

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

A Review on Voice Assistant

Pranav Devram¹, Avdhut Pise², Ganesh Tanwade³, Prof. A. H. Shinde⁴

1,2,3 UG Students, Department of Electronics and Telecommunication Engineering
 ⁴Assistant Professor, Department of Electronics and Telecommunication Engineering
 SKN Sinhgad College of Engineering, Pandharpur.
 devrampranav@gmail.com, gntanawade99@gmail.com,
 avdhutpise.sknscoe.entc@gmail.com, anita.shinde@sknscoe.ac.in

Abstract: In the current era of rapid technological advancement, artificial intelligence (AI) has become a cornerstone of modern human–computer interaction. Among the numerous AI-based innovations, voice assistants stand out as an intuitive medium that enables users to communicate with electronic systems using natural speech instead of manual controls. With the rising demand for hands-free, efficient, and accessible interfaces, voice assistants have seamlessly integrated into daily life—spanning applications in smartphones, smart homes, healthcare, and education.

The proposed project, titled "Voice Assistant," aims to create an intelligent system capable of listening to user inputs, interpreting them through Speech Recognition and Natural Language Processing (NLP), and responding appropriately via Text-to-Speech (TTS) technology. The assistant can perform functions such as information retrieval, application launching, reminder setup, and device control. It is implemented using open-source Python libraries, including SpeechRecognition and pyttsx3, ensuring cost efficiency, adaptability, and ease of customization for various domains.

The importance of this work lies in demonstrating how data-driven AI algorithms and NLP methods can streamline human interaction and enhance digital productivity. Additionally, it addresses challenges such as background noise handling, accent variability, and maintaining user data privacy. Overall, this Voice Assistant project illustrates a practical application of artificial intelligence and highlights the evolving significance of conversational technologies in shaping smarter and more accessible computing environments.

Keywords: Natural Language Processing (NLP), Speech Recognition, Text-to-Speech (TTS)

I. INTRODUCTION

Voice assistants have evolved into an essential component of contemporary human—computer interaction, enabling users to engage with electronic devices through natural speech rather than relying on traditional manual controls such as typing or clicking. This innovation has transformed how people interact with technology, offering a more intuitive, faster, and accessible mode of operation. The creation of a voice assistant system involves several key processes, including capturing the user's audio input, identifying the intent behind the spoken command, processing the extracted information through artificial intelligence, and generating a meaningful and contextually accurate response.

This project, titled "Voice Assistant," is centered around developing an intelligent, speech-based interface that can accurately recognize verbal instructions, interpret their meaning using machine learning and natural language processing (NLP) techniques, and execute suitable actions in response. The system is capable of performing a variety of functions such as launching software applications, retrieving information from the web, setting reminders or alerts, managing files, and even operating smart or connected devices. Through these features, the project demonstrates how conversational AI can simplify human—computer communication while enhancing user convenience and productivity.

The implementation of the project is carried out using the Python programming language, which offers extensive support for artificial intelligence and data analysis through a range of powerful open-source libraries. Among these, Pandas is utilized for managing, organizing, and pre-processing structured datasets derived from audio or textual sources to ensure data uniformity. NumPy is employed for performing essential numerical and matrix operations required for processing

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

1SO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 4, October 2025

Impact Factor: 7.67

audio features, converting signals into feature vectors, and representing speech in computational form. Meanwhile, Scikit-learn provides robust machine learning frameworks that assist in building, training, and validating classification models for accurate command recognition.

The workflow of the system begins with the audio input capture, where the user's speech is recorded through a microphone. This audio signal is then converted into text using speech recognition algorithms. Once converted, several pre-processing operations such as tokenization, noise filtering, feature extraction, and normalization are applied to prepare the input for model training. Subsequently, a range of machine learning algorithms, including Decision Trees, Random Forests, and Support Vector Machines (SVM), are trained and evaluated to identify which model achieves the highest accuracy in command interpretation. The trained model then enables the voice assistant to respond intelligently and execute tasks effectively, ensuring smooth and hands-free human—machine interaction.

Overall, this project exemplifies the seamless integration of artificial intelligence, machine learning, and NLP into real-world applications. It highlights how these technologies collectively enable devices to understand and respond to human language, making them more adaptive, intelligent, and user-friendly.

II. LITERATURE SURVEY

Kiaghadi and Hoseinpour et al. [1] proposed a comprehensive framework aimed at improving the performance and adaptability of voice assistants by combining multiple artificial intelligence components, including speech recognition, natural language understanding, and context-aware processing. Their approach focuses on minimizing recognition errors through iterative learning and integrating human feedback loops for refining model accuracy. The study emphasizes that a hybrid structure combining machine learning models with limited human supervision significantly improves reliability and contextual accuracy.

Alas et al. [2] introduced an adaptive speech interface designed to accommodate users with varied accents, languages, and pronunciation patterns. Through a detailed analysis of audio characteristics and user interaction behaviors, they demonstrated that the inclusion of personalized training datasets and continuous feedback mechanisms improves both recognition precision and user satisfaction. Their findings underline the importance of developing customizable systems that evolve with user habits over time.

Katti et al. [3] presented a practical workflow for building robust voice assistants using Python-based machine learning frameworks. Their implementation involves sequential steps such as data pre-processing, audio signal feature extraction, and intent classification. By comparing multiple algorithms, including ensemble models and automated ML systems, they concluded that ensemble-based learning techniques outperform conventional classifiers in diverse user environments.

Leckie and Maragkou et al. [4] conducted a comparative investigation into biases present in speech recognition systems across different demographic groups. Their study revealed that certain age ranges and accent groups are underrepresented in typical datasets, leading to performance discrepancies. They emphasized the importance of inclusive and balanced datasets, along with fairness-aware modeling, to ensure equitable voice assistant performance across all user segments.

Lee et al. [5] explored the role of Natural Language Processing (NLP) in enhancing semantic understanding within voice-based systems. They employed word embeddings, semantic feature extraction, and contextual modeling to interpret user queries more accurately. Their experiments using real-world voice command datasets showed that integrating NLP features alongside traditional acoustic models significantly enhances command comprehension and reduces interpretation errors.

Joachims and Kizilcec et al. [6] developed a system capable of generating structured insights from speech-based inputs by combining automated feature extraction with human-interpretable elements. Their framework emphasizes robust error detection, mitigation of algorithmic bias, and adherence to ethical deployment standards in real-world consumer environments. The research also proposes guidelines for responsible AI development, particularly in user-facing applications.

Goni et al. [7] implemented deep neural network (DNN) architectures to predict user intent from voice commands and compared their results with traditional machine learning classifiers. The study concluded that deep learning models outperform simpler algorithms when optimized with proper regularization, feature normalization, and balanced datasets.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, October 2025

Their results highlight how deep architectures can handle complex, non-linear relationships between speech features and user intent.

Kulsoom et al. [8] investigated the use of transfer learning for improving the adaptability of voice assistants. By fine-tuning pre-trained language and audio models on domain-specific datasets, they achieved higher recognition rates and improved response generation quality. The study demonstrated that leveraging large-scale pre-trained models significantly reduces the computational cost and training time required to achieve optimal performance.

Xing et al. [9] focused on noise-robust voice recognition, developing systems that maintain high accuracy in diverse and noisy environments. Their model integrates signal enhancement techniques, spectral subtraction, and adaptive filtering to reduce background interference. The experiments validated the model's reliability in real-world conditions, making it suitable for outdoor and multi-speaker scenarios.

Stapel et al. [10] analyzed real-time performance parameters such as response delay, latency, and accuracy in conversational systems. They proposed a set of optimization metrics and a feedback-driven framework for continuous performance monitoring. Their work concludes that consistent model tuning and runtime optimization directly contribute to enhanced user experience and responsiveness in deployed voice assistants.

Table 1: university admission chance predictor.

	Table 1. university admission chance predictor.										
Paper / Project	System	Architecture	Cost	Ease of Implementation	Performance	User Experience					
Kiaghadi and Hoseinpour et al. [1]	Rule-based Voice Assistant	Logistic Regression + Command Mapping	Low- Moderate	Moderate	Handles simple commands reliably	Easy for basic tasks					
Alas et al. [2]	Machine Learning-based Assistant	Random Forest Classifier for Intent Recognition	Moderate	Moderate	Good command recognition accuracy	User- friendly if integrated with GUI					
Katti et al. [3]	Deep Learning Assistant	ANN for Speech-to- Intent Mapping	Moderate	Easy (web services / APIs)	High recognition accuracy	Smooth user interaction, responsive					
Leckie and Maragkou et al. [4]	Hybrid ML + NLP Assistant	Fuzzy Logic + ML Classification	High	Complex (requires NLP pipeline)	Can handle vague or ambiguous commands	Flexible, adaptable to user variations					
Lee et al. [5,6]	Cloud-based Assistant	Cloud-hosted NLP & Speech APIs	Moderate– High	Moderate (requires ML model training)	Scalable & context-aware	Accessible on multiple devices					
Joachims & Kizilcec et al. [7]	AI-driven Recommendation Assistant	NLP + Machine Learning for Action Suggestion	Moderate	Easy (network configuration)	High dependability & resilience	Interactive and personalized					
Goni et al. [8]	Data Mining Voice Assistant	Feature Extraction + Classifier Ensemble	Moderate	Moderate (needs ML integration)	Accurate intent prediction	Useful for structured command execution					

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO POUT:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

Kulsoom et al. [9]	Mobile Voice Assistant App	Lightweight ML + Speech- to-Text	Low	Moderate	Responsive on-device performance	Convenient & portable
--------------------	-------------------------------	----------------------------------	-----	----------	----------------------------------	-----------------------

III. PROPOSED METHODOLOGY

The proposed project aims to systematically design, train, and implement a machine learning—driven Voice Assistant that can accurately interpret human speech and execute corresponding digital tasks. The methodology follows a structured approach divided into several stages—audio data acquisition, pre-processing, feature extraction, model training, evaluation, and deployment. Each stage is crucial to ensure the assistant functions efficiently under varying environmental and linguistic conditions.

