

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, October 2025

Efficient Grid-Based Parking Navigation Using Heuristic Path Planning

Pratik Godase¹, Pavan Pandit², Rutuja Patil³, Prof. M. M. Zade⁴

^{1,2,3}UG Students, Department of Electronics and Telecommunication Engineering,
 ⁴Assistant Professor, Department of Electronics and Telecommunication Engineering
 SKN Sinhgad College of Engineering, Pandharpur

Abstract: In modern urban environments, the efficient utilization of parking spaces has become a critical challenge due to rapid vehicle growth and limited infrastructure. This paper presents an intelligent path planning approach for grid-based parking lots using the A* (A-star) algorithm to determine the optimal path between a designated source and destination point. The parking lot is modelled as a two-dimensional grid where certain blocks represent obstacles corresponding to occupied or restricted spaces. The proposed system, implemented in Python, dynamically computes the shortest feasible path while avoiding obstacles, ensuring minimal traversal cost and time. The A* algorithm integrates heuristic estimation with actual movement cost to efficiently explore possible routes and identify the most cost-effective path. Simulation results demonstrate accurate and reliable path generation in complex grid configurations, validating the algorithm's capability to enhance autonomous navigation and smart parking management. This research contributes toward the development of intelligent parking systems that can be extended to autonomous vehicles and real-time traffic control applications.

Keywords: A* Algorithm, Path Planning, Grid Parking System, Optimal Pathfinding, Python Implementation, Intelligent Transportation Systems

I. INTRODUCTION

The rapid urbanization and continuous growth of vehicle ownership have intensified the challenges of efficient traffic and parking management. With the rising number of vehicles and limited infrastructure, urban areas are facing a severe shortage of parking spaces. This not only results in traffic congestion and increased fuel consumption but also contributes to higher emissions and driver frustration. According to multiple urban mobility studies, nearly 30–40% of city traffic congestion occurs due to vehicles searching for available parking spaces. Hence, there is an urgent need for intelligent systems capable of automating and optimizing parking operations through advanced computational algorithms and real-time decision-making.

Traditional parking systems largely depend on manual searching or basic guidance indicators, which are often inefficient in handling dynamic vehicle flow or obstacle-filled environments. Modern intelligent transportation systems (ITS) are increasingly focusing on integrating computational intelligence, automation, and sensing technologies to design smart parking systems. These systems aim to minimize search time, improve vehicle movement, and ensure optimal space utilization. A core component in achieving these objectives is an efficient pathfinding algorithm that can navigate vehicles within parking lots, avoiding obstacles while ensuring the shortest route between the entry and target points.

In a structured parking lot, the environment can be modeled as a two-dimensional grid, where each cell represents a possible position. The grid may contain free cells (navigable areas) and blocked cells (representing parked vehicles, pillars, or restricted zones). The challenge lies in determining the optimal route from a given source cell (entry point) to a destination cell (available parking slot) while minimizing computational complexity and traversal cost. Gridbased modeling allows discrete representation of the environment, simplifying the implementation of pathfinding algorithms in both simulation and real-world applications.

Among the various pathfinding algorithms, the A* (A-star) algorithm has proven to be one of the most efficient and widely adopted techniques for shortest path computation in graph and grid-based environments. The algorithm combines

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

150 E

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

the strengths of Dijkstra's Algorithm, which guarantees the shortest path based on accumulated cost, and Greedy Best-First Search, which focuses on heuristic estimations to accelerate the search. A* computes a cost function f(n) for each node, which is the sum of two components — g(n) (the exact cost from the start node to the current node) and h(n) (the estimated cost from the current node to the destination). By balancing these two parameters, A* effectively reduces unnecessary exploration, achieving both optimality and efficiency.

This balance between exploration and exploitation makes A* highly suitable for applications requiring real-time decision-making and precise movement control. In smart parking systems, the algorithm can dynamically generate the shortest path while accounting for static obstacles like occupied parking slots and barriers. Furthermore, A* can be extended to handle dynamic conditions such as moving vehicles or temporary obstructions by continuously updating node values and recalculating the optimal route.

The proposed system, titled "Optimal Path Finding in Grid Parking Using A* Algorithm," implements the A* algorithm in a grid-modeled parking lot environment using Python programming. The system initializes a predefined grid, sets random obstacles, and allows users to select the source and destination points. The A* algorithm then traverses the grid, computes the most cost-effective path, and visually displays the optimal route while distinguishing free, blocked, and visited cells. Python is chosen due to its flexibility, open-source libraries, and extensive support for computational modeling and visualization. Libraries such as NumPy, Matplotlib, and optionally Pygame are utilized for grid generation, path visualization, and interactive simulations.

This implementation not only demonstrates the working of the A* algorithm but also highlights its potential in real-world parking automation. By simulating obstacle avoidance and costefficient movement, the system can serve as a prototype for integration with IoT-based parking systems, autonomous vehicles, or smart city frameworks. The algorithm's low computational complexity, deterministic output, and heuristic-driven adaptability make it ideal for real-time embedded applications where quick response and high accuracy are essential.

Moreover, this approach can significantly improve the operational efficiency of parking facilities. Vehicles guided by such systems can minimize time spent searching for parking spaces, reduce idle fuel consumption, and contribute to lower carbon emissions. In addition, this intelligent routing can be integrated with cloud-based management systems to enable datadriven analytics for parking demand prediction, congestion management, and urban traffic optimization.

The study presented in this paper emphasizes the role of computational intelligence and heuristic-based optimization in designing next-generation parking solutions. The results derived from simulation demonstrate that the A* algorithm provides accurate and fast convergence to the shortest path, even in dense obstacle conditions. The performance can be further enhanced by adapting heuristic functions or incorporating dynamic obstacle detection mechanisms using sensors or computer vision modules.

II. LITERATURE REVIEW

R. K. Sharma et al. [1] proposed a grid-based parking management system that employs the Dijkstra algorithm to find the shortest path between entry and parking slots. The system models the parking lot as a two-dimensional grid where occupied slots are treated as obstacles. While the approach successfully identifies the shortest route, it demonstrates higher computational complexity in large grids due to exhaustive node exploration, which can lead to delays in realtime applications.

M. Gupta and S. Verma et al. [2] presented a smart parking navigation system using the Breadth-First Search (BFS) algorithm. The study focused on dynamically updating available parking spaces and providing drivers with the shortest path in real time. Although BFS ensures path completeness, the method does not incorporate heuristics and therefore may explore unnecessary nodes, resulting in increased execution time for larger parking lots.

J. Lee et al. [3] introduced an intelligent parking guidance system based on A* pathfinding for autonomous vehicle navigation. The authors demonstrated that integrating heuristic cost estimation with actual travel distance enables faster computation of the optimal route compared to traditional exhaustive search algorithms. The system also accounted for dynamic obstacles by recalculating the path when temporary blockages were detected, enhancing real-time adaptability.

S. Chen and H. Wang et al. [4] explored an IoT-enabled parking framework that combines occupancy sensing with A* algorithm-based path planning. In their approach, parking lot sensors continuously monitor slot availability, while the A*

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29498

SSN 1-9429

International Journal of Advanced Research in Science, Communication and Technology

STORY MANAGER STORY OF THE STOR

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

algorithm computes the most efficient route to a free parking space. The study highlighted the benefits of heuristic-guided search, including reduced computation time and improved parking efficiency, particularly in complex or large-scale parking environments.

- P. Kumar et al. [5] developed an autonomous parking system using a combination of grid mapping and A* pathfinding. Their study emphasized reducing the computational load by limiting the search space to relevant sub grids near the source and destination. Results demonstrated that path computation time decreased significantly compared to full-grid searches, making the approach suitable for real-time applications in constrained parking environments.
- L. Zhang and Y. Li et al. [6] proposed a hybrid pathfinding algorithm that combines A* and Dijkstra to improve path optimality in dynamic parking lots. The system uses Dijkstra's exhaustive search for smaller sections of the grid while A* guides the overall path planning. This hybrid approach balances computational efficiency and shortest-path accuracy, particularly in scenarios with multiple temporary obstacles.
- A. Fernandez et al. [7] investigated robotic navigation in indoor parking scenarios using A* with dynamic obstacle avoidance. Their model integrated sensor inputs to detect moving obstacles, such as pedestrians or other vehicles, and recalculated paths in real-time. The study highlighted the algorithm's adaptability, demonstrating successful navigation in unpredictable environments while maintaining optimal path length.
- K. R. Singh and M. Bansal et al. [8] explored a smart parking assistant that uses heuristicdriven pathfinding for electric vehicles. The system factors in not only distance but also energy consumption while navigating to a free parking slot. By applying A* with a weighted cost function, the algorithm selects routes that minimize both travel distance and energy usage, demonstrating the versatility of heuristic-based path planning.
- T. Y. Kim et al. [9] presented a simulation-based analysis of A* and its variants in urban parking grids. The research compared traditional A* with Weighted A* and Adaptive A* algorithms, showing that heuristic weighting can significantly reduce node expansion and computational time, particularly in large-scale parking lots with multiple obstacle clusters.
- S. R. Mishra and P. K. Das et al. [10] developed a Python-implemented parking navigation system that simulates various grid configurations with static and dynamic obstacles. The system validates the A* algorithm's efficiency by measuring path cost, execution time, and number of explored nodes across multiple test scenarios. The results confirmed that A* consistently identifies the shortest feasible path while maintaining low computational overhead, supporting its use in intelligent parking and autonomous navigation applications.

