- [190] A. C. Pise, et. al., "Facial Expression Recognition Using Facial Features," IEEE International Conference on Communication and Electronics Systems (ICCES 2018), October 2018.
- [191] A. C. Pise, et. al., "Estimating Parameters of Cast Iron Composition using Cooling Curve Analysis," IEEE International Conference on Communication and Electronics Systems (ICCES 2018), Coimbatore, October 2018.
- [192] A. C. Pise, et. al., "Android based portable Health Support System," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- [193] A. C. Pise, et. al., "Baysian Classifier & FCM Segmentation for Lung Cancer Detection in early stage," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- [194] A. C. Pise, et. al., "Cast Iron Composition Measurement by Coding Curve Analysis," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- [195] A. C. Pise, et. al., "War field Intelligence Defence Flaging Vehicle," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- [196] A. C. Pise, et. al. "Disease Detection of Pomegranate Plant", IEEE sponsored International Conference on Computation of Power, Energy, Information and Communication, 22-23 Apr. 2015.
- [197] A. C. Pise, P. Bankar. "Face Recognition by using GABOR and LBP", IEEE International Conference on Communication and Signal Processing, ICCSP, 2-4 Apr. 2015
- [198] A. C. Pise, et. al. "Single Chip Solution For Multimode Robotic Control", Ist IEEE International Conference on Computing Communication and Automation, 26-27 Feb2015.
- [199] Anjali C. Pise, Vaishali S. Katti, "Efficient Design for Monitoring of Greenhouse Parameters using Zigbee Wireless Sensor Network", fifth SARC international conference IRF, IEEE forum ISBN 978-93-84209-21-6,pp 24-26, 25th May 2014
- [200] A. C. Pise, P. Bankar, "Face Recognition using Color Local Texture Features", International Conference on Electronics and Telecommunication, Electrical and Computer Engineering, Apr.2014.
- [201] A. C. Pise, et.al. "Monitoring parameters of Greenhouse using Zigbee Wireless Sensor Network", 1st International Conference on Electronics and Telecommunication, Electrical and Computer Engineering, 5-6 Apr.2014.
- [202] A. C. Pise, et. al. "Compensation schemes and performance Analysis of IQ Imbalances in Direct Conversion Receivers", International Conference at GHPCOE, Gujarat, (Online Proceeding is Available), 2009.

International Journal of Advanced Research in Science, Communication and Technology