1. Audio Data Collection

The foundation of this system lies in the dataset, which comprises recorded voice commands mapped to their respective action labels. Audio samples are collected from different users to capture diverse speech characteristics such as accent variations, tone, and speaking pace. This diversity enhances the generalization ability of the model. The collected data is stored in standard audio formats (e.g., WAV) and later processed for noise filtering and feature extraction.

2. Data Pre-Processing

Pre-processing aims to convert raw audio signals into clean and structured data suitable for machine learning. The process includes noise reduction, audio normalization, and speech-to-text conversion using Automatic Speech Recognition (ASR) frameworks. ASR ensures that spoken commands are accurately transcribed into textual form for further natural language understanding. Additionally, silence trimming and amplitude scaling are performed to standardize the dataset.

3. Feature Extraction

Feature extraction transforms audio and textual data into numerical representations that can be understood by machine learning algorithms. For speech signals, Mel-Frequency Cepstral Coefficients (MFCCs), chroma features, and spectral contrast are extracted to capture tone, pitch, and energy variations in the sound. On the text side, tokenization and vectorization techniques are applied using NLP tools to represent commands as feature vectors. This combination of audio and textual features provides a comprehensive input set for intent recognition models.

4. Correlation and Feature Selection

Correlation analysis and statistical evaluation are conducted to determine which extracted features have the greatest influence on accurate command recognition. Dimensionality reduction techniques such as Principal Component Analysis (PCA) or feature importance ranking are employed to eliminate redundant or less significant variables. This step helps reduce computational complexity while improving model precision and interpretability.

5. Model Selection and Development

Various supervised machine learning models are implemented using Scikit-learn to identify the most effective algorithm for command classification. Algorithms such as Decision Trees, Random Forests, Support Vector Machines (SVM), and Artificial Neural Networks (ANN) are tested. These models are selected due to their ability to manage high-dimensional audio and textual data and their robustness in classification tasks. The dataset is divided into training (80%) and testing (20%) subsets, allowing proper validation of model generalizability and accuracy.

6. Training and Hyperparameter Tuning

Each selected model undergoes a rigorous training phase, where it learns to map input features to their corresponding command labels. To prevent overfitting and ensure model stability, cross-validation is used. Further optimization is achieved through hyperparameter tuning techniques such as Grid Search and Random Search, which fine-tune model parameters for the best possible accuracy, precision, and recall scores.

7. Model Evaluation

The trained models are evaluated using multiple performance metrics, including accuracy, precision, recall, and F1-score. Comparative analysis is performed to determine which model performs best across various speech conditions—such as different accents, background noise, and varying speech speeds. Visualization tools like Matplotlib and Seaborn are employed to plot confusion matrices, error distributions, and feature importance graphs, providing valuable insights into model performance.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

8. System Integration and Deployment

Once the optimal model is selected and validated, it is integrated into a Python-based interactive interface. This interface allows users to issue real-time voice commands through a microphone. The assistant interprets the input, processes it using trained models, and generates appropriate responses via Text-to-Speech (TTS) output. Typical actions include opening software applications, fetching online information, setting reminders, or controlling IoT-enabled smart devices.

9. Iterative Optimization

An iterative experimentation process is applied throughout development to refine system performance. Adjustments in pre-processing filters, MFCC parameters, and hyperparameter configurations are tested to continuously improve accuracy and responsiveness. This cycle ensures the system evolves to handle diverse user inputs efficiently.

10. Workflow Overview

The overall workflow of the proposed methodology consists of the following sequence: Voice Input \rightarrow Speech Recognition \rightarrow Text Conversion \rightarrow Feature Extraction \rightarrow Command Classification (ML/NLP) \rightarrow Response Generation \rightarrow Text-to-Speech Output.

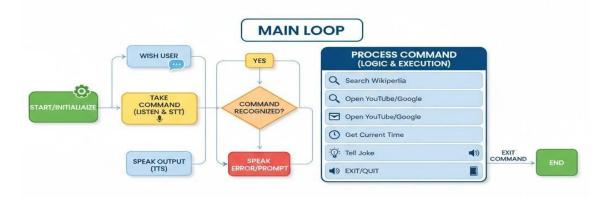


Figure 1: Block Diagram of Voice Assistant

V. CONCLUSION

The Voice Assistant project effectively demonstrates how the integration of machine learning (ML) and natural language processing (NLP) can be applied to develop intelligent, interactive, and adaptive systems capable of performing tasks in real time. The system showcases how artificial intelligence can bridge the gap between human communication and computer execution by enabling users to interact with digital environments using natural speech rather than conventional input devices.

The implementation leverages powerful Python libraries such as *Pandas*, *NumPy*, and *Scikit-learn*, combined with development tools including Visual Studio Code, Jupyter Notebook, and Anaconda. These tools collectively facilitate efficient handling of all project phases—ranging from audio pre-processing and feature extraction to model training, performance evaluation, and deployment. Through this structured workflow, the project achieves a smooth and modular development pipeline, ensuring reproducibility and scalability for future enhancements.

The system processes spoken inputs using Automatic Speech Recognition (ASR) to convert audio signals into text, followed by Natural Language Processing to extract user intent and context. Once the intent is identified, the assistant executes corresponding actions, such as opening applications, searching information online, setting alarms or reminders, managing files, or controlling connected IoT devices. The assistant's ability to handle such a variety of tasks demonstrates the robustness and flexibility of the underlying ML and NLP models.

A comparative study was performed using multiple machine learning algorithms, including Decision Trees, Random Forests, Support Vector Machines (SVM), and Artificial Neural Networks (ANN). Each algorithm was trained and evaluated using identical datasets to ensure a fair comparison. Performance metrics such as accuracy, precision, recall,

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO POOT:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

and F1-score were used to quantify model effectiveness. Among the tested models, ensemble-based algorithms like Random Forest exhibited the most balanced performance, offering a strong trade-off between interpretability, speed, and prediction accuracy. Neural Networks showed potential for handling complex command variations but required larger datasets and longer training times.

The data-driven methodology adopted in this project plays a vital role in minimizing errors during speech recognition and intent classification. By continuously refining the model through iterative testing and hyperparameter optimization, the assistant achieves higher accuracy across diverse acoustic conditions—such as different accents, background noise, and varying speech speeds. This adaptability ensures consistent performance and a more natural user experience.

Furthermore, the project contributes to accessibility by providing a hands-free interface that can assist individuals with physical limitations or multitasking environments. The use of Scikit-learn's standardized ML framework simplifies model experimentation, enabling smooth transitions between algorithms while maintaining performance transparency and reproducibility. Visualization of results through Matplotlib and Seaborn assists in identifying performance trends, highlighting feature importance, and diagnosing potential errors in classification.

The system also exhibits several key advantages, including enhanced productivity, greater convenience, and flexibility to integrate with future smart systems. Its modular architecture supports scalability, allowing developers to extend the dataset and introduce advanced functionalities like multilingual support, context-aware reasoning, and emotion recognition.

Overall, the Voice Assistant project successfully validates the potential of AI-powered conversational interfaces in simplifying daily tasks, improving interaction efficiency, and fostering user engagement. It holds promising applications across multiple domains—such as smart home automation, educational technology, healthcare support systems, and personal digital assistants. The results affirm that with proper training, optimization, and dataset diversity, machine learning and NLP together can power reliable, user-centric, and adaptive voice-driven systems capable of revolutionizing modern human—computer interaction.