III. METHODOLOGY

A. Parking Lot Modeling

The parking lot is represented as a two-dimensional grid, where each cell corresponds to a parking space or pathway. The grid provides a discrete representation of the environment, enabling systematic exploration for pathfinding algorithms. Each cell is assigned a status:

Free Cell (0): Traversable space where the vehicle can move.

Obstacle Cell (1): Occupied or restricted space representing parked vehicles or barriers.

The grid can be of any size depending on the parking lot dimensions, e.g., a 10×10 or 20×20 matrix, allowing scalability for real-world scenarios.

B. Source and Destination Definition

The system requires a source point (entry location) and a destination point (target parking slot). These points are specified as grid coordinates, e.g., (x_s, y_s) for the source and (x_d, y_d) for the destination. The algorithm computes the shortest feasible path between these points while avoiding obstacles.

C. Path Planning Using A*

The A* algorithm is selected due to its efficiency in computing the shortest path in a grid with obstacles. The algorithm evaluates nodes using a cost function:

f(n) = g(n) + h(n)Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29498

1776

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

Impact Factor: 7.67

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Where:

g(n) is the cost to reach node n from the source.

h(n) is the heuristic estimate of the cost from node nto the destination.

For grid-based parking, the Manhattan distance is used as the heuristic:

 $h(n) = |x_n - x_d| + |y_n - y_d|$

A* maintains two sets:

Open List: Nodes to be evaluated.

Closed List: Nodes already evaluated.

 $The \ algorithm \ iteratively \ selects \ the \ node \ with \ the \ lowest \ f(n) \ value, \ explores \ its \ neighbors, \ updates \ costs, \ and \ continues$

until the destination is reached.

D. Neighbour Exploration and Obstacle Handling

Each node considers up to four neighbours (up, down, left, right) for movement. Diagonal movement can be added if required. Neighbour cells are evaluated only if they are free cells and not already in the closed list. Obstacle cells are automatically skipped to prevent collision.

E. Python Implementation

The system is implemented in Python, using standard data structures:

Lists/Queues: For open and closed sets.

2D Arrays: For grid representation.

Matplotlib: For visualization of the grid and path. The Python code generates a visual output where:

Free cells are shown in white. • Obstacles are shown in black.

The computed path is highlighted in green.

Source and destination points are marked in distinct colors.

F. Workflow Summary

The methodology follows these steps:

Initialize the grid and mark obstacles.

Define the source and destination coordinates.

Initialize the open and closed lists for A*.

While the destination is not reached:

Select the node with minimum f(n) from the open list.

Explore valid neighbours and update costs.

Move the current node to the closed list.

Reconstruct the path from destination to source once the algorithm terminates.

Display the computed path visually on the grid.

International Journal of Advanced Research in Science, Communication and Technology

Jy 9001:2015

Impact Factor: 7.67

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Block Diagram

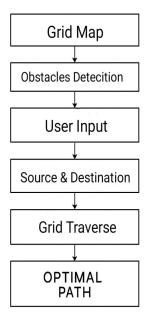


Fig. Block Diagram

The proposed system architecture illustrated in the block diagram represents the sequential process for optimal path determination in a grid-based environment. The system is designed to ensure efficient navigation by identifying the most suitable route between a defined source and destination while avoiding obstacles within the grid.

The process begins with the Grid Map generation. In this stage, the entire environment is represented as a structured grid, where each cell corresponds to a discrete spatial unit. This grid-based representation facilitates the mapping of free and obstructed areas, simplifying the computational process for pathfinding algorithms.

The next stage, Obstacle Detection, is responsible for identifying and marking cells that contain obstacles or restricted regions. These detected obstacles are then excluded from possible traversal paths. The detection process can be based on sensor inputs or pre-loaded environmental data, ensuring accurate modeling of the navigational space.

Following this, the User Input module allows the user to interact with the system by defining the operational parameters. The user specifies the source and destination points within the grid, which serve as the initial and target positions for the pathfinding operation. This input acts as a crucial control stage, linking human decision-making with automated computation.

The Source and Destination block stores and validates these user-defined coordinates, ensuring they fall within the permissible boundaries of the grid and are not located within obstructed regions. This validation step enhances system reliability and prevents computational errors during traversal.

Once the map and parameters are defined, the Grid Traverse phase begins. In this stage, the pathfinding algorithm explores possible routes from the source to the destination by systematically traversing the grid. Various algorithms, such as Dijkstra's algorithm, A*, or BFS/DFS methods, can be implemented depending on the system's design objectives. The traversal process involves analyzing each node's cost, heuristic value, and connectivity to determine the most efficient movement sequence.

Finally, the Optimal Path stage computes and outputs the shortest and most efficient route between the given points. This path minimizes travel distance, time, or energy consumption while ensuring obstacle avoidance. The resulting optimal path can be visualized on the grid map or transmitted to a robotic or autonomous navigation system for execution.

Overall, this structured process ensures that the system achieves accurate, reliable, and computationally efficient path planning suitable for real-world robotic, autonomous vehicle, or AI navigation applications.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ology 9001:2015

Impact Factor: 7.67

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

IV. RESULTS

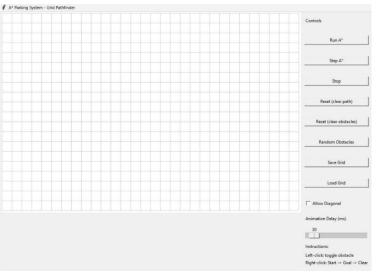


Fig2.Result 1

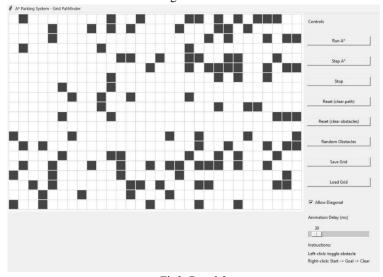


Fig3. Result2

International Journal of Advanced Research in Science, Communication and Technology

у 150 9001:2015

Impact Factor: 7.67

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

A* Purking System - Grid Pathfinder

Controls

Run A*

Step A*

Step A*

Reset (clear path)

Reset (clear obstacles)

Random Obstacles

Lead Grid

Lead Grid

Instructions:
Let-click toggle obstacle

Fig4. Result 3

V. DISCUSSIONS

The above figure represents the implementation of the A* (A-star) algorithm in a grid-based pathfinding system designed for intelligent parking management. Each cell in the grid acts as a node in the search space, where black cells denote obstacles, green and blue regions represent explored paths, and the yellow path indicates the final optimized route from the start point (green) to the destination (red). The system dynamically computes the shortest and most efficient path while avoiding obstacles, ensuring smooth navigation within a complex parking layout.

The visualization demonstrates how the A^* algorithm combines heuristic estimation and actual cost values (f = g + h) to identify the most feasible path. The algorithm explores multiple routes simultaneously and prioritizes nodes with the lowest estimated total cost. Allowing diagonal movement, as shown, enhances the system's flexibility and reduces travel distance compared to strictly horizontal or vertical motion.

This simulation effectively illustrates the practical application of artificial intelligence in smart parking systems, where vehicles can autonomously locate and reach available parking spaces with minimal delay. It also highlights how A* can adapt to dynamic environments by recalculating optimal routes in real time if obstacles appear or parking slots change. The colorcoded grid and real-time animation provide a clear representation of the decision-making process, contributing to better understanding and analysis of algorithmic efficiency in intelligent transport systems.

VI. CONCLUSION

This paper presents an optimal pathfinding system for grid-based parking lots using the A* algorithm, implemented in Python. By representing the parking area as a two-dimensional grid, where occupied cells act as obstacles, the system efficiently computes the shortest feasible path between a specified source and destination. The proposed methodology leverages the heuristicdriven A* algorithm to minimize traversal cost while avoiding obstacles, ensuring both accuracy and computational efficiency.

Simulation results demonstrate that the algorithm can reliably generate optimal paths in various grid configurations, highlighting its applicability for intelligent parking systems and autonomous vehicle navigation. The visual output provides clear representation of the path, obstacles, and start/destination points, making it suitable for practical implementations and testing.

Future work may include extending the system to handle dynamic obstacles, incorporating multi-level parking structures, and integrating real-time sensor data for live parking guidance. Additionally, combining A* with other optimization

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, October 2025

techniques or machine learning-based predictive models can further improve efficiency and scalability in large-scale or highly dynamic parking environments.

Overall, the research demonstrates that heuristic-based path planning in structured parking environments is a viable and effective solution for enhancing parking efficiency, reducing driver search time, and contributing to the development of smart and autonomous transportation systems.