SISO E 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- [203] A. C. Pise, K. J. Karande, "Energy-Efficient Optimal Routing Protocols in VANETs", 66th Annual IETE Convention, AIC -2023 September16-17, 2023, under the Theme: The Role of 5G In Enabling Digital Transformation for Rural Upliftment.
- [204] A. C. Pise, et. al. "Automatic Bottle Filling Machine using Raspberry Pi", National Conference on computer ;Communication & information Technology (NCCIT-2018) dated 30th & 31st March 2018.
- [205] A. C. Pise, et. al. "Design & Implementation of ALU using VHDL", National Conference on computer ;Communication & information Technology (NCCIT-2018) dated 30th & 31st March 2018.
- [206] A. C. Pise, et. al. "Mechanism and Control of Autonomus four rotor Quad copter", National Conference on Computer, Electrical and Electronics Engineering, 23- 24 Apr. 2016.
- [207] A. C. Pise, et. al. "Segmentation of Optic Disk and Optic Cup from retinal Images", ICEECMPE Chennai, June 2015
- [208] A. C. Pise, et. al. "Diseases Detection of Pomegranate Plant", IEEE Sponsored International conference on Computation of Power, Energy, April 2015.
- [209] A. C. Pise, et. al. "Compensation Techniques for I/Q Imbalance in Direct-Conversion Receivers", Conference at SCOE, Pune 2010.
- [210] A. C. Pise, et. al. "I/Q Imbalance compensation Techniques in Direct Conversion Receiver", Advancing Trends in Engineering and Management Technologies, ATEMT-2009, Conference at Shri Ramdeobaba Kamla Nehru Engineering College, Nagpur, 20-21 November 2009
- [211] A. C. Pise, et. al. "Compensation Techniques for I/Q Imbalance in Direct Conversion Receiver", Conference at PICT, Pune 2008.
- [212] A. C. Pise, et. al. "I/Q Imbalance compensation Techniques in Direct Conversion Receiver", Conference at DYCOE, Pune 2008.
- [213] A. C. Pise, et. al. "DUCHA: A New Dual channel MAC protocol for Multihop Ad-Hoc Networks", Conference at SVCP, Pune 2007.
- [214] Godase, V., Pawar, P., Nagane, S., & Kumbhar, S. (2024). Automatic railway horn system using node MCU. Journal of Control & Instrumentation, 15(1).
- [215] Godase, V., & Godase, J. (2024). Diet prediction and feature importance of gut microbiome using machine learning. Evolution in Electrical and Electronic Engineering, 5(2), 214-219.
- [216] Jamadade, V. K., Ghodke, M. G., Katakdhond, S. S., & Godase, V. A Comprehensive Review on Scalable Arduino Radar Platform for Real-time Object Detection and Mapping.
- [217] Godase, V. (2025). A comprehensive study of revolutionizing EV charging with solar-powered wireless solutions. Advance Research in Power Electronics and Devices e-ISSN, 3048-7145.
- [218] Godase, V. (2025, April). Advanced Neural Network Models for Optimal Energy Management in Microgrids with Integrated Electric Vehicles. In Proceedings of the International Conference on Trends in Material Science and Inventive Materials (ICTMIM-2025) DVD Part Number: CFP250J1-DVD.
- [219] Dange, R., Attar, E., Ghodake, P., & Godase, V. (2023). Smart agriculture automation using ESP8266 NodeMCU. J. Electron. Comput. Netw. Appl. Math, (35), 1-9.
- [220] Godase, V. (2025). Optimized Algorithm for Face Recognition using Deepface and Multi-task Cascaded Convolutional Network (MTCNN). Optimum Science Journal.
- [221] Mane, V. G. A. L. K., & Gangonda, K. D. S. Pipeline Survey Robot.
- [222] Godase, V. (2025). Navigating the digital battlefield: An in-depth analysis of cyber-attacks and cybercrime. International Journal of Data Science, Bioinformatics and Cyber Security, 1(1), 16-27.
- [223] Godase, V., & Jagadale, A. (2019). Three element control using PLC, PID & SCADA interface. International Journal for Scientific Research & Development, 7(2), 1105-1109.
- [224] Godase, V. (2025). Edge AI for Smart Surveillance: Real-time Human Activity Recognition on Low-power Devices. International Journal of AI and Machine Learning Innovations in Electronics and Communication Technology, 1(1), 29-46.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- [225] Godase, V., Modi, S., Misal, V., & Kulkarni, S. (2025). LoRaEdge-ESP32 synergy: Revolutionizing farm weather data collection with low-power, long-range IoT. Advance Research in Analog and Digital Communications, 2(2), 1-11.
- [226] Godase, V. (2025). Comparative study of ladder logic and structured text programming for PLC. Available at SSRN 5383802.
- [227] Godase, V., Modi, S., Misal, V., & Kulkarni, S. Real-time object detection for autonomous drone navigation using YOLOv8, I. Advance Research in Communication Engineering and its Innovations, 2(2), 17-27.
- [228] Godase, V. (2025). Smart energy management in manufacturing plants using PLC and SCADA. Advance Research in Power Electronics and Devices, 2(2), 14-24.
- [229] Godase, V. (2025). IoT-MCU Integrated Framework for Field Pond Surveillance and Water Resource Optimization. International Journal of Emerging IoT Technologies in Smart Electronics and Communication, 1(1), 9-19.
- [230] Godase, V. (2025). Graphene-Based Nano-Antennas for Terahertz Communication. International Journal of Digital Electronics and Microprocessor Technology, 1(2), 1-14.
- [231] Godase, V., Khiste, R., & Palimkar, V. (2025). AI-Optimized Reconfigurable Antennas for 6G Communication Systems. Journal of RF and Microwave Communication Technologies, 2(3), 1-12.
- [232] Bhaganagare, S., Chavan, S., Gavali, S., & Godase, V. V. (2025). Voice-Controlled Home Automation with ESP32: A Systematic Review of IoT-Based Solutions. Journal of Microprocessor and Microcontroller Research, 2(3), 1-13.
- [233] Jamadade, V. K., Ghodke, M. G., Katakdhond, S. S., & Godase, V. A Comprehensive Review on Scalable Arduino Radar Platform for Real-time Object Detection and Mapping.
- [234] Godase, V. (2025). Cross-Domain Comparative Analysis of Microwave Imaging Systems for Medical Diagnostics and Industrial Testing. Journal of Microwave Engineering & Technologies, 12(2), 39-48p.
- [235] V. K. Jamadade, M. G. Ghodke, S. S. Katakdhond, and V. Godase, —A Review on Real-time Substation Feeder Power Line Monitoring and Auditing Systems," International Journal of Emerging IoT Technologies in Smart Electronics and Communication, vol. 1, no. 2, pp. 1-16, Sep. 2025.
- [236] V. V. Godase, "VLSI-Integrated Energy Harvesting Architectures for Battery-Free IoT Edge Systems," Journal of Electronics Design and Technology, vol. 2, no. 3, pp. 1-12, Sep. 2025.
- [237] A. Salunkhe et al., "A Review on Real-Time RFID-Based Smart Attendance Systems for Efficient Record Management," Advance Research in Analog and Digital Communications, vol. 2, no. 2, pp.32-46, Aug. 2025.
- [238] Vaibhav, V. G. (2025). A Neuromorphic-Inspired, Low-Power VLSI Architecture for Edge AI in IoT Sensor Nodes. *Journal of Microelectronics and Solid State Devices*, *12*(2), 41-47p.
- [239] Nagane, M.S., Pawar, M.P., & Godase, P.V. (2022). Cinematica Sentiment Analysis. *Journal of Image Processing and Intelligent Remote Sensing*.
- [240] Godase, V.V. (2025). Tools of Research. SSRN Electronic Journal.
- [241] Godase, V. (n.d.). EDUCATION AS EMPOWERMENT: THE KEY TO WOMEN'S SOCIO ECONOMIC DEVELOPMENT. Women Empowerment and Development, 174–179.
- [242] Godase, V. (n.d.). COMPREHENSIVE REVIEW ON EXPLAINABLE AI TO ADDRESSES THE BLACK BOX CHALLENGE AND ITS ROLE IN TRUSTWORTHY SYSTEMS. In Sinhgad College of Engineering, Artificial Intelligence Education and Innovation (pp. 127–132).
- [243] Godase, V. (n.d.-b). REVOLUTIONIZING HEALTHCARE DELIVERY WITH AI-POWERED DIAGNOSTICS: A COMPREHENSIVE REVIEW. In SKN Sinhgad College of Engineering, SKN Sinhgad College of Engineering (pp. 58–61).
- [244] Dhope, V. (2024). SMART PLANT MONITORING SYSTEM. In International Journal of Creative Research Thoughts (IJCRT). https://www.ijcrt.org
- [245] M. M. Zade, Sushant D. Kambale, Shweta A. Mane, Prathamesh M. Jadhav. (2025) "IOT Based early fire detection in Jungles". RIGJA&AR Volume 2 Issue 1, ISSN: 2998-4459. DOI: https://doi.org/10.5281/zendo.15056435