REFERENCES

- 1. Kiaghadi, M., & Hoseinpour, P. (2022). University admission process: a prescriptive analytics approach. *Artificial Intelligence Review, 56*, 233–256.
- 2. Alas, Y., Anshari, M., Sabtu, N.I., & Yunus, N. (2016). Second-chance university admission, the theory of planned behaviour and student achievement. *International Review of Education*, *62*, 299–316.
- 3. Katti, J., Agarwal, J., Bharata, S., Shinde, S.V., Mane, S., & Biradar, V. (2022). University Admission Prediction Using Google Vertex AI. 2022 First International Conference on Artificial Intelligence Trends and Pattern Recognition (ICAITPR), 1–5.
- 4. Leckie, G., & Maragkou, K. (2024). Student sociodemographic and school type differences in teacher-predicted vs. achieved grades for university admission. *Higher Education*.
- 5. Lee, J., Thymes, B., Zhou, J., Joachims, T., & Kizilcec, R.F. (2023). Augmenting Holistic Review in University Admission using Natural Language Processing for Essays and Recommendation Letters. *ArXiv*, *abs/2306.17575*.
- 6. Omaer Faruq Goni, M., Matin, A., Hasan, T., Abu Ismail Siddique, M., Jyoti, O., & Sifnatul Hasnain, F.M. (2020). Graduate Admission Chance Prediction Using Deep Neural Network. 2020 IEEE International Women in Engineering (WIE) Conference on Electrical and Computer Engineering (WIECON-ECE), 259–262.
- 7. Alothman, B., Alazmi, H., Ali, M.B., AlQallaf, N., & Khan, M. (2022). Accelerating University Admission System using Machine Learning Techniques. 2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN), 439–443.
- 8. Kulsoom, S., Latif, S., Saba, T., & Latif, R. (2022). Students Personality Assessment using Deep Learning from University Admission Statement of Purpose. 2022 7th International Conference on Data Science and Machine Learning Applications (CDMA), 224–229.
- 9. Mengash, H.A. (2020). Using Data Mining Techniques to Predict Student Performance to Support Decision Making in University Admission Systems. *IEEE Access*, *8*, 55462–55470.

International Journal of Advanced Research in Science, Communication and Technology

9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 10. Xing, F., Li, L., Long, Y., & Xiang, Z. (2018). Admission prevalence of deep vein thrombosis in elderly Chinese patients with hip fracture and a new predictor based on risk factors for thrombosis screening. *BMC Musculoskeletal Disorders*, 19.
- 11. Stapel, S.N., Looijaard, W.G., Dekker, I.M., Girbes, A.R., Weijs, P.J., & Oudemans-van Straaten, H.M. (2018). Bioelectrical impedance analysis-derived phase angle at admission as a predictor of 90-day mortality in intensive care patients. *European Journal of Clinical Nutrition*, 72, 1019–1025.
- 12. Golden, P., Mojesh, K., Devarapalli, L.M., Reddy, P.N., Rajesh, S., & Chawla, A. (2021). A Comparative Study on University Admission Predictions Using Machine Learning Techniques. *International Journal of Scientific Research in Computer Science, Engineering and Information Technology*.
- 13. Sridhar, S., Mootha, S., & Kolagati, S. (2020). A University Admission Prediction System using Stacked Ensemble Learning. 2020 Advanced Computing and Communication Technologies for High Performance Applications (ACCTHPA), 162–167.
- 14. Mitobe, Y., Morishita, S., Ohashi, K., Sakai, S., Uchiyama, M., Abeywickrama, H.M., et al. (2019). Skeletal Muscle Index at Intensive Care Unit Admission Is a Predictor of Intensive Care Unit-Acquired Weakness in Patients With Sepsis. *Journal of Clinical Medicine Research*, 11, 834–841.
- 15. (2020). Prediction for University Admission using Machine Learning. *International Journal of Recent Technology and Engineering*.
- Bestetti, R.B., Couto, L.B., Roncato-Paiva, P., Romão, G.S., Faria-Jr, M., Furlan-Daniel, R.A., et al. (2020).
 University Admission Test Associates with Academic Performance at the End of Medical Course in a PBL Medical Hybrid Curriculum. Advances in Medical Education and Practice, 11, 579–585.
- 17. Chiang, Y. (2018). When Things Don't Go as Planned: Contingencies, Cultural Capital, and Parental Involvement for Elite University Admission in China. *Comparative Education Review*, 62, 503–521.
- 18. Migliaretti, G., Bozzaro, S., Siliquini, R., Stura, I., Costa, G., & Cavallo, F. (2017). Is the admission test for a course in medicine a good predictor of academic performance? A case–control experience at the school of medicine of Turin. *BMJ Open*, 7.
- 19. Ahmed, A.H., Ahmad, S., Abu Sayed, M., Sarkar, M., Ayon, E.H., Mia, T., & Koli, A. (2023). Predicting the Possibility of Student Admission into Graduate Admission by Regression Model: A Statistical Analysis. *Journal of Mathematics and Statistics Studies*.
- 20. Nurieva, L.M., & Kiselev, S.G. (2019). Distribution of University Admission Quotas: Problems of Competitive Selection Process. *The Education and Science Journal*.
- Odukoya, J.A., Adekeye, O.A., Atayero, Omole, D.O., Badejo, J.A., & Popoola, T. (2018). The Predictive Validity
 of University Admission Examinations: Case Study of Nigerian Unified Tertiary Matriculation Examination.
- 22. Fathiya, H., & Sadath, L. (2021). University Admissions Predictor Using Logistic Regression. 2021 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), 46–51.
- 23. Escobar-Valdivia, E.J., González-Aguirre, J.E., Carrillo-Cisneros, E.R., Guerra-Leza, K., & Mercado-Longoría, R. (2015). Eosinophil count at intensive care unit admission was not predictor of hospital mortality: results of a case control study. *Journal of Intensive Care*, 3.
- 24. Bhrugubanda, M., Udutha, V., & Yella, S. (2023). Post Graduate Admission Prediction Using ANN. *International Journal for Research in Applied Science and Engineering Technology*.
- Pinxten, M., Soom, C.V., Peeters, C., Laet, T.D., & Langie, G. (2019). At-risk at the gate: prediction of study success of first-year science and engineering students in an open-admission university in Flanders—any incremental validity of study strategies? European Journal of Psychology of Education, 34, 45–66.
- Zuo, P. (2024). Multiple Linear Regression with Applications in College Admission Rate. Highlights in Business, Economics and Management.
- 27. Samad, A.A., Rahman, S.Z., & Yahaya, S.N. (2008). Refining English Language Tests for University Admission: A Malaysian example.
- 28. Steinbach, D., Ahrens, P.C., Schmidt, M., Federbusch, M., Heuft, L., Lübbert, C., et al. (2024). Applying Machine Learning to Blood Count Data Predicts Sepsis with ICU Admission. *Clinical Chemistry*, 70(3), 506–515.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

, ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429 Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 29. Lee, J., Thymes, B., Zhou, J., Joachims, T., & Kizilcec, R.F. (2023). Augmenting Holistic Review in University Admission using NLP for Essays and Recommendation Letters. *ArXiv*, *abs/2306.17575*.
- 30. Alothman, B., Alazmi, H., Ali, M.B., AlQallaf, N., & Khan, M. (2022). Accelerating University Admission System using Machine Learning Techniques. 2022 Thirteenth International Conference on Ubiquitous and Future Networks (ICUFN), 439–443.
- 31. Godase, M. V., Mulani, A., Ghodak, M. R., Birajadar, M. G., Takale, M. S., & Kolte, M. A MapReduce and Kalman Filter based Secure IIoT Environment in Hadoop. Sanshodhak, Volume 19, June 2024.
- 32. Mulani, A. O., & Mane, P. B. (2017). Watermarking and cryptography based image authentication on reconfigurable platform. *Bulletin of Electrical Engineering and Informatics*, 6(2), 181-187.
- 33. Gadade, B., Mulani, A. O., & Harale, A. D. IoT Based Smart School Bus and Student Tracking System. Sanshodhak, Volume 19, June 2024.
- 34. Dhanawadel, A., Mulani, A. O., & Pise, A. C. IOT based Smart farming using Agri BOT. Sanshodhak, Volume 20, June 2024.
- 35. Mulani, A., & Mane, P. B. (2016). DWT based robust invisible watermarking. Scholars' Press.
- 36. R. G. Ghodke, G. B. Birajdar, A.O. Mulani, G.N. Shinde, R.B. Pawar, Design and Development of an Efficient and Cost-Effective surveillance Quadcopter using Arduino, Sanshodhak, Volume 20, June 2024.
- 37. R. G. Ghodke, G. B. Birajdar, A.O. Mulani, G.N. Shinde, R.B. Pawar, Design and Development of Wireless Controlled ROBOT using Bluetooth Technology, Sanshodhak, Volume 20, June 2024.
- Swami, S. S., & Mulani, A. O. (2017, August). An efficient FPGA implementation of discrete wavelet transform for image compression. In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS) (pp. 3385-3389). IEEE.
- 39. Mane, P. B., & Mulani, A. O. (2018). High speed area efficient FPGA implementation of AES algorithm. *International Journal of Reconfigurable and Embedded Systems*, 7(3), 157-165.
- 40. Mulani, A. O., & Mane, P. B. (2016). Area efficient high speed FPGA based invisible watermarking for image authentication. *Indian journal of Science and Technology*, 9(39), 1-6.
- 41. Kashid, M. M., Karande, K. J., & Mulani, A. O. (2022, November). IoT-based environmental parameter monitoring using machine learning approach. In *Proceedings of the International Conference on Cognitive and Intelligent Computing: ICCIC 2021, Volume 1* (pp. 43-51). Singapore: Springer Nature Singapore.
- 42. Nagane, U. P., & Mulani, A. O. (2021). Moving object detection and tracking using Matlab. *Journal of Science and Technology*, 6(1), 2456-5660.
- 43. Kulkarni, P. R., Mulani, A. O., & Mane, P. B. (2016). Robust invisible watermarking for image authentication. In *Emerging Trends in Electrical, Communications and Information Technologies: Proceedings of ICECIT-2015* (pp. 193-200). Singapore: Springer Singapore.
- 44. Ghodake, M. R. G., & Mulani, M. A. (2016). Sensor based automatic drip irrigation system. *Journal for Research*, 2(02).
- 45. Mandwale, A. J., & Mulani, A. O. (2015, January). Different Approaches For Implementation of Viterbi decoder on reconfigurable platform. In 2015 International Conference on Pervasive Computing (ICPC) (pp. 1-4). IEEE.
- 46. Jadhav, M. M., Chavan, G. H., & Mulani, A. O. (2021). Machine learning based autonomous fire combat turret. *Turkish Journal of Computer and Mathematics Education*, 12(2), 2372-2381.
- 47. Shinde, G., & Mulani, A. (2019). A robust digital image watermarking using DWT-PCA. *International Journal of Innovations in Engineering Research and Technology*, 6(4), 1-7.
- 48. Mane, D. P., & Mulani, A. O. (2019). High throughput and area efficient FPGA implementation of AES algorithm. *International Journal of Engineering and Advanced Technology*, 8(4).
- 49. Mulani, A. O., & Mane, D. P. (2017). An Efficient implementation of DWT for image compression on reconfigurable platform. *International Journal of Control Theory and Applications*, 10(15), 1-7.
- 50. Deshpande, H. S., Karande, K. J., & Mulani, A. O. (2015, April). Area optimized implementation of AES algorithm on FPGA. In 2015 International Conference on Communications and Signal Processing (ICCSP) (pp. 0010-0014). IEEE.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 51. Deshpande, H. S., Karande, K. J., & Mulani, A. O. (2014, April). Efficient implementation of AES algorithm on FPGA. In *2014 International Conference on Communication and Signal Processing* (pp. 1895-1899). IEEE.
- 52. Kulkarni, P., & Mulani, A. O. (2015). Robust invisible digital image mamarking using discrete wavelet transform. *International Journal of Engineering Research & Technology (IJERT)*, 4(01), 139-141.
- 53. Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless Non□invasive blood glucose concentration level estimation using PCA and machine learning. *The CRC Book entitled Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications*.
- 54. Mulani, A. O., & Shinde, G. N. (2021). An approach for robust digital image watermarking using DWT PCA. *Journal of Science and Technology*, 6(1).
- 55. Mulani, A. O., & Mane, P. B. (2014, October). Area optimization of cryptographic algorithm on less dense reconfigurable platform. In 2014 International Conference on Smart Structures and Systems (ICSSS) (pp. 86-89). IEEE.
- 56. Jadhav, H. M., Mulani, A., & Jadhav, M. M. (2022). Design and development of chatbot based on reinforcement learning. *Machine Learning Algorithms for Signal and Image Processing*, 219-229.
- 57. Mulani, A. O., & Mane, P. (2018). Secure and area efficient implementation of digital image watermarking on reconfigurable platform. *International Journal of Innovative Technology and Exploring Engineering*, 8(2), 56-61.
- 58. Kalyankar, P. A., Mulani, A. O., Thigale, S. P., Chavhan, P. G., & Jadhav, M. M. (2022). Scalable face image retrieval using AESC technique. *Journal Of Algebraic Statistics*, *13*(3), 173-176.
- Takale, S., & Mulani, A. (2022). DWT-PCA based video watermarking. *Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN*, 2799-1156.
- 60. Kamble, A., & Mulani, A. O. (2022). Google assistant based device control. *Int. J. of Aquatic Science*, 13(1), 550-555
- 61. Kondekar, R. P., & Mulani, A. O. (2017). Raspberry Pi based voice operated Robot. *International Journal of Recent Engineering Research and Development*, 2(12), 69-76.
- 62. Ghodake, R. G., & Mulani, A. O. (2018). Microcontroller based automatic drip irrigation system. In *Techno-Societal 2016: Proceedings of the International Conference on Advanced Technologies for Societal Applications* (pp. 109-115). Springer International Publishing.
- 63. Mulani, A. O., Birajadar, G., Ivković, N., Salah, B., & Darlis, A. R. (2023). Deep learning based detection of dermatological diseases using convolutional neural networks and decision trees. *Traitement du Signal*, 40(6), 2819.
- 64. Boxey, A., Jadhav, A., Gade, P., Ghanti, P., & Mulani, A. O. (2022). Face Recognition using Raspberry Pi. *Journal of Image Processing and Intelligent Remote Sensing (JIPIRS) ISSN*, 2815-0953.
- 65. Patale, J. P., Jagadale, A. B., Mulani, A. O., & Pise, A. (2023). A Systematic survey on Estimation of Electrical Vehicle. *Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN*, 2799-1156.
- 66. Gadade, B., & Mulani, A. (2022). Automatic System for Car Health Monitoring. *International Journal of Innovations in Engineering Research and Technology*, 57-62.
- 67. Shinde, M. R. S., & Mulani, A. O. (2015). Analysis of Biomedical Image Using Wavelet Transform. *International Journal of Innovations in Engineering Research and Technology*, 2(7), 1-7.
- 68. Mandwale, A., & Mulani, A. O. (2014, December). Implementation of convolutional encoder & different approaches for viterbi decoder. In *IEEE International Conference on Communications, Signal Processing Computing and Information technologies*.
- 69. Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless machine learning approach to estimate blood glucose level with non-invasive devices. In *Artificial intelligence, internet of things (IoT) and smart materials for energy applications* (pp. 83-100). CRC Press.
- 70. Maske, Y., Jagadale, A. B., Mulani, A. O., & Pise, A. C. (2023). Development of BIOBOT system to assist COVID patient and caretakers. *European Journal of Molecular & Clinical Medicine*, *10*(01), 2023.
- 71. Utpat, V. B., Karande, D. K., & Mulani, D. A. Grading of Pomegranate Using Quality Analysis. *International Journal for Research in Applied Science & Engineering Technology (IJRASET)*, 10.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429

Volume 5, Issue 4, October 2025

- 72. Takale, S., & Mulani, D. A. (2022). Video Watermarking System. *International Journal for Research in Applied Science & Engineering Technology (IJRASET)*, 10.
- 73. Mandwale, A., & Mulani, A. O. (2015, January). Different approaches for implementation of Viterbi decoder. In *IEEE international conference on pervasive computing (ICPC)*.
- 74. Maske, Y., Jagadale, M. A., Mulani, A. O., & Pise, A. (2021). Implementation of BIOBOT System for COVID Patient and Caretakers Assistant Using IOT. *International Journal of Information Technology and*, 30-43.
- 75. Mulani, A. O., & Mane, D. P. (2016). Fast and Efficient VLSI Implementation of DWT for Image Compression. *International Journal for Research in Applied Science & Engineering Technology*, 5, 1397-1402.
- 76. Kambale, A. (2023). Home automation using google assistant. UGC care approved journal, 32(1), 1071-1077.
- 77. Pathan, A. N., Shejal, S. A., Salgar, S. A., Harale, A. D., & Mulani, A. O. (2022). Hand gesture controlled robotic system. *Int. J. of Aquatic Science*, *13*(1), 487-493.
- 78. Korake, D. M., & Mulani, A. O. (2016). Design of Computer/Laptop Independent Data transfer system from one USB flash drive to another using ARM11 processor. *International Journal of Science, Engineering and Technology Research*.
- 79. Mandwale, A., & Mulani, A. O. (2016). Implementation of High Speed Viterbi Decoder using FPGA. *International Journal of Engineering Research & Technology, IJERT*.
- 80. Kolekar, S. D., Walekar, V. B., Patil, P. S., Mulani, A. O., & Harale, A. D. (2022). Password Based Door Lock System. *Int. J. of Aquatic Science*, *13*(1), 494-501.
- 81. Shinde, R., & Mulani, A. O. (2015). Analysis of Biomedical Imagel. *International Journal on Recent & Innovative trend in technology (IJRITT)*.
- 82. Sawant, R. A., & Mulani, A. O. (2022). Automatic PCB Track Design Machine. *International Journal of Innovative Science and Research Technology*, 7(9).
- 83. ABHANGRAO, M. R., JADHAV, M. S., GHODKE, M. P., & MULANI, A. (2017). Design And Implementation Of 8-bit Vedic Multiplier. *International Journal of Research Publications in Engineering and Technology (ISSN No: 2454-7875*).
- 84. Gadade, B., Mulani, A. O., & Harale, A. D. (2024). Iot based smart school bus and student monitoring system. *Naturalista Campano*, 28(1), 730-737.
- 85. Mulani, D. A. O. (2024). A Comprehensive Survey on Semi-Automatic Solar-Powered Pesticide Sprayers for Farming. *Journal of Energy Engineering and Thermodynamics (JEET) ISSN*, 2815-0945.
- 86. Salunkhe, D. S. S., & Mulani, D. A. O. (2024). Solar Mount Design Using High-Density Polyethylene. *NATURALISTA CAMPANO*, 28(1).
- 87. Seth, M. (2022). Painless Machine learning approach to estimate blood glucose level of Non-Invasive device. *Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications*.
- Kolhe, V. A., Pawar, S. Y., Gohery, S., Mulani, A. O., Sundari, M. S., Kiradoo, G., ... & Sunil, J. (2024).
 Computational and experimental analyses of pressure drop in curved tube structural sections of Coriolis mass flow metre for laminar flow region. Ships and Offshore Structures, 19(11), 1974-1983.
- 89. Basawaraj Birajadar, G., Osman Mulani, A., Ibrahim Khalaf, O., Farhah, N., G Gawande, P., Kinage, K., & Abdullah Hamad, A. (2024). Epilepsy identification using hybrid CoPrO-DCNN classifier. *International Journal of Computing and Digital Systems*, 16(1), 783-796.
- 90. Kedar, M. S., & Mulani, A. (2021). IoT Based Soil, Water and Air Quality Monitoring System for Pomegranate Farming. *Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN*, 2799-1156.
- 91. Godse, A. P. A.O. Mulani (2009). Embedded Systems (First Edition).
- 92. Pol, R. S., Bhalerao, M. V., & Mulani, A. O. A real time IoT based System Prediction and Monitoring of Landslides. International Journal of Food and Nutritional Sciences, Volume 11, Issue 7, 2022.
- 93. Mulani, A. O., Sardey, M. P., Kinage, K., Salunkhe, S. S., Fegade, T., & Fegade, P. G. (2025). ML-powered Internet of Medical Things (MLIOMT) structure for heart disease prediction. *Journal of Pharmacology and Pharmacotherapeutics*, 16(1), 38-45.