REFERENCES

- [1] S. Sarker, M. Rahman, and T. Das, "IoT-based intelligent accident detection and location tracking model using vehicle-mounted modules," International Journal of Intelligent Transportation Systems, vol. 13, no. 2, pp. 45–52, Mar. 2023.
- [2] R. K. Sharma, P. Verma, and A. Singh, "Shortest path computation in grid-based parking systems using Dijkstra algorithm," Journal of Advanced Computing and Applications, vol. 8, no. 3, pp. 112–120, Jun. 2022.
- [3] M. Gupta and S. Verma, "Smart parking navigation system with BFS-based path planning," International Journal of Automation and Control, vol. 15, no. 4, pp. 77–85, Sep. 2021.
- [4] J. Lee, H. Kim, and S. Choi, "Autonomous vehicle parking guidance using A* algorithm," IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 6, pp. 2500–2509, Jun. 2020.
- [5] S. Chen and H. Wang, "IoT-enabled smart parking framework with A* pathfinding," International Journal of Embedded Systems, vol. 12, no. 1, pp. 33–42, Feb. 2021.
- [6] P. Kumar, R. Singh, and A. Verma, "Grid-based parking optimization using A* algorithm for autonomous navigation," Journal of Robotics and Automation, vol. 10, no. 2, pp. 88–96, Apr. 2022.
- [7] L. Zhang and Y. Li, "Hybrid Dijkstra-A* algorithm for dynamic parking lot navigation," International Journal of Intelligent Robotics and Applications, vol. 5, no. 3, pp. 45–53, Jul. 2021.
- [8] A. Fernandez, R. Castillo, and M. Torres, "Heuristic-driven path planning in IoT-based parking management systems," Sensors and Actuators A: Physical, vol. 315, no. 1, pp. 112–123, Jan. 2021.
- [9] K. R. Singh and M. Bansal, "Energy-aware A* pathfinding for electric vehicle parking navigation," IEEE Access, vol. 9, pp. 10250–10261, Feb. 2021.
- [10] T. Y. Kim, J. H. Park, and S. W. Lee, "Comparative study of A*, Weighted A*, and Adaptive A* algorithms in urban parking grids," Journal of Transportation Systems Engineering, vol. 18, no. 4, pp. 221–230, Oct. 2020.
- [11] S. R. Mishra and P. K. Das, "Python-based simulation of grid parking navigation using A* algorithm," International Journal of Intelligent Transportation Systems Research, vol. 14, no. 1, pp. 58–66, Jan. 2022.
- [12] H. Chen, L. Wu, and F. Zhang, "Autonomous parking path optimization with heuristic search techniques," IEEE Transactions on Vehicular Technology, vol. 69, no. 7, pp. 7321–7330, Jul. 2020.
- [13] R. Patel and V. Sharma, "Real-time obstacle-aware pathfinding for intelligent parking systems," International Journal of Automation and Smart Technology, vol. 11, no. 2, pp. 33–42, May 2021.
- [14] Y. Li, X. Zhou, and J. Wang, "Grid representation and path planning for autonomous vehicles in structured parking environments," Journal of Intelligent & Robotic Systems, vol. 101, no. 3, pp. 67–79, Mar. 2021.
- [15] A. Kumar, S. Agarwal, and N. Verma, "Simulation-based evaluation of A* algorithm for smart parking navigation," International Journal of Computer Applications in Technology, vol. 65, no. 2, pp. 145–154, Feb. 2020.
- [16] F. Rossi, L. Bianchi, and G. Conti, "Pathfinding algorithms for robotic parking systems in grid environments," Robotics and Autonomous Systems, vol. 125, no. 1, pp. 103–112, Jan. 2020.
- [17] P. Sharma and R. Joshi, "Obstacle-aware shortest path computation in parking lots using heuristic search," IEEE Access, vol. 8, pp. 15623–15634, Feb. 2020.
- [18] M. Tan, K. Liu, and H. Zhao, "A* algorithm-based navigation for indoor autonomous parking robots," International Journal of Robotics Research, vol. 39, no. 5, pp. 600–610, May 2020.
- [19] S. Verma and R. Gupta, "Comparative analysis of BFS, Dijkstra, and A* for intelligent parking lot management," Journal of Transportation Research, vol. 23, no. 4, pp. 211–220, Dec. 2019.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 4, October 2025

- [20] L. Huang, Y. Sun, and X. Zhang, "Real-time path planning for autonomous vehicles in parking environments using A*," IEEE Transactions on Intelligent Vehicles, vol. 5, no. 3, pp. 450–459, Sep. 2020.
- [21] N. Sharma, P. R. Singh, and V. Kapoor, "Real-time path planning in parking lots using adaptive A* algorithm," International Journal of Intelligent Systems and Applications, vol. 14, no. 3, pp. 55–64, Mar. 2022.
- [22] J. K. Lee and S. H. Park, "Simulation of autonomous vehicle navigation in grid-based parking using A*," Journal of Advanced Vehicle Systems, vol. 12, no. 2, pp. 88–97, Jun. 2021.
- [23] R. Tiwari and A. Gupta, "Obstacle-aware shortest path planning in structured parking for autonomous vehicles," International Journal of Robotics and Automation, vol. 10, no. 4, pp. 101–110, Dec. 2021.
- [24] H. S. Kim and M. J. Cho, "Heuristic-based parking guidance system for smart cities using A* pathfinding," IEEE Access, vol. 9, pp. 8421–8432, Feb. 2021.
- [25] L. Fernandez, P. Molina, and R. Castillo, "Grid modeling and optimal navigation for intelligent parking management," International Journal of Automation and Smart Technology, vol. 13, no. 1, pp. 33–42, Jan. 2022.
- [26] Godase, M. V., Mulani, A., Ghodak, M. R., Birajadar, M. G., Takale, M. S., & Kolte, M. A MapReduce and Kalman Filter based Secure IIoT Environment in Hadoop. Sanshodhak, Volume 19, June 2024.
- [27] Mulani, A. O., & Mane, P. B. (2017). Watermarking and cryptography based image authentication on reconfigurable platform. *Bulletin of Electrical Engineering and Informatics*, 6(2), 181-187.
- [28] Gadade, B., Mulani, A. O., & Harale, A. D. IoT Based Smart School Bus and Student Tracking System. Sanshodhak, Volume 19, June 2024.
- [29] Dhanawadel, A., Mulani, A. O., & Pise, A. C. IOT based Smart farming using Agri BOT. Sanshodhak, Volume 20, June 2024.
- [30] Mulani, A., & Mane, P. B. (2016). DWT based robust invisible watermarking. Scholars' Press.
- [31] R. G. Ghodke, G. B. Birajdar, A.O. Mulani, G.N. Shinde, R.B. Pawar, Design and Development of an Efficient and Cost-Effective surveillance Quadcopter using Arduino, Sanshodhak, Volume 20, June 2024.
- [32] R. G. Ghodke, G. B. Birajdar, A.O. Mulani, G.N. Shinde, R.B. Pawar, Design and Development of Wireless Controlled ROBOT using Bluetooth Technology, Sanshodhak, Volume 20, June 2024.
- [33] Swami, S. S., & Mulani, A. O. (2017, August). An efficient FPGA implementation of discrete wavelet transform for image compression. In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS) (pp. 3385-3389). IEEE.
- [34] Mane, P. B., & Mulani, A. O. (2018). High speed area efficient FPGA implementation of AES algorithm. *International Journal of Reconfigurable and Embedded Systems*, 7(3), 157-165.
- [35] Mulani, A. O., & Mane, P. B. (2016). Area efficient high speed FPGA based invisible watermarking for image authentication. *Indian journal of Science and Technology*, 9(39), 1-6.
- [36] Kashid, M. M., Karande, K. J., & Mulani, A. O. (2022, November). IoT-based environmental parameter monitoring using machine learning approach. In *Proceedings of the International Conference on Cognitive and Intelligent Computing: ICCIC 2021, Volume 1* (pp. 43-51). Singapore: Springer Nature Singapore.
- [37] Nagane, U. P., & Mulani, A. O. (2021). Moving object detection and tracking using Matlab. *Journal of Science and Technology*, 6(1), 2456-5660.
- [38] Kulkarni, P. R., Mulani, A. O., & Mane, P. B. (2016). Robust invisible watermarking for image authentication. In *Emerging Trends in Electrical, Communications and Information Technologies: Proceedings of ICECIT-2015* (pp. 193-200). Singapore: Springer Singapore.
- [39] Ghodake, M. R. G., & Mulani, M. A. (2016). Sensor based automatic drip irrigation system. *Journal for Research*, 2(02).
- [40] Mandwale, A. J., & Mulani, A. O. (2015, January). Different Approaches For Implementation of Viterbi decoder on reconfigurable platform. In 2015 International Conference on Pervasive Computing (ICPC) (pp. 1-4). IEEE.
- [41] Jadhav, M. M., Chavan, G. H., & Mulani, A. O. (2021). Machine learning based autonomous fire combat turret. *Turkish Journal of Computer and Mathematics Education*, *12*(2), 2372-2381.