回报 7.75 1262

International Journal of Advanced Research in Science, Communication and Technology

150 = 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 4, October 2025

- [246] M. M. Zade, Bramhadev B. Rupanar, Vrushal S. Shilawant, Akansha R. Pawar(2025) "IOT Flood Monitoring & Alerting System using Rasberry Pi-Pico "International Journal of Research Publication & Reviews, Volume 6, Issue 3,ISSN:2582-7421.DOI:https://ijrpr.com/uploads/V6ISSUE3/IJRPR40251.pdf
- [247] M.M.Zade(2022) "Touchless Fingerprint Recognition System" (Paper-ID 907)(2022) International Conference on "Advanced Technologies for Societal Applications: Techno-Societal 2022 https://link.springer.com/book/10.1007/978-3-031-34644-6?page=6
- [248] Mr.M.M.Zade published the paper on "Automation of Color Object Sorting Conveyor Belt", in International Journal of Scientific Research in Engineering & Management (IJSREM), ISSN:2582-3930 Volume 06, Issue 11th November 2022.
- [249] Mr.M.M.Zade published the paper on "Cloud Based Patient Health Record Tracking web Development",in International Journal of Advanced Research in Science, Communication & Technology(IJARSCT),ISSN NO:2581-9429 Volume 02, Issue 03,DOI 1048175/IJARSCT-3705,IF 6.252, May 2022.
- [250] Mr. Mahesh M Zade, "Performance analysis of PSNR Vs. Impulse Noise for the enhancement of Image using SMF", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- [251] Mr. Mahesh M Zade, "Classification of Power Quality Disturbances Using SVM & their Efficiency Comparison", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- [252] Mr. Mahesh M Zade, "Dynamic Clustering of Wireless Sensor Network Using Modified AODV", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- [253] Mr. Mahesh M Zade, "Performance analysis of PSNR Vs. Impulse Noise for the enhancement of Image using SMF", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur, Feb.2019
- [254] Mr. Mahesh M Zade, "Classification of Power Quality Disturbances Using SVM & their Efficiency Comparison", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur Feb.2019
- [255] Mr. Mahesh M Zade, "Dynamic Clustering of Wireless Sensor Network Using Modified AODV", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur Feb.2019
- [256] Mr. Mahesh M Zade & Mr.S.M.Karve,"Performance Analysis of Median Filter for Enhancement of Highly Corrupted Images", National Conference on Advanced Trends in Engineering, Association with IRJMS, Karmyogi Engineering College, Shelave, Pandharpur, March 2016.
- [257] Mr. Mahesh M Zade & Mr.S.M.Karve,"Implementation of Reed Solomen Encoder & Decoder Using FPGA", National Conference on Advanced Trends in Engineering, Association with IRJMS, Karmyogi Engineering College, Shelave, Pandharpur, March 2016.
- [258] Mr. Mahesh M Zade & Dr.S.M.Mukane,"Performance of Switching Median Filter for Enhancement of Image", National Conference on Mechatronics at Sinhgad Institute of Technology and Science, Narhe, Pune, Feb. 2016.
- [259] Mr. Mahesh M Zade & Dr.S.M.Mukane, "Enhancement of Image with the help of Switching Median Filter", National Conference on Emerging Trends in Electronics & Telecommunication Engineering, SVERI's College of Engineering Pandharpur, NCET 2013.
- [260] Mr.Mahesh M Zade & Dr.S.M.Mukane, "Enhancement of Image with the help of Switching Median Filter", International Journal of Computer Application (IJCA) SVERI's College of Engineering, Pandharpur, Dec. 2013.
- [261] A. O. Mulani, V. Godase, S. Takale, and R. Ghodake, "Secure Image Authentication using AES and DWT Watermarking on Reconfigurable Platform," International Journal of Embedded System and VLSI Design, vol. 1, no. 2, pp. 14-20, Oct. 2025