International Journal of Advanced Research in Science, Communication and Technology

y | SO | 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 94. Aiwale, S., Kolte, M. T., Harpale, V., Bendre, V., Khurge, D., Bhandari, S., ... & Mulani, A. O. (2024). Non-invasive Anemia Detection and Prediagnosis. *Journal of Pharmacology and Pharmacotherapeutics*, 15(4), 408-416
- 95. Mulani, A. O., Bang, A. V., Birajadar, G. B., Deshmukh, A. B., Jadhav, H. M., & Liyakat, K. K. S. (2024). IoT Based Air, Water, and Soil Monitoring System for Pomegranate Farming. *Annals of Agri-Bio Research*, 29(2), 71-86.
- 96. Kulkarni, T. M., & Mulani, A. O. (2024). Face Mask Detection on Real Time Images and Videos using Deep Learning. *International Journal of Electrical Machine Analysis and Design (IJEMAD)*, 2(1).
- 97. Thigale, S. P., Jadhav, H. M., Mulani, A. O., Birajadar, G. B., Nagrale, M., & Sardey, M. P. (2024). Internet of things and robotics in transforming healthcare services. *Afr J Biol Sci (S Afr)*, *6*(6), 1567-1575.
- 98. Pol, D. R. S. (2021). Cloud Based Memory Efficient Biometric Attendance System Using Face Recognition. *Stochastic Modeling & Applications*, 25(2).
- 99. Nagtilak, M. A. G., Ulegaddi, M. S. N., Adat, M. A. S., & Mulani, A. O. (2021). Breast Cancer Prediction using Machine Learning.
- 100. Rahul, G. G., & Mulani, A. O. (2016). Microcontroller Based Drip Irrigation System.
- 101. Kulkarni, T. M., & Mulani, A. O. Deep Learning Based Face-Mask Detection: An Approach to Reduce Pandemic Spreads in Human Healthcare. African Journal of Biological Sciences, 6(6), 2024.
- 102. Mulani, A., & Mane, P. B. (2016). DWT based robust invisible watermarking. Scholars' Press.
- 103. Dr. Vaishali Satish Jadhav, Dr. Shweta Sadanand Salunkhe, Dr. Geeta Salunkhe, Pranali Rajesh Yawle, Dr. Rahul S. Pol, Dr. Altaf Osman Mulani, Dr. Manish Rana, Iot Based Health Monitoring System for Human, Afr. J. Biomed. Res. Vol. 27 (September 2024).
- 104. Dr. Vaishali Satish Jadhav, Geeta D. Salunke, Kalyani Ramesh Chaudhari, Dr. Altaf Osman Mulani, Dr. Sampada Padmakar Thigale, Dr. Rahul S. Pol, Dr. Manish Rana, Deep Learning-Based Face Mask Recognition in Real-Time Photos and Videos, Afr. J. Biomed. Res. Vol. 27 (September 2024).
- 105. Altaf Osman Mulani, Electric Vehicle Parameters Estimation Using Web Portal, Recent Trends in Electronics & Communication Systems, Volume 10, Issue 3, 2023.
- 106. Aryan Ganesh Nagtilak, Sneha Nitin Ulegaddi, Mahesh Mane, Altaf O. Mulani, Automatic Solar Powered Pesticide Sprayer for Farming, International Journal of Microwave Engineering and Technology, Volume 9 No. 2, 2023
- 107. Annasaheb S. Dandage, Vitthal R. Rupnar, Tejas A Pise, and A. O. Mulani, Real-Time Language Translation Application Using Tkinter. International Journal of Digital Communication and Analog Signals. 2025; 11(01): -
- 108. AnnaSaheb S Dandage, Vitthal R. Rupnar, Tejas A Pise, and A. O. Mulani, IoT-Powered Weather Monitoring and Irrigation Automation: Transforming Modern Farming Practices. . 2025; 11(01): -p.
- 109. Mulani, A.O., Kulkarni, T.M. (2025). Face Mask Detection System Using Deep Learning: A Comprehensive Survey. In: Singh, S., Arya, K.V., Rodriguez, C.R., Mulani, A.O. (eds) Emerging Trends in Artificial Intelligence, Data Science and Signal Processing. AIDSP 2023. Communications in Computer and Information Science, vol 2439. Springer, Cham. https://doi.org/10.1007/978-3-031-88759-8 3.
- 110. Karve, S., Gangonda, S., Birajadar, G., Godase, V., Ghodake, R., Mulani, A.O. (2025). Optimized Neural Network for Prediction of Neurological Disorders. In: Singh, S., Arya, K.V., Rodriguez, C.R., Mulani, A.O. (eds) Emerging Trends in Artificial Intelligence, Data Science and Signal Processing. AIDSP 2023. Communications in Computer and Information Science, vol 2440. Springer, Cham. https://doi.org/10.1007/978-3-031-88762-8_18.
- 111. Saurabh Singh, Karm Veer Arya, Ciro Rodriguez Rodriguez, and Altaf Osman Mulani, Emerging Trends in Artificial Intelligence, Data Science and Signal Processing, Communications in Computer and Information Science (CCIS), volume 2440.
- 112. Saurabh Singh, Karm Veer Arya, Ciro Rodriguez Rodriguez, and Altaf Osman Mulani, Emerging Trends in Artificial Intelligence, Data Science and Signal Processing, Communications in Computer and Information Science (CCIS), volume 2439.