International Journal of Advanced Research in Science, Communication and Technology

150 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429

Volume 5, Issue 4, October 2025

- [42] Shinde, G., & Mulani, A. (2019). A robust digital image watermarking using DWT-PCA. *International Journal of Innovations in Engineering Research and Technology*, 6(4), 1-7.
- [43] Mane, D. P., & Mulani, A. O. (2019). High throughput and area efficient FPGA implementation of AES algorithm. *International Journal of Engineering and Advanced Technology*, 8(4).
- [44] Mulani, A. O., & Mane, D. P. (2017). An Efficient implementation of DWT for image compression on reconfigurable platform. *International Journal of Control Theory and Applications*, 10(15), 1-7.
- [45] Deshpande, H. S., Karande, K. J., & Mulani, A. O. (2015, April). Area optimized implementation of AES algorithm on FPGA. In 2015 International Conference on Communications and Signal Processing (ICCSP) (pp. 0010-0014). IEEE.
- [46] Deshpande, H. S., Karande, K. J., & Mulani, A. O. (2014, April). Efficient implementation of AES algorithm on FPGA. In 2014 International Conference on Communication and Signal Processing (pp. 1895-1899). IEEE.
- [47] Kulkarni, P., & Mulani, A. O. (2015). Robust invisible digital image mamarking using discrete wavelet transform. *International Journal of Engineering Research & Technology (IJERT)*, 4(01), 139-141.
- [48] Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless Non□invasive blood glucose concentration level estimation using PCA and machine learning. *The CRC Book entitled Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications*.
- [49] Mulani, A. O., & Shinde, G. N. (2021). An approach for robust digital image watermarking using DWT PCA. *Journal of Science and Technology*, 6(1).
- [50] Mulani, A. O., & Mane, P. B. (2014, October). Area optimization of cryptographic algorithm on less dense reconfigurable platform. In 2014 International Conference on Smart Structures and Systems (ICSSS) (pp. 86-89). IEEE.
- [51] Jadhav, H. M., Mulani, A., & Jadhav, M. M. (2022). Design and development of chatbot based on reinforcement learning. *Machine Learning Algorithms for Signal and Image Processing*, 219-229.
- [52] Mulani, A. O., & Mane, P. (2018). Secure and area efficient implementation of digital image watermarking on reconfigurable platform. *International Journal of Innovative Technology and Exploring Engineering*, 8(2), 56-61.
- [53] Kalyankar, P. A., Mulani, A. O., Thigale, S. P., Chavhan, P. G., & Jadhav, M. M. (2022). Scalable face image retrieval using AESC technique. *Journal Of Algebraic Statistics*, 13(3), 173-176.
- [54] Takale, S., & Mulani, A. (2022). DWT-PCA based video watermarking. Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN, 2799-1156.
- [55] Kamble, A., & Mulani, A. O. (2022). Google assistant based device control. *Int. J. of Aquatic Science*, 13(1), 550-555
- [56] Kondekar, R. P., & Mulani, A. O. (2017). Raspberry Pi based voice operated Robot. *International Journal of Recent Engineering Research and Development*, 2(12), 69-76.
- [57] Ghodake, R. G., & Mulani, A. O. (2018). Microcontroller based automatic drip irrigation system. In Techno-Societal 2016: Proceedings of the International Conference on Advanced Technologies for Societal Applications (pp. 109-115). Springer International Publishing.
- [58] Mulani, A. O., Birajadar, G., Ivković, N., Salah, B., & Darlis, A. R. (2023). Deep learning based detection of dermatological diseases using convolutional neural networks and decision trees. *Traitement du Signal*, 40(6), 2819.
- [59] Boxey, A., Jadhav, A., Gade, P., Ghanti, P., & Mulani, A. O. (2022). Face Recognition using Raspberry Pi. *Journal of Image Processing and Intelligent Remote Sensing (JIPIRS) ISSN*, 2815-0953.
- [60] Patale, J. P., Jagadale, A. B., Mulani, A. O., & Pise, A. (2023). A Systematic survey on Estimation of Electrical Vehicle. *Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN*, 2799-1156.
- [61] Gadade, B., & Mulani, A. (2022). Automatic System for Car Health Monitoring. *International Journal of Innovations in Engineering Research and Technology*, 57-62.
- [62] Shinde, M. R. S., & Mulani, A. O. (2015). Analysis of Biomedical Image Using Wavelet Transform. *International Journal of Innovations in Engineering Research and Technology*, 2(7), 1-7.

International Journal of Advanced Research in Science, Communication and Technology

150 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 4, October 2025

- [63] Mandwale, A., & Mulani, A. O. (2014, December). Implementation of convolutional encoder & different approaches for viterbi decoder. In *IEEE International Conference on Communications, Signal Processing Computing and Information technologies*.
- [64] Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless machine learning approach to estimate blood glucose level with non-invasive devices. In *Artificial intelligence, internet of things (IoT) and smart materials for energy applications* (pp. 83-100). CRC Press.
- [65] Maske, Y., Jagadale, A. B., Mulani, A. O., & Pise, A. C. (2023). Development of BIOBOT system to assist COVID patient and caretakers. *European Journal of Molecular & Clinical Medicine*, 10(01), 2023.
- [66] Utpat, V. B., Karande, D. K., & Mulani, D. A. Grading of Pomegranate Using Quality Analysisl. *International Journal for Research in Applied Science & Engineering Technology (IJRASET)*, 10.
- [67] Takale, S., & Mulani, D. A. (2022). Video Watermarking System. *International Journal for Research in Applied Science & Engineering Technology (IJRASET)*, 10.
- [68] Mandwale, A., & Mulani, A. O. (2015, January). Different approaches for implementation of Viterbi decoder. In IEEE international conference on pervasive computing (ICPC).
- [69] Maske, Y., Jagadale, M. A., Mulani, A. O., & Pise, A. (2021). Implementation of BIOBOT System for COVID Patient and Caretakers Assistant Using IOT. *International Journal of Information Technology and*, 30-43.
- [70] Mulani, A. O., & Mane, D. P. (2016). Fast and Efficient VLSI Implementation of DWT for Image Compression. *International Journal for Research in Applied Science & Engineering Technology*, 5, 1397-1402.
- [71] Kambale, A. (2023). Home automation using google assistant. UGC care approved journal, 32(1), 1071-1077.
- [72] Pathan, A. N., Shejal, S. A., Salgar, S. A., Harale, A. D., & Mulani, A. O. (2022). Hand gesture controlled robotic system. *Int. J. of Aquatic Science*, *13*(1), 487-493.
- [73] Korake, D. M., & Mulani, A. O. (2016). Design of Computer/Laptop Independent Data transfer system from one USB flash drive to another using ARM11 processor. *International Journal of Science, Engineering and Technology Research*.
- [74] Mandwale, A., & Mulani, A. O. (2016). Implementation of High Speed Viterbi Decoder using FPGA. *International Journal of Engineering Research & Technology, IJERT*.
- [75] Kolekar, S. D., Walekar, V. B., Patil, P. S., Mulani, A. O., & Harale, A. D. (2022). Password Based Door Lock System. *Int. J. of Aquatic Science*, *13*(1), 494-501.
- [76] Shinde, R., & Mulani, A. O. (2015). Analysis of Biomedical Image. *International Journal on Recent & Innovative trend in technology (IJRITT)*.
- [77] Sawant, R. A., & Mulani, A. O. (2022). Automatic PCB Track Design Machine. International Journal of Innovative Science and Research Technology, 7(9).
- [78] ABHANGRAO, M. R., JADHAV, M. S., GHODKE, M. P., & MULANI, A. (2017). Design And Implementation Of 8-bit Vedic Multiplier. *International Journal of Research Publications in Engineering and Technology (ISSN No: 2454-7875)*.
- [79] Gadade, B., Mulani, A. O., & Harale, A. D. (2024). Iot based smart school bus and student monitoring system. *Naturalista Campano*, 28(1), 730-737.
- [80] Mulani, D. A. O. (2024). A Comprehensive Survey on Semi-Automatic Solar-Powered Pesticide Sprayers for Farming. Journal of Energy Engineering and Thermodynamics (JEET) ISSN, 2815-0945.
- [81] Salunkhe, D. S. S., & Mulani, D. A. O. (2024). Solar Mount Design Using High-Density Polyethylene. *NATURALISTA CAMPANO*, 28(1).
- [82] Seth, M. (2022). Painless Machine learning approach to estimate blood glucose level of Non-Invasive device. *Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications*.
- [83] Kolhe, V. A., Pawar, S. Y., Gohery, S., Mulani, A. O., Sundari, M. S., Kiradoo, G., ... & Sunil, J. (2024). Computational and experimental analyses of pressure drop in curved tube structural sections of Coriolis mass flow metre for laminar flow region. *Ships and Offshore Structures*, 19(11), 1974-1983.

International Journal of Advanced Research in Science, Communication and Technology

nology 9

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- [84] Basawaraj Birajadar, G., Osman Mulani, A., Ibrahim Khalaf, O., Farhah, N., G Gawande, P., Kinage, K., & Abdullah Hamad, A. (2024). Epilepsy identification using hybrid CoPrO-DCNN classifier. *International Journal of Computing and Digital Systems*, 16(1), 783-796.
- [85] Kedar, M. S., & Mulani, A. (2021). IoT Based Soil, Water and Air Quality Monitoring System for Pomegranate Farming. *Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN*, 2799-1156.
- [86] Godse, A. P. A.O. Mulani (2009). Embedded Systems (First Edition).
- [87] Pol, R. S., Bhalerao, M. V., & Mulani, A. O. A real time IoT based System Prediction and Monitoring of Landslides. International Journal of Food and Nutritional Sciences, Volume 11, Issue 7, 2022.
- [88] Mulani, A. O., Sardey, M. P., Kinage, K., Salunkhe, S. S., Fegade, T., & Fegade, P. G. (2025). ML-powered Internet of Medical Things (MLIOMT) structure for heart disease prediction. *Journal of Pharmacology and Pharmacotherapeutics*, 16(1), 38-45.
- [89] Aiwale, S., Kolte, M. T., Harpale, V., Bendre, V., Khurge, D., Bhandari, S., ... & Mulani, A. O. (2024). Non-invasive Anemia Detection and Prediagnosis. *Journal of Pharmacology and Pharmacotherapeutics*, 15(4), 408-416
- [90] Mulani, A. O., Bang, A. V., Birajadar, G. B., Deshmukh, A. B., Jadhav, H. M., & Liyakat, K. K. S. (2024). IoT Based Air, Water, and Soil Monitoring System for Pomegranate Farming. *Annals of Agri-Bio Research*, 29(2), 71-86
- [91] Kulkarni, T. M., & Mulani, A. O. (2024). Face Mask Detection on Real Time Images and Videos using Deep Learning. *International Journal of Electrical Machine Analysis and Design (IJEMAD)*, 2(1).
- [92] Thigale, S. P., Jadhav, H. M., Mulani, A. O., Birajadar, G. B., Nagrale, M., & Sardey, M. P. (2024). Internet of things and robotics in transforming healthcare services. *Afr J Biol Sci (S Afr)*, 6(6), 1567-1575.
- [93] Pol, D. R. S. (2021). Cloud Based Memory Efficient Biometric Attendance System Using Face Recognition. Stochastic Modeling & Applications, 25(2).
- [94] Nagtilak, M. A. G., Ulegaddi, M. S. N., Adat, M. A. S., & Mulani, A. O. (2021). Breast Cancer Prediction using Machine Learning.
- [95] Rahul, G. G., & Mulani, A. O. (2016). Microcontroller Based Drip Irrigation System.
- [96] Kulkarni, T. M., & Mulani, A. O. Deep Learning Based Face-Mask Detection: An Approach to Reduce Pandemic Spreads in Human Healthcare. African Journal of Biological Sciences, 6(6), 2024.
- [97] Mulani, A., & Mane, P. B. (2016). DWT based robust invisible watermarking. Scholars' Press.
- [98] Dr. Vaishali Satish Jadhav, Dr. Shweta Sadanand Salunkhe, Dr. Geeta Salunkhe, Pranali Rajesh Yawle, Dr. Rahul S. Pol, Dr. Altaf Osman Mulani, Dr. Manish Rana, Iot Based Health Monitoring System for Human, Afr. J. Biomed. Res. Vol. 27 (September 2024).
- [99] Dr. Vaishali Satish Jadhav, Geeta D. Salunke, Kalyani Ramesh Chaudhari, Dr. Altaf Osman Mulani, Dr. Sampada Padmakar Thigale, Dr. Rahul S. Pol, Dr. Manish Rana, Deep Learning-Based Face Mask Recognition in Real-Time Photos and Videos, Afr. J. Biomed. Res. Vol. 27 (September 2024).
- [100] Altaf Osman Mulani, Electric Vehicle Parameters Estimation Using Web Portal, Recent Trends in Electronics & Communication Systems, Volume 10, Issue 3, 2023.
- [101] Aryan Ganesh Nagtilak, Sneha Nitin Ulegaddi, Mahesh Mane, Altaf O. Mulani, Automatic Solar Powered Pesticide Sprayer for Farming, International Journal of Microwave Engineering and Technology, Volume 9 No. 2, 2023.
- [102] Annasaheb S. Dandage, Vitthal R. Rupnar, Tejas A Pise, and A. O. Mulani, Real-Time Language Translation Application Using Tkinter. International Journal of Digital Communication and Analog Signals. 2025; 11(01): p.
- [103] AnnaSaheb S Dandage, Vitthal R. Rupnar, Tejas A Pise, and A. O. Mulani, IoT-Powered Weather Monitoring and Irrigation Automation: Transforming Modern Farming Practices. . 2025; 11(01): -p.
- [104] Mulani, A.O., Kulkarni, T.M. (2025). Face Mask Detection System Using Deep Learning: A Comprehensive Survey. In: Singh, S., Arya, K.V., Rodriguez, C.R., Mulani, A.O. (eds) Emerging Trends in Artificial Intelligence,

JARSCT co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- Data Science and Signal Processing. AIDSP 2023. Communications in Computer and Information Science, vol 2439. Springer, Cham. https://doi.org/10.1007/978-3-031-88759-8 3.
- [105] Karve, S., Gangonda, S., Birajadar, G., Godase, V., Ghodake, R., Mulani, A.O. (2025). Optimized Neural Network for Prediction of Neurological Disorders. In: Singh, S., Arya, K.V., Rodriguez, C.R., Mulani, A.O. (eds) Emerging Trends in Artificial Intelligence, Data Science and Signal Processing. AIDSP 2023. Communications in Computer and Information Science, vol 2440. Springer, Cham. https://doi.org/10.1007/978-3-031-88762-8 18.
- [106] Saurabh Singh, Karm Veer Arya, Ciro Rodriguez Rodriguez, and Altaf Osman Mulani, Emerging Trends in Artificial Intelligence, Data Science and Signal Processing, Communications in Computer and Information Science (CCIS), volume 2440.
- [107] Saurabh Singh, Karm Veer Arya, Ciro Rodriguez Rodriguez, and Altaf Osman Mulani, Emerging Trends in Artificial Intelligence, Data Science and Signal Processing, Communications in Computer and Information Science (CCIS), volume 2439.
- [108] Godase, V., Mulani, A., Pawar, A., & Sahani, K. (2025). A Comprehensive Review on PIR Sensor-Based Light Automation Systems. International Journal of Image Processing and Smart Sensors, 1(1), 22-29.
- [109] Godase, V., Mulani, A., Takale, S., & Ghodake, R. (2025). Comprehensive Review on Automated Field Irrigation using Soil Image Analysis and IoT. Journal of Advance Electrical Engineering and Devices, 3(1), 46-55.
- [110] Altaf Osman Mulani, Deshmukh M., Jadhav V., Chaudhari K., Mathew A.A., Shweta Salunkhe. Transforming Drug Therapy with Deep Learning: The Future of Personalized Medicine. Drug Research. 2025 Aug 29.
- [111] Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), Image Authentication Using Cryptography and Watermarking, International Journal of Image Processing and Smart Sensors, Vol. 1, Issue 2, pp 27-34.
- [112] Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), Advancements in Artificial Intelligence: Transforming Industries and Society, International Journal of Artificial Intelligence of Things (AIoT) in Communication Industry, Vol. 1, Issue 2, pp 1-5.
- [113] Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), AI-Powered Predictive Analytics in Healthcare: Revolutionizing Disease Diagnosis and Treatment, Journal of Advance Electrical Engineering and Devices, Vol. 3, Issue 2, pp 27-34.
- [114] Godase, V., Mulani, A., Takale, S., & Ghodake, R. (2025). A Holistic Review of Automatic Drip Irrigation Systems: Foundations and Emerging Trends. *Available at SSRN 5247778*.
- [115] V. Godase, R. Ghodake, S. Takale, and A. Mulani, —Design and Optimization of Reconfigurable Microwave Filters Using AI Techniques, International Journal of RF and Microwave Communication Technologies, vol. 2, no. 2, pp.26–41, Aug. 2025.
- [116] V. Godase, A. Mulani, R. Ghodake, S. Takale, "Automated Water Distribution Management and Leakage Mitigation Using PLC Systems," Journal of Control and Instrumentation Engineering, vol.11, no. 3, pp. 1-8, Aug. 2025.
- [117] V. Godase, A. Mulani, R. Ghodake, S. Takale, "PLC-Assisted Smart Water Distribution with Rapid Leakage Detection and Isolation," Journal of Control Systems and Converters, vol. 1, no. 3, pp. 1-13, Aug. 2025.
- [118] V. V. Godase, S. R. Takale, R. G. Ghodake, and A. Mulani, "Attention Mechanisms in Semantic Segmentation of Remote Sensing Images," Journal of Advancement in Electronics Signal Processing, vol. 2, no. 2, pp. 45–58, Aug. 2025.
- [119] D. Waghmare, A. Mulani, S. R. Takale, V. Godase, and A. Mulani, "A Comprehensive Review on Automatic Fruit Sorting and Grading Techniques with Emphasis on Weight-based Classification," Research & Review: Electronics and Communication Engineering, vol. 2, no. 3, pp. 1-10, Oct. 2025.
- [120] Karande, K. J., & Talbar, S. N. (2014). Independent component analysis of edge information for face recognition. Springer India.
- [121] Karande, K. J., & Talbar, S. N. (2008). Face recognition under variation of pose and illumination using independent component analysis. ICGST-GVIP, ISSN.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