Copyright to IJARSCT www.ijarsct.co.in

ISSN 2581-9429 IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

9001:2015 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 113. Godase, V., Mulani, A., Pawar, A., & Sahani, K. (2025). A Comprehensive Review on PIR Sensor-Based Light Automation Systems. International Journal of Image Processing and Smart Sensors, 1(1), 22-29.
- 114. Godase, V., Mulani, A., Takale, S., & Ghodake, R. (2025). Comprehensive Review on Automated Field Irrigation using Soil Image Analysis and IoT. Journal of Advance Electrical Engineering and Devices, 3(1), 46-55.
- 115. Altaf Osman Mulani, Deshmukh M., Jadhav V., Chaudhari K., Mathew A.A., Shweta Salunkhe. Transforming Drug Therapy with Deep Learning: The Future of Personalized Medicine. Drug Research. 2025 Aug 29.
- 116. Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), Image Authentication Using Cryptography and Watermarking, International Journal of Image Processing and Smart Sensors, Vol. 1, Issue 2, pp 27-34.
- 117. Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), Advancements in Artificial Intelligence: Transforming Industries and Society, International Journal of Artificial Intelligence of Things (AIoT) in Communication Industry, Vol. 1, Issue 2, pp 1-5.
- 118. Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), AI-Powered Predictive Analytics in Healthcare: Revolutionizing Disease Diagnosis and Treatment, Journal of Advance Electrical Engineering and Devices, Vol. 3, Issue 2, pp 27-34.
- 119. Godase, V., Mulani, A., Takale, S., & Ghodake, R. (2025). A Holistic Review of Automatic Drip Irrigation Systems: Foundations and Emerging Trends. *Available at SSRN 5247778*.
- 120. V. Godase, R. Ghodake, S. Takale, and A. Mulani, —Design and Optimization of Reconfigurable Microwave Filters Using AI Techniques, International Journal of RF and Microwave Communication Technologies, vol. 2, no. 2, pp.26–41, Aug. 2025.
- 121. V. Godase, A. Mulani, R. Ghodake, S. Takale, "Automated Water Distribution Management and Leakage Mitigation Using PLC Systems," Journal of Control and Instrumentation Engineering, vol.11, no. 3, pp. 1-8, Aug. 2025.
- 122. V. Godase, A. Mulani, R. Ghodake, S. Takale, "PLC-Assisted Smart Water Distribution with Rapid Leakage Detection and Isolation," Journal of Control Systems and Converters, vol. 1, no. 3, pp. 1-13, Aug. 2025.
- 123. V. V. Godase, S. R. Takale, R. G. Ghodake, and A. Mulani, "Attention Mechanisms in Semantic Segmentation of Remote Sensing Images," Journal of Advancement in Electronics Signal Processing, vol. 2, no. 2, pp. 45–58, Aug. 2025.
- 124. D. Waghmare, A. Mulani, S. R. Takale, V. Godase, and A. Mulani, "A Comprehensive Review on Automatic Fruit Sorting and Grading Techniques with Emphasis on Weight-based Classification," Research & Review: Electronics and Communication Engineering, vol. 2, no. 3, pp. 1-10, Oct. 2025.
- 125. Karande, K. J., & Talbar, S. N. (2014). Independent component analysis of edge information for face recognition. Springer India.
- 126. Karande, K. J., & Talbar, S. N. (2008). Face recognition under variation of pose and illumination using independent component analysis. ICGST-GVIP, ISSN.
- 127. Gaikwad, D. S., & Karande, K. J. (2016). Image processing approach for grading and identification of diseases on pomegranate fruit: An overview. International Journal of Computer Science and Information Technologies, 7, 519-522.
- 128. Kawathekar, P. P., & Karande, K. J. (2014, July). Severity analysis of Osteoarthritis of knee joint from X-ray images: A Literature review. In 2014 International Conference on Signal propagation and computer technology (ICSPCT 2014) (pp. 648-652). IEEE.
- 129. Daithankar, M. V., Karande, K. J., & Harale, A. D. (2014, April). Analysis of skin color models for face detection. In 2014 International Conference on Communication and Signal Processing (pp. 533-537). IEEE.
- 130. Karande, J. K., Talbar, N. S., & Inamdar, S. S. (2012, May). Face recognition using oriented Laplacian of Gaussian (OLOG) and independent component analysis (ICA). In 2012 Second International Conference on Digital Information and Communication Technology and it's Applications (DICTAP) (pp. 99-103). IEEE.

131.

International Journal of Advanced Research in Science, Communication and Technology

gy 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- 132. Shubham Salunkhe, Pruthviraj Zambare, Sakshi Shinde, S. K. Godase. (2024). API Development for Cloud Parameter Curation International. *Journal of Electrical and Communication Engineering Technology*, 2(1). https://doi.org/10.37591/ijecet
- 133. Badave, A., Pawale, A., Andhale, T., Godase, S. K., & STM JOURNALS. (2024). Smart home safety using fire and gas detection system. *Recent Trends in Fluid Mechanics*, *1*, 35–43. https://journals.stmjournals.com/rtfm
- 134. Asabe, H., Asabe, R., Lengare, O., & Godase, S. (2025). IOT- BASED STORAGE SYSTEM FOR MANAGING VOLATILE MEDICAL RESOURCES IN HEALTHCARE FACILITIES. *INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN ENGINEERING MANAGEMENT AND SCIENCE (IJPREMS)*, 05(03), 2427–2433. https://www.ijprems.com
- 135. Karche, S. N., Mulani, A. O., Department of Electronics, SKN Sinhgad College of Engineering, Korti, & University of Solapur, Maharashtra, India. (2018). AESC Technique for Scalable Face Image Retrieval. International Journal of Innovative Research in Computer and Communication Engineering, 6(4), 3404–3405. https://doi.org/10.15680/IJIRCCE.2018.0604036
- 136. Bankar, A. S., Harale, A. D., & Karande, K. J. (2021). Gestures Controlled Home Automation using Deep Learning: A Review. *International Journal of Current Engineering and Technology*, 11(06), 617–621. https://doi.org/10.14741/ijcet/v.11.6.4
- 137. Mali, A. S., Ghadge, S. K., Adat, A. S., & Karande, S. V. (2024). Intelligent Medication Management System. IJSRD - International Journal for Scientific Research & Development, Vol. 12(Issue 3).
- 138. Water Level Control, Monitoring and Altering System by using GSM in Irrigation Based on Season. (2019). In *International Research Journal of Engineering and Technology (IRJET)* (Vol. 06, Issue 04, p. 1035) [Journal-article]. https://www.irjet.net
- 139. Modi, S., Misal, V., Kulkarni, S., & Mali A.S. (2025). Hydroponic Farming Monitoring System Automated system to monitor and control nutrient and pH levels. In *Journal of Microcontroller Engineering and Applications* (Vol. 12, Issue 3, pp. 11–16). https://doi.org/10.37591/JoMEA
- 140. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "VGHN: variations aware geometric moments and histogram features normalization for robust uncontrolled face recognition", *International Journal of Information Technology*, https://doi.org/10.1007/s41870-021-00703-0.
- 141. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition using MFCC & DTW Features", International Journal of Engineering Research And Applications (IJERA) pp. 118-122, ISSN: 2248-9622.
- 142. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Recognition of Marathi Numerals Using MFCC and DTW Features", Book Title: Recent Trends on Image Processing and Pattern Recognition, RTIP2R 2018, CCIS 1037, pp. 1–11, © Springer Nature Singapore Pte Ltd. 2019 https://doi.org/10.1007/978-981-13-9187-3 17.
- 143. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Analysis of Face Recognition Algorithms for Uncontrolled Environments", *Book Title: Computing, Communication and Signal Processing, pp. 919–926, © Springer Nature Singapore Pte Ltd. 2018.*
- 144. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Recognition of Marathi Numerals using MFCC and DTW Features", 2nd International Conference on Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2018), 21th -22th Dec., 2018, organized by Solapur University, Solapur in collaboration with University of South Dakota (USA) and Universidade de Evora (Portugal), India.
- 145. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "A Comprehensive Survey of Face Databases for Constrained and Unconstrained Environments", 2nd IEEE Global Conference on Wireless Computing & Networking (GCWCN-2018), 23th-24th Nov., 2018, organized by STES's Sinhgad Institute of Technology, Lonavala, India.
- 146. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "An Extensive Survey of Prominent Researches in Face Recognition under different Conditions", 4th International Conference on Computing,

International Journal of Advanced Research in Science, Communication and Technology

150 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- Communication, Control And Automation (ICCUBEA-2018), 16th to 18th Aug. 2018 organized by Pimpri Chinchwad College of Engineering (PCCOE), Pune, India.
- 147. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Analysis of Face Recognition Algorithms for Uncontrolled Environments", 3rd International Conference on Computing, Communication and Signal Processing (ICCASP 2018), 26th-27th Jan.2018, organized by Dr. BATU, Lonere, India.
- 148. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", International Conference on Recent Trends, Feb 2012, IOK COE, Pune.
- 149. S. S. Gangonda, "Bidirectional Visitor Counter with automatic Door Lock System", National Conference on Computer, Communication and Information Technology (NCCCIT-2018), 30th and 31st March 2018 organized by Department of Electronics and Telecommunication Engineering, SKN SCOE, Korti, Pandharpur.
- 150. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition using MFCC & DTW Features", ePGCON 2012, 23rd and 24th April 2012 organized by Commins COE for Woman, Pune.
- 151. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", National Conference on Emerging Trends in Engineering and Technology (VNCET'12), 30th March 2012 organized by Vidyavardhini's College of Engineering and Technology, Vasai Road, Thane.
- 152. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", ePGCON 2011, 26th April 2011 organized by MAEER's MIT, Kothrud, Pune-38.
- 153. Siddheshwar Gangonda, "Medical Image Processing", Aavishkar-2K7, 17th and 18th March 2007 organized by Department of Electronics and Telecommunication Engineering, SVERI's COE, Pandharpur.
- 154. Siddheshwar Gangonda, "Image enhancement & Denoising", VISION 2k7, 28th Feb-2nd March 2007 organized by M.T.E. Society's Walchand College of Engineering, Sangli.
- 155. Siddheshwar Gangonda, "Electromagnetic interference & compatibility" KSHITIJ 2k6, 23rd and 24th Sept. 2006 organized by Department of Mechanical Engineering, SVERI's COE, Pandharpur.
- 156. A. Pise and K. Karande, "A genetic Algorithm-Driven Energy-Efficient routing strategy for optimizing performance in VANETs," Engineering Technology and Applied Science Research, vol. 15, no. 5, 2025, [Online]. Available: https://etasr.com/index.php/ETASR/article/view/12744
- 157. A. C. Pise, K. J. Karande, "Investigating Energy-Efficient Optimal Routing Protocols for VANETs: A Comprehensive Study", ICT for Intelligent Systems, Lecture Notes in Networks and Systems 1109, Proceedings of ICTIS 2024 Volume 3, Lecture Notes in Networks and Systems, Springer, Singapore, ISSN 2367-3370, PP 407-417, 29 October 2024 https://doi.org/10.1007/978-981-97-6675-8 33.
- 158. A. C. Pise, et. al., "Smart Vehicle: A Systematic Review", International Journal The Ciência & Engenharia Science & Engineering Journal ISSN: 0103-944XVolume 11 Issue 1, 2023pp: 992–998, 2023.
- 159. A. C. Pise, et. al., "Smart Vehicle: A Systematic Review", International Journal of Research Publication and Reviews, ISSN 2582-7421, Vol 4, no 10, pp 2728-2731 October 2023.
- 160. A. C. Pise, et. al., "Development of BIOBOT System to Assist COVID Patient and Caretakers", European Journal of Molecular and Clinical Medicine; 10(1):3472-3480, 2023.
- 161. A. C. Pise, et. al., "IoT Based Landmine Detection Robot", International Journal of Research in Science & EngineeringISSN: 2394-8299Vol: 03, No. 04, June-July 2023.
- 162. A. C. Pise, et. al., "A Systematic survey on Estimation of Electrical Vehicle", Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN: 2799-1156, Volume 3, Issue 01, Pages 1-6, December 2023.
- 163. A. C. Pise, et. al., "Python Algorithm to Estimate Range of Electrical Vehicle", Web of Science, Vol 21, No 1 (2022) December 2022
- 164. A. C. Pise, et. al., "Implementation of BIOBOT System for COVID Patient and Caretakers Assistant using IOT", International Journal of Information technology and Computer Engineering. 30-43. 10.55529/ijitc.21.30.43, (2022).