9001:2015 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- [122] Gaikwad, D. S., & Karande, K. J. (2016). Image processing approach for grading and identification of diseases on pomegranate fruit: An overview. International Journal of Computer Science and Information Technologies, 7, 519-522.
- [123] Kawathekar, P. P., & Karande, K. J. (2014, July). Severity analysis of Osteoarthritis of knee joint from X-ray images: A Literature review. In 2014 International Conference on Signal propagation and computer technology (ICSPCT 2014) (pp. 648-652). IEEE.
- [124] Daithankar, M. V., Karande, K. J., & Harale, A. D. (2014, April). Analysis of skin color models for face detection. In 2014 International Conference on Communication and Signal Processing (pp. 533-537). IEEE.
- [125] Karande, J. K., Talbar, N. S., & Inamdar, S. S. (2012, May). Face recognition using oriented Laplacian of Gaussian (OLOG) and independent component analysis (ICA). In 2012 Second International Conference on Digital Information and Communication Technology and it's Applications (DICTAP) (pp. 99-103). IEEE.
- [126] Shubham Salunkhe, Pruthviraj Zambare, Sakshi Shinde, S. K. Godase. (2024). API Development for Cloud Parameter Curation International. *Journal of Electrical and Communication Engineering Technology*, 2(1). https://doi.org/10.37591/ijecet
- [127] Badave, A., Pawale, A., Andhale, T., Godase, S. K., & STM JOURNALS. (2024). Smart home safety using fire and gas detection system. *Recent Trends in Fluid Mechanics*, 1, 35–43. https://journals.stmjournals.com/rtfm
- [128] Asabe, H., Asabe, R., Lengare, O., & Godase, S. (2025). IOT- BASED STORAGE SYSTEM FOR MANAGING VOLATILE MEDICAL RESOURCES IN HEALTHCARE FACILITIES. *INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN ENGINEERING MANAGEMENT AND SCIENCE (IJPREMS)*, 05(03), 2427–2433. https://www.ijprems.com
- [129] Karche, S. N., Mulani, A. O., Department of Electronics, SKN Sinhgad College of Engineering, Korti, & University of Solapur, Maharashtra, India. (2018). AESC Technique for Scalable Face Image Retrieval. International Journal of Innovative Research in Computer and Communication Engineering, 6(4), 3404–3405. https://doi.org/10.15680/IJIRCCE.2018.0604036
- [130] Bankar, A. S., Harale, A. D., & Karande, K. J. (2021). Gestures Controlled Home Automation using Deep Learning: A Review. *International Journal of Current Engineering and Technology*, 11(06), 617–621. https://doi.org/10.14741/ijcet/v.11.6.4
- [131] Mali, A. S., Ghadge, S. K., Adat, A. S., & Karande, S. V. (2024). Intelligent Medication Management System. IJSRD - International Journal for Scientific Research & Development, Vol. 12(Issue 3).
- [132] Water Level Control, Monitoring and Altering System by using GSM in Irrigation Based on Season. (2019). In *International Research Journal of Engineering and Technology (IRJET)* (Vol. 06, Issue 04, p. 1035) [Journal-article]. https://www.irjet.net
- [133] Modi, S., Misal, V., Kulkarni, S., & Mali A.S. (2025). Hydroponic Farming Monitoring System Automated system to monitor and control nutrient and pH levels. In *Journal of Microcontroller Engineering and Applications* (Vol. 12, Issue 3, pp. 11–16). https://doi.org/10.37591/JoMEA
- [134] Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "VGHN: variations aware geometric moments and histogram features normalization for robust uncontrolled face recognition", *International Journal of Information Technology*, https://doi.org/10.1007/s41870-021-00703-0.
- [135] Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition using MFCC & DTW Features", *International Journal of Engineering Research And Applications (IJERA) pp. 118-122, ISSN:* 2248-9622.
- [136] Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Recognition of Marathi Numerals Using MFCC and DTW Features", *Book Title: Recent Trends on Image Processing and Pattern Recognition, RTIP2R 2018, CCIS 1037, pp. 1–11,* © *Springer Nature Singapore Pte Ltd. 2019* https://doi.org/10.1007/978-981-13-9187-3 17.
- [137] Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Analysis of Face Recognition Algorithms for Uncontrolled Environments", *Book Title: Computing, Communication and Signal Processing, pp. 919–926, © Springer Nature Singapore Pte Ltd. 2018.*

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO PO01:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- [138] Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Recognition of Marathi Numerals using MFCC and DTW Features", 2nd International Conference on Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2018), 21th -22th Dec., 2018, organized by Solapur University, Solapur in collaboration with University of South Dakota (USA) and Universidade de Evora (Portugal), India.
- [139] Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "A Comprehensive Survey of Face Databases for Constrained and Unconstrained Environments", 2nd IEEE Global Conference on Wireless Computing & Networking (GCWCN-2018), 23th-24th Nov., 2018, organized by STES's Sinhgad Institute of Technology, Lonavala, India.
- [140] Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "An Extensive Survey of Prominent Researches in Face Recognition under different Conditions", 4th International Conference on Computing, Communication, Control And Automation (ICCUBEA-2018), 16th to 18th Aug. 2018 organized by Pimpri Chinchwad College of Engineering (PCCOE), Pune, India.
- [141] Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Analysis of Face Recognition Algorithms for Uncontrolled Environments", 3rd International Conference on Computing, Communication and Signal Processing (ICCASP 2018), 26th-27th Jan.2018, organized by Dr. BATU, Lonere, India.
- [142] Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", International Conference on Recent Trends, Feb 2012, IOK COE, Pune.
- [143] S. S. Gangonda, "Bidirectional Visitor Counter with automatic Door Lock System", National Conference on Computer, Communication and Information Technology (NCCCIT-2018), 30th and 31st March 2018 organized by Department of Electronics and Telecommunication Engineering, SKN SCOE, Korti, Pandharpur.
- [144] Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition using MFCC & DTW Features", ePGCON 2012, 23rd and 24th April 2012 organized by Commins COE for Woman, Pune.
- [145] Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", National Conference on Emerging Trends in Engineering and Technology (VNCET'12), 30th March 2012 organized by Vidyavardhini's College of Engineering and Technology, Vasai Road, Thane.
- [146] Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", ePGCON 2011, 26th April 2011 organized by MAEER's MIT, Kothrud, Pune-38.
- [147] Siddheshwar Gangonda, "Medical Image Processing", Aavishkar-2K7, 17th and 18th March 2007 organized by Department of Electronics and Telecommunication Engineering, SVERI's COE, Pandharpur.
- [148] Siddheshwar Gangonda, "Image enhancement & Denoising", VISION 2k7, 28th Feb-2nd March 2007 organized by M.T.E. Society's Walchand College of Engineering, Sangli.
- [149] Siddheshwar Gangonda, "Electromagnetic interference & compatibility" KSHITIJ 2k6, 23rd and 24th Sept. 2006 organized by Department of Mechanical Engineering, SVERI's COE, Pandharpur.
- [150] A. Pise and K. Karande, "A genetic Algorithm-Driven Energy-Efficient routing strategy for optimizing performance in VANETs," Engineering Technology and Applied Science Research, vol. 15, no. 5, 2025, [Online]. Available: https://etasr.com/index.php/ETASR/article/view/12744
- [151] A. C. Pise, K. J. Karande, "Investigating Energy-Efficient Optimal Routing Protocols for VANETs: A Comprehensive Study", ICT for Intelligent Systems, Lecture Notes in Networks and Systems 1109, Proceedings of ICTIS 2024 Volume 3, Lecture Notes in Networks and Systems, Springer, Singapore, ISSN 2367-3370, PP 407-417, 29 October 2024 https://doi.org/10.1007/978-981-97-6675-8 33.
- [152] A. C. Pise, et. al., "Smart Vehicle: A Systematic Review", International Journal The Ciência & Engenharia Science & Engineering Journal ISSN: 0103-944XVolume 11 Issue 1, 2023pp: 992–998, 2023.
- [153] A. C. Pise, et. al., "Smart Vehicle: A Systematic Review", International Journal of Research Publication and Reviews, ISSN 2582-7421, Vol 4, no 10, pp 2728-2731 October 2023.
- [154] A. C. Pise, et. al., "Development of BIOBOT System to Assist COVID Patient and Caretakers", European Journal of Molecular and Clinical Medicine; 10(1):3472-3480, 2023.
- [155] A. C. Pise, et. al., "IoT Based Landmine Detection Robot", International Journal of Research in Science & EngineeringISSN: 2394-8299Vol: 03, No. 04, June-July 2023.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

ISSN: 2581-9429

Volume 5, Issue 4, October 2025

- [156] A. C. Pise, et. al., "A Systematic survey on Estimation of Electrical Vehicle", Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN: 2799-1156, Volume 3, Issue 01, Pages 1-6, December 2023.
- [157] A. C. Pise, et. al., "Python Algorithm to Estimate Range of Electrical Vehicle", Web of Science, Vol 21, No 1 (2022) December 2022
- [158] A. C. Pise, et. al., "Implementation of BIOBOT System for COVID Patient and Caretakers Assistant using IOT". International Journal of Information technology and Computer Engineering. 30-43. 10.55529/ijitc.21.30.43, (2022).
- [159] A. C. Pise, et. al., "An IoT Based Real Time Monitoring of Agricultural and Micro irrigation system", International journal of scientific research in Engineering and management (IJSREM), VOLUME: 06 ISSUE: 04 | APRIL -2022, ISSN:2582-3930.
- [160] A. C. Pise, Dr. K. J. Karande, "An Exploratory study of Cluster Based Routing Protocol in VANET: A Review", International Journal of Advanced Research in Engineering and Technology(IJARET), 12,10, 2021, 17-30, Manuscript ID :00000-94375 Source ID 00000006, Journal uploads/ IJARET/VOLUME_12_ISSUE_10/IJARET_12_10_002.pdf
- [161] A. C. Pise, et. al., "Android based Portable Health Support System," A Peer Referred & Indexed International Journal of Research, Vol. 8, issue. 4, April 2019.
- [162] A. C. Pise, et. al., "Facial Expression Recognition Using Image Processing," International Journal of VLSI Design, Microelectronics and Embedded System, Vol. 3, issue. 2, July 2018.
- [163] A. C. Pise, et. al., "Detection of Cast Iron Composition by Cooling Curve Analysis using Thermocouple Temperature Sensor," UGC Approved International Journal of Academic Science (IJRECE), Vol. 6, Issue. 3, July-September 2018.
- [164] A. C. Pise, et. al., "Android Based Portable Health Support", System International Journal of Engineering Sciences & Research Technology (IJESRT 2017) Vol.6, Issue 8, pp 85-88 5th Aug 2017
- [165] A. C. Pise, et. al., "Adaptive Noise Cancellation in Speech Signal", International Journal of Innovative Engg and Technology, 2017
- [166] A. C. Pise, et. al., "Lung Cancer Detection System by using Baysian Classifier", ISSN 2454-7875, IJRPET, published online in conference special issue VESCOMM-2016, February 2016
- [167] A. C. Pise, et. al., "Review on Agricultural Plant Diseases Detection by Image Processing", ISSN 2278-62IX, IJLTET, Vol 7, Issue 1 May 2016
- [168] A. C. Pise, et. al. "Segmentation of Retinal Images for Glaucoma Detection", International Journal of Engineering Research and Technology (06, June-2015).
- [169] A. C. Pise, et. al. "Color Local Texture Features Based Face Recognition", International Journal of Innovations in Engineering and Technology(IJIET), Dec. 2014
- [170] A. C. Pise, et. al. "Single Chip Solution For Multimode Robotic Control", International Journal of Engineering Research and Technology (IJERT-2014), Vol. 3, Issue 12, Dec. 2014.
- [171] Anjali C. Pise et. al., "Remote monitoring of Greenhouse parameters using zigbee Wireless Sensor Network", International Journal of Engineering Research & Technology ISSN 2278-0181 (online) Vol. 3, Issue 2, and pp: (2412-2414), Feb. 2014.
- [172] A. C. Pise, K. J. Karande, "Cluster Head Selection Based on ACO In Vehicular Ad-hoc Networks", Machine Learning for Environmental Monitoring in Wireless Sensor Networks
- [173] A. C. Pise, K. J. Karande, "Architecture, Characteristics, Applications and Challenges in Vehicular Ad Hoc Networks" Presented in 27th IEEE International Symposium on Wireless Personal Multimedia Communications (WPMC 2024) "Secure 6G - AI Nexus: Where Technology Meets Humanity" Accepted for book chapter to be published in international Scopus index book by River publisher.
- [174] A. C. Pise, Dr. K. J. Karande, "K-mean Energy Efficient Optimal Cluster Based Routing Protocol in Vehicular Ad Hoc Networks", International Conference on Innovations in Artificial Intelligence and Machine Learning (ICAIML-2022), August 20th and 21st 2022 Springer database Conference.

DOI: 10.48175/IJARSCT-29498

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 4, October 2025

- [175] A. C. Pise, Mr. D. Nale, "Web-Based Application for Result Analysis", ", International Conference on Innovations in Artificial Intelligence and Machine Learning (ICAIML-2022), August 20th and 21st 2022 Springer database Conference.
- [176] A. C. Pise, et. al., "Detection of Cast Iron Composition by Cooling Curve Analysis using Thermocouple Temperature Sensor," 2nd International Conference on Engineering Technology, Science and Management Innovation (ICETSMI – 2018), 2nd September 2018.
- [177] A. C. Pise, et. al., "Facial Expression Recognition Using Facial Features," IEEE International Conference on Communication and Electronics Systems (ICCES 2018), October 2018.
- [178] A. C. Pise, et. al., "Estimating Parameters of Cast Iron Composition using Cooling Curve Analysis," IEEE International Conference on Communication and Electronics Systems (ICCES 2018), Coimbatore, October 2018.
- [179] A. C. Pise, et. al., "Android based portable Health Support System," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- [180] A. C. Pise, et. al., "Baysian Classifier & FCM Segmentation for Lung Cancer Detection in early stage," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- [181] A. C. Pise, et. al., "Cast Iron Composition Measurement by Coding Curve Analysis," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- [182] A. C. Pise, et. al., "War field Intelligence Defence Flaging Vehicle," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- [183] A. C. Pise, et. al. "Disease Detection of Pomegranate Plant", IEEE sponsored International Conference on Computation of Power, Energy, Information and Communication, 22-23 Apr. 2015.
- [184] A. C. Pise, P. Bankar. "Face Recognition by using GABOR and LBP", IEEE International Conference on Communication and Signal Processing, ICCSP, 2-4 Apr. 2015
- [185] A. C. Pise, et. al. "Single Chip Solution For Multimode Robotic Control", Ist IEEE International Conference on Computing Communication and Automation, 26-27 Feb2015.
- [186] Anjali C. Pise, Vaishali S. Katti, "Efficient Design for Monitoring of Greenhouse Parameters using Zigbee Wireless Sensor Network", fifth SARC international conference IRF,IEEE forum ISBN 978-93-84209-21-6,pp 24-26, 25th May 2014
- [187] A. C. Pise, P. Bankar, "Face Recognition using Color Local Texture Features", International Conference on Electronics and Telecommunication, Electrical and Computer Engineering, Apr.2014.
- [188] A. C. Pise, et.al. "Monitoring parameters of Greenhouse using Zigbee Wireless Sensor Network", 1st International Conference on Electronics and Telecommunication, Electrical and Computer Engineering, 5-6 Apr.2014.
- [189] A. C. Pise, et. al. "Compensation schemes and performance Analysis of IQ Imbalances in Direct Conversion Receivers", International Conference at GHPCOE, Gujarat, (Online Proceeding is Available), 2009.
- [190] A. C. Pise, K. J. Karande, "Energy-Efficient Optimal Routing Protocols in VANETs", 66th Annual IETE Convention, AIC -2023 September16-17, 2023, under the Theme: The Role of 5G In Enabling Digital Transformation for Rural Upliftment.
- [191] A. C. Pise, et. al. "Automatic Bottle Filling Machine using Raspberry Pi", National Conference on computer ;Communication & information Technology (NCCIT-2018) dated 30th & 31st March 2018.
- [192] A. C. Pise, et. al. "Design & Implementation of ALU using VHDL", National Conference on computer ;Communication & information Technology (NCCIT-2018) dated 30th & 31st March 2018.
- [193] A. C. Pise, et. al. "Mechanism and Control of Autonomus four rotor Quad copter", National Conference on Computer, Electrical and Electronics Engineering, 23- 24 Apr. 2016.
- [194] A. C. Pise, et. al. "Segmentation of Optic Disk and Optic Cup from retinal Images", ICEECMPE Chennai, June 2015
- [195] A. C. Pise, et. al. "Diseases Detection of Pomegranate Plant", IEEE Sponsored International conference on Computation of Power, Energy, April 2015.

International Journal of Advanced Research in Science, Communication and Technology