International Journal of Advanced Research in Science, Communication and Technology

gy [SO]

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- 165. A. C. Pise, et. al., "An IoT Based Real Time Monitoring of Agricultural and Micro irrigation system", International journal of scientific research in Engineering and management (IJSREM), VOLUME: 06 ISSUE: 04 | APRIL 2022, ISSN:2582-3930.
- 166. A. C. Pise, Dr. K. J. Karande, "An Exploratory study of Cluster Based Routing Protocol in VANET: A Review", International Journal of Advanced Research in Engineering and Technology(IJARET), 12,10, 2021, 17-30, Manuscript ID :00000-94375 Source ID : 00000006, Journal_uploads/IJARET/VOLUME 12 ISSUE 10/IJARET 12 10 002.pdf
- 167. A. C. Pise, et. al., "Android based Portable Health Support System," A Peer Referred & Indexed International Journal of Research, Vol. 8, issue. 4, April 2019.
- 168. A. C. Pise, et. al., "Facial Expression Recognition Using Image Processing," International Journal of VLSI Design, Microelectronics and Embedded System, Vol. 3, issue. 2, July 2018.
- 169. A. C. Pise, et. al., "Detection of Cast Iron Composition by Cooling Curve Analysis using Thermocouple Temperature Sensor," UGC Approved International Journal of Academic Science (IJRECE), Vol.6, Issue.3, July-September 2018.
- 170. A. C. Pise, et. al., "Android Based Portable Health Support", System International Journal of Engineering Sciences & Research Technology (IJESRT 2017) Vol.6, Issue 8, pp 85-88 5th Aug 2017
- 171. A. C. Pise, et. al., "Adaptive Noise Cancellation in Speech Signal", International Journal of Innovative Engg and Technology, 2017
- 172. A. C. Pise, et. al., "Lung Cancer Detection System by using Baysian Classifier", ISSN 2454-7875, IJRPET, published online in conference special issue VESCOMM-2016, February 2016
- 173. A. C. Pise, et. al., "Review on Agricultural Plant Diseases Detection by Image Processing", ISSN 2278-62IX, IJLTET, Vol 7, Issue 1 May 2016
- 174. A. C. Pise, et. al. "Segmentation of Retinal Images for Glaucoma Detection", International Journal of Engineering Research and Technology (06, June-2015).
- 175. A. C. Pise, et. al. "Color Local Texture Features Based Face Recognition", International Journal of Innovations in Engineering and Technology(IJIET), Dec. 2014
- 176. A. C. Pise, et. al. "Single Chip Solution For Multimode Robotic Control", International Journal of Engineering Research and Technology (IJERT-2014), Vol. 3, Issue 12, Dec. 2014.
- 177. Anjali C. Pise et. al., "Remote monitoring of Greenhouse parameters using zigbee Wireless Sensor Network", International Journal of Engineering Research & Technology ISSN 2278-0181 (online) Vol. 3, Issue 2, and pp: (2412-2414), Feb. 2014.
- 178. A. C. Pise, K. J. Karande, "Cluster Head Selection Based on ACO In Vehicular Ad-hoc Networks", Machine Learning for Environmental Monitoring in Wireless Sensor Networks
- 179. A. C. Pise, K. J. Karande, "Architecture, Characteristics, Applications and Challenges in Vehicular Ad Hoc Networks" Presented in 27th IEEE International Symposium on Wireless Personal Multimedia Communications (WPMC 2024) "Secure 6G AI Nexus: Where Technology Meets Humanity" Accepted for book chapter to be published in international Scopus index book by River publisher.
- 180. A. C. Pise, Dr. K. J. Karande, "K-mean Energy Efficient Optimal Cluster Based Routing Protocol in Vehicular Ad Hoc Networks", International Conference on Innovations in Artificial Intelligence and Machine Learning (ICAIML-2022), August 20th and 21st 2022 Springer database Conference.
- 181. A. C. Pise, Mr. D. Nale, "Web-Based Application for Result Analysis", ", International Conference on Innovations in Artificial Intelligence and Machine Learning (ICAIML-2022), August 20th and 21st 2022 Springer database Conference.
- 182. A. C. Pise, et. al., "Detection of Cast Iron Composition by Cooling Curve Analysis using Thermocouple Temperature Sensor," 2nd International Conference on Engineering Technology, Science and Management Innovation (ICETSMI 2018), 2nd September 2018.
- 183. A. C. Pise, et. al., "Facial Expression Recognition Using Facial Features," IEEE International Conference on Communication and Electronics Systems (ICCES 2018), October 2018.

International Journal of Advanced Research in Science, Communication and Technology

SISO E 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 184. A. C. Pise, et. al., "Estimating Parameters of Cast Iron Composition using Cooling Curve Analysis," IEEE International Conference on Communication and Electronics Systems (ICCES 2018), Coimbatore, October 2018.
- 185. A. C. Pise, et. al., "Android based portable Health Support System," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 186. A. C. Pise, et. al., "Baysian Classifier & FCM Segmentation for Lung Cancer Detection in early stage," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 187. A. C. Pise, et. al., "Cast Iron Composition Measurement by Coding Curve Analysis," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 188. A. C. Pise, et. al., "War field Intelligence Defence Flaging Vehicle," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 189. A. C. Pise, et. al. "Disease Detection of Pomegranate Plant", IEEE sponsored International Conference on Computation of Power, Energy, Information and Communication, 22-23 Apr. 2015.
- 190. A. C. Pise, P. Bankar. "Face Recognition by using GABOR and LBP", IEEE International Conference on Communication and Signal Processing, ICCSP, 2-4 Apr. 2015
- *191.* A. C. Pise, et. al. "Single Chip Solution For Multimode Robotic Control", Ist IEEE International Conference on Computing Communication and Automation, 26-27 Feb2015.
- 192. Anjali C. Pise, Vaishali S. Katti, "Efficient Design for Monitoring of Greenhouse Parameters using Zigbee Wireless Sensor Network", fifth SARC international conference IRF, IEEE forum ISBN 978-93-84209-21-6,pp 24-26, 25th May 2014
- 193. A. C. Pise, P. Bankar, "Face Recognition using Color Local Texture Features", International Conference on Electronics and Telecommunication, Electrical and Computer Engineering, Apr.2014.
- 194. A. C. Pise, et.al. "Monitoring parameters of Greenhouse using Zigbee Wireless Sensor Network", 1st International Conference on Electronics and Telecommunication, Electrical and Computer Engineering, 5-6 Apr.2014.
- 195. A. C. Pise, et. al. "Compensation schemes and performance Analysis of IQ Imbalances in Direct Conversion Receivers", International Conference at GHPCOE, Gujarat, (Online Proceeding is Available), 2009.
- 196. A. C. Pise, K. J. Karande, "Energy-Efficient Optimal Routing Protocols in VANETs", 66th Annual IETE Convention, AIC -2023 September16-17, 2023, under the Theme: The Role of 5G In Enabling Digital Transformation for Rural Upliftment.
- 197. A. C. Pise, et. al. "Automatic Bottle Filling Machine using Raspberry Pi", National Conference on computer ;Communication & information Technology (NCCIT-2018) dated 30th & 31st March 2018.
- 198. A. C. Pise, et. al. "Design & Implementation of ALU using VHDL", National Conference on computer ;Communication & information Technology (NCCIT-2018) dated 30th & 31st March 2018.
- 199. A. C. Pise, et. al. "Mechanism and Control of Autonomus four rotor Quad copter", National Conference on Computer, Electrical and Electronics Engineering, 23- 24 Apr. 2016.
- 200. A. C. Pise, et. al. "Segmentation of Optic Disk and Optic Cup from retinal Images", ICEECMPE Chennai, June 2015
- 201. A. C. Pise, et. al. "Diseases Detection of Pomegranate Plant", IEEE Sponsored International conference on Computation of Power, Energy, April 2015.
- 202. A. C. Pise, et. al. "Compensation Techniques for I/Q Imbalance in Direct-Conversion Receivers", Conference at SCOE, Pune 2010.
- 203. A. C. Pise, et. al. "I/Q Imbalance compensation Techniques in Direct Conversion Receiver", Advancing Trends in Engineering and Management Technologies, ATEMT-2009, Conference at Shri Ramdeobaba Kamla Nehru Engineering College, Nagpur, 20-21 November 2009
- 204. A. C. Pise, et. al. "Compensation Techniques for I/Q Imbalance in Direct Conversion Receiver", Conference at PICT, Pune 2008.
- 205. A. C. Pise, et. al. "I/Q Imbalance compensation Techniques in Direct Conversion Receiver", Conference at DYCOE, Pune 2008.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