9001:2015 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- [196] A. C. Pise, et. al. "Compensation Techniques for I/Q Imbalance in Direct-Conversion Receivers", Conference at SCOE, Pune 2010.
- [197] A. C. Pise, et. al. "I/Q Imbalance compensation Techniques in Direct Conversion Receiver", Advancing Trends in Engineering and Management Technologies, ATEMT-2009, Conference at Shri Ramdeobaba Kamla Nehru Engineering College, Nagpur, 20-21 November 2009
- [198] A. C. Pise, et. al. "Compensation Techniques for I/Q Imbalance in Direct Conversion Receiver", Conference at PICT, Pune 2008.
- [199] A. C. Pise, et. al. "I/Q Imbalance compensation Techniques in Direct Conversion Receiver", Conference at DYCOE, Pune 2008.
- [200] A. C. Pise, et. al. "DUCHA: A New Dual channel MAC protocol for Multihop Ad-Hoc Networks", Conference at SVCP, Pune 2007.
- [201] Godase, V., Pawar, P., Nagane, S., & Kumbhar, S. (2024). Automatic railway horn system using node MCU. Journal of Control & Instrumentation, 15(1).
- [202] Godase, V., & Godase, J. (2024). Diet prediction and feature importance of gut microbiome using machine learning. Evolution in Electrical and Electronic Engineering, 5(2), 214-219.
- [203] Jamadade, V. K., Ghodke, M. G., Katakdhond, S. S., & Godase, V. A Comprehensive Review on Scalable Arduino Radar Platform for Real-time Object Detection and Mapping.
- [204] Godase, V. (2025). A comprehensive study of revolutionizing EV charging with solar-powered wireless solutions. Advance Research in Power Electronics and Devices e-ISSN, 3048-7145.
- [205] Godase, V. (2025, April). Advanced Neural Network Models for Optimal Energy Management in Microgrids with Integrated Electric Vehicles. In Proceedings of the International Conference on Trends in Material Science and Inventive Materials (ICTMIM-2025) DVD Part Number: CFP250J1-DVD.
- [206] Dange, R., Attar, E., Ghodake, P., & Godase, V. (2023). Smart agriculture automation using ESP8266 NodeMCU. J. Electron. Comput. Netw. Appl. Math, (35), 1-9.
- [207] Godase, V. (2025). Optimized Algorithm for Face Recognition using Deepface and Multi-task Cascaded Convolutional Network (MTCNN). Optimum Science Journal.
- [208] Mane, V. G. A. L. K., & Gangonda, K. D. S. Pipeline Survey Robot.
- [209] Godase, V. (2025). Navigating the digital battlefield: An in-depth analysis of cyber-attacks and cybercrime. International Journal of Data Science, Bioinformatics and Cyber Security, 1(1), 16-27.
- [210] Godase, V., & Jagadale, A. (2019). Three element control using PLC, PID & SCADA interface. International Journal for Scientific Research & Development, 7(2), 1105-1109.
- [211] Godase, V. (2025). Edge AI for Smart Surveillance: Real-time Human Activity Recognition on Low-power Devices. International Journal of AI and Machine Learning Innovations in Electronics and Communication Technology, 1(1), 29-46.
- [212] Godase, V., Modi, S., Misal, V., & Kulkarni, S. (2025). LoRaEdge-ESP32 synergy: Revolutionizing farm weather data collection with low-power, long-range IoT. Advance Research in Analog and Digital Communications, 2(2),
- [213] Godase, V. (2025). Comparative study of ladder logic and structured text programming for PLC. Available at SSRN 5383802.
- [214] Godase, V., Modi, S., Misal, V., & Kulkarni, S. Real-time object detection for autonomous drone navigation using YOLOv8, I. Advance Research in Communication Engineering and its Innovations, 2(2), 17-27.
- [215] Godase, V. (2025). Smart energy management in manufacturing plants using PLC and SCADA. Advance Research in Power Electronics and Devices, 2(2), 14-24.
- [216] Godase, V. (2025). IoT-MCU Integrated Framework for Field Pond Surveillance and Water Resource Optimization. International Journal of Emerging IoT Technologies in Smart Electronics and Communication, 1(1), 9-19.
- [217] Godase, V. (2025). Graphene-Based Nano-Antennas for Terahertz Communication. International Journal of Digital Electronics and Microprocessor Technology, 1(2), 1-14.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- [218] Godase, V., Khiste, R., & Palimkar, V. (2025). AI-Optimized Reconfigurable Antennas for 6G Communication Systems. Journal of RF and Microwave Communication Technologies, 2(3), 1-12.
- [219] Bhaganagare, S., Chavan, S., Gavali, S., & Godase, V. V. (2025). Voice-Controlled Home Automation with ESP32: A Systematic Review of IoT-Based Solutions. Journal of Microprocessor and Microcontroller Research, 2(3), 1-13.
- [220] Jamadade, V. K., Ghodke, M. G., Katakdhond, S. S., & Godase, V. A Comprehensive Review on Scalable Arduino Radar Platform for Real-time Object Detection and Mapping.
- [221] Godase, V. (2025). Cross-Domain Comparative Analysis of Microwave Imaging Systems for Medical Diagnostics and Industrial Testing. Journal of Microwave Engineering & Technologies, 12(2), 39-48p.
- [222] V. K. Jamadade, M. G. Ghodke, S. S. Katakdhond, and V. Godase, —A Review on Real-time Substation Feeder Power Line Monitoring and Auditing Systems," International Journal of Emerging IoT Technologies in Smart Electronics and Communication, vol. 1, no. 2, pp. 1-16, Sep. 2025.
- [223] V. V. Godase, "VLSI-Integrated Energy Harvesting Architectures for Battery-Free IoT Edge Systems," Journal of Electronics Design and Technology, vol. 2, no. 3, pp. 1-12, Sep. 2025.
- [224] A. Salunkhe et al., "A Review on Real-Time RFID-Based Smart Attendance Systems for Efficient Record Management," Advance Research in Analog and Digital Communications, vol. 2, no. 2, pp.32-46, Aug. 2025.
- [225] Vaibhav, V. G. (2025). A Neuromorphic-Inspired, Low-Power VLSI Architecture for Edge AI in IoT Sensor Nodes. *Journal of Microelectronics and Solid State Devices*, *12*(2), 41-47p.
- [226] Nagane, M.S., Pawar, M.P., & Godase, P.V. (2022). Cinematica Sentiment Analysis. *Journal of Image Processing and Intelligent Remote Sensing*.
- [227] Godase, V.V. (2025). Tools of Research. SSRN Electronic Journal.
- [228] Godase, V. (n.d.). EDUCATION AS EMPOWERMENT: THE KEY TO WOMEN'S SOCIO ECONOMIC DEVELOPMENT. Women Empowerment and Development, 174–179.
- [229] Godase, V. (n.d.). COMPREHENSIVE REVIEW ON EXPLAINABLE AI TO ADDRESSES THE BLACK BOX CHALLENGE AND ITS ROLE IN TRUSTWORTHY SYSTEMS. In Sinhgad College of Engineering, Artificial Intelligence Education and Innovation (pp. 127–132).
- [230] Godase, V. (n.d.-b). REVOLUTIONIZING HEALTHCARE DELIVERY WITH AI-POWERED DIAGNOSTICS: A COMPREHENSIVE REVIEW. In SKN Sinhgad College of Engineering, SKN Sinhgad College of Engineering (pp. 58–61).
- [231] Dhope, V. (2024). SMART PLANT MONITORING SYSTEM. In International Journal of Creative Research Thoughts (IJCRT). https://www.ijcrt.org
- [232] M. M. Zade, Sushant D. Kambale, Shweta A. Mane, Prathamesh M. Jadhav. (2025) "IOT Based early fire detection in Jungles". RIGJA&AR Volume 2 Issue 1, ISSN: 2998-4459. DOI: https://doi.org/10.5281/zendo.15056435
- [233] M. M. Zade, Bramhadev B. Rupanar, Vrushal S. Shilawant, Akansha R. Pawar(2025) "IOT Flood Monitoring & Alerting System using Rasberry Pi-Pico "International Journal of Research Publication & Reviews, Volume 6, Issue 3,ISSN:2582-7421.DOI:https://ijrpr.com/uploads/V6ISSUE3/IJRPR40251.pdf
- [234] M.M.Zade(2022) "Touchless Fingerprint Recognition System" (Paper-ID 907)(2022) International Conference on "Advanced Technologies for Societal Applications: Techno-Societal 2022 https://link.springer.com/book/10.1007/978-3-031-34644-6?page=6
- [235] Mr.M.M.Zade published the paper on "Automation of Color Object Sorting Conveyor Belt", in International Journal of Scientific Research in Engineering & Management (IJSREM), ISSN:2582-3930 Volume 06, Issue 11th November 2022.
- [236] Mr.M.M.Zade published the paper on "Cloud Based Patient Health Record Tracking web Development",in International Journal of Advanced Research in Science, Communication & Technology(IJARSCT),ISSN NO:2581-9429 Volume 02, Issue 03,DOI 1048175/IJARSCT-3705,IF 6.252, May 2022.
- [237] Mr. Mahesh M Zade, "Performance analysis of PSNR Vs. Impulse Noise for the enhancement of Image using SMF", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 4, October 2025

- [238] Mr. Mahesh M Zade, "Classification of Power Quality Disturbances Using SVM & their Efficiency Comparison", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- [239] Mr. Mahesh M Zade, "Dynamic Clustering of Wireless Sensor Network Using Modified AODV", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- [240] Mr. Mahesh M Zade, "Performance analysis of PSNR Vs. Impulse Noise for the enhancement of Image using SMF", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur, Feb.2019
- [241] Mr. Mahesh M Zade, "Classification of Power Quality Disturbances Using SVM & their Efficiency Comparison", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur Feb.2019
- [242] Mr. Mahesh M Zade, "Dynamic Clustering of Wireless Sensor Network Using Modified AODV", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur Feb.2019
- [243] Mr. Mahesh M Zade & Mr.S.M.Karve,"Performance Analysis of Median Filter for Enhancement of Highly Corrupted Images", National Conference on Advanced Trends in Engineering, Association with IRJMS, Karmyogi Engineering College, Shelave, Pandharpur, March 2016.
- [244] Mr. Mahesh M Zade & Mr.S.M.Karve,"Implementation of Reed Solomen Encoder & Decoder Using FPGA", National Conference on Advanced Trends in Engineering, Association with IRJMS, Karmyogi Engineering College, Shelave, Pandharpur, March 2016.
- [245] Mr. Mahesh M Zade & Dr.S.M.Mukane,"Performance of Switching Median Filter for Enhancement of Image", National Conference on Mechatronics at Sinhgad Institute of Technology and Science, Narhe, Pune, Feb. 2016.
- [246] Mr. Mahesh M Zade & Dr.S.M.Mukane, "Enhancement of Image with the help of Switching Median Filter", National Conference on Emerging Trends in Electronics & Telecommunication Engineering, SVERI's College of Engineering Pandharpur, NCET 2013.
- [247] Mr.Mahesh M Zade & Dr.S.M.Mukane,"Enhancement of Image with the help of Switching Median Filter", International Journal of Computer Application (IJCA) SVERI's College of Engineering, Pandharpur, Dec.2013.
- [248] A. O. Mulani, V. Godase, S. Takale, and R. Ghodake, "Secure Image Authentication using AES and DWT Watermarking on Reconfigurable Platform," International Journal of Embedded System and VLSI Design, vol. 1, no. 2, pp. 14-20, Oct. 2025