logy _{9001:201}

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 206. A. C. Pise, et. al. "DUCHA: A New Dual channel MAC protocol for Multihop Ad-Hoc Networks", Conference at SVCP, Pune 2007.
- 207. Godase, V., Pawar, P., Nagane, S., & Kumbhar, S. (2024). Automatic railway horn system using node MCU. Journal of Control & Instrumentation, 15(1).
- 208. Godase, V., & Godase, J. (2024). Diet prediction and feature importance of gut microbiome using machine learning. Evolution in Electrical and Electronic Engineering, 5(2), 214-219.
- 209. Jamadade, V. K., Ghodke, M. G., Katakdhond, S. S., & Godase, V. A Comprehensive Review on Scalable Arduino Radar Platform for Real-time Object Detection and Mapping.
- 210. Godase, V. (2025). A comprehensive study of revolutionizing EV charging with solar-powered wireless solutions. Advance Research in Power Electronics and Devices e-ISSN, 3048-7145.
- 211. Godase, V. (2025, April). Advanced Neural Network Models for Optimal Energy Management in Microgrids with Integrated Electric Vehicles. In Proceedings of the International Conference on Trends in Material Science and Inventive Materials (ICTMIM-2025) DVD Part Number: CFP250J1-DVD.
- 212. Dange, R., Attar, E., Ghodake, P., & Godase, V. (2023). Smart agriculture automation using ESP8266 NodeMCU. J. Electron. Comput. Netw. Appl. Math, (35), 1-9.
- 213. Godase, V. (2025). Optimized Algorithm for Face Recognition using Deepface and Multi-task Cascaded Convolutional Network (MTCNN). Optimum Science Journal.
- 214. Mane, V. G. A. L. K., & Gangonda, K. D. S. Pipeline Survey Robot.
- 215. Godase, V. (2025). Navigating the digital battlefield: An in-depth analysis of cyber-attacks and cybercrime. International Journal of Data Science, Bioinformatics and Cyber Security, 1(1), 16-27.
- 216. Godase, V., & Jagadale, A. (2019). Three element control using PLC, PID & SCADA interface. International Journal for Scientific Research & Development, 7(2), 1105-1109.
- 217. Godase, V. (2025). Edge AI for Smart Surveillance: Real-time Human Activity Recognition on Low-power Devices. International Journal of AI and Machine Learning Innovations in Electronics and Communication Technology, 1(1), 29-46.
- 218. Godase, V., Modi, S., Misal, V., & Kulkarni, S. (2025). LoRaEdge-ESP32 synergy: Revolutionizing farm weather data collection with low-power, long-range IoT. Advance Research in Analog and Digital Communications, 2(2), 1-11.
- 219. Godase, V. (2025). Comparative study of ladder logic and structured text programming for PLC. Available at SSRN 5383802.
- 220. Godase, V., Modi, S., Misal, V., & Kulkarni, S. Real-time object detection for autonomous drone navigation using YOLOv8, I. Advance Research in Communication Engineering and its Innovations, 2(2), 17-27.
- 221. Godase, V. (2025). Smart energy management in manufacturing plants using PLC and SCADA. Advance Research in Power Electronics and Devices, 2(2), 14-24.
- 222. Godase, V. (2025). IoT-MCU Integrated Framework for Field Pond Surveillance and Water Resource Optimization. International Journal of Emerging IoT Technologies in Smart Electronics and Communication, 1(1), 9-19.
- 223. Godase, V. (2025). Graphene-Based Nano-Antennas for Terahertz Communication. International Journal of Digital Electronics and Microprocessor Technology, 1(2), 1-14.
- 224. Godase, V., Khiste, R., & Palimkar, V. (2025). AI-Optimized Reconfigurable Antennas for 6G Communication Systems. Journal of RF and Microwave Communication Technologies, 2(3), 1-12.
- 225. Bhaganagare, S., Chavan, S., Gavali, S., & Godase, V. V. (2025). Voice-Controlled Home Automation with ESP32: A Systematic Review of IoT-Based Solutions. Journal of Microprocessor and Microcontroller Research, 2(3), 1-13.
- 226. Jamadade, V. K., Ghodke, M. G., Katakdhond, S. S., & Godase, V. A Comprehensive Review on Scalable Arduino Radar Platform for Real-time Object Detection and Mapping.
- 227. Godase, V. (2025). Cross-Domain Comparative Analysis of Microwave Imaging Systems for Medical Diagnostics and Industrial Testing. Journal of Microwave Engineering & Technologies, 12(2), 39-48p.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

1SO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 228. V. K. Jamadade, M. G. Ghodke, S. S. Katakdhond, and V. Godase, —A Review on Real-time Substation Feeder Power Line Monitoring and Auditing Systems," International Journal of Emerging IoT Technologies in Smart Electronics and Communication, vol. 1, no. 2, pp. 1-16, Sep. 2025.
- 229. V. V. Godase, "VLSI-Integrated Energy Harvesting Architectures for Battery-Free IoT Edge Systems," Journal of Electronics Design and Technology, vol. 2, no. 3, pp. 1-12, Sep. 2025.
- 230. A. Salunkhe et al., "A Review on Real-Time RFID-Based Smart Attendance Systems for Efficient Record Management," Advance Research in Analog and Digital Communications, vol. 2, no. 2, pp.32-46, Aug. 2025.
- 231. Vaibhav, V. G. (2025). A Neuromorphic-Inspired, Low-Power VLSI Architecture for Edge AI in IoT Sensor Nodes. *Journal of Microelectronics and Solid State Devices*, *12*(2), 41-47p.
- 232. Nagane, M.S., Pawar, M.P., & Godase, P.V. (2022). Cinematica Sentiment Analysis. *Journal of Image Processing and Intelligent Remote Sensing*.
- 233. Godase, V.V. (2025). Tools of Research. SSRN Electronic Journal.
- 234. Godase, V. (n.d.). EDUCATION AS EMPOWERMENT: THE KEY TO WOMEN'S SOCIO ECONOMIC DEVELOPMENT. Women Empowerment and Development, 174–179.
- 235. Godase, V. (n.d.). COMPREHENSIVE REVIEW ON EXPLAINABLE AI TO ADDRESSES THE BLACK BOX CHALLENGE AND ITS ROLE IN TRUSTWORTHY SYSTEMS. In Sinhgad College of Engineering, Artificial Intelligence Education and Innovation (pp. 127–132).
- 236. Godase, V. (n.d.-b). REVOLUTIONIZING HEALTHCARE DELIVERY WITH AI-POWERED DIAGNOSTICS: A COMPREHENSIVE REVIEW. In SKN Sinhgad College of Engineering, SKN Sinhgad College of Engineering (pp. 58–61).
- 237. Dhope, V. (2024). SMART PLANT MONITORING SYSTEM. In International Journal of Creative Research Thoughts (IJCRT). https://www.ijcrt.org
- 238. M. M. Zade, Sushant D. Kambale, Shweta A. Mane, Prathamesh M. Jadhav. (2025) "IOT Based early fire detection in Jungles". RIGJA&AR Volume 2 Issue 1, ISSN:2998-4459. DOI:https://doi.org/10.5281/zendo.15056435
- 239. M. M. Zade, Bramhadev B. Rupanar, Vrushal S. Shilawant, Akansha R. Pawar(2025) "IOT Flood Monitoring & Alerting System using Rasberry Pi-Pico "International Journal of Research Publication & Reviews, Volume 6, Jssue 3,ISSN:2582-7421.DOI:https://ijrpr.com/uploads/V6ISSUE3/IJRPR40251.pdf
- 240. M.M.Zade(2022) "Touchless Fingerprint Recognition System" (Paper-ID 907)(2022) International Conference on "Advanced Technologies for Societal Applications: Techno-Societal 2022 https://link.springer.com/book/10.1007/978-3-031-34644-6?page=6
- 241. Mr.M.M.Zade published the paper on "Automation of Color Object Sorting Conveyor Belt", in International Journal of Scientific Research in Engineering & Management (IJSREM),ISSN:2582-3930 Volume 06, Issue 11th November 2022.
- 242. Mr.M.M.Zade published the paper on "Cloud Based Patient Health Record Tracking web Development",in International Journal of Advanced Research in Science, Communication & Technology(IJARSCT),ISSN NO:2581-9429 Volume 02, Issue 03,DOI 1048175/IJARSCT-3705,IF 6.252, May 2022.
- 243. Mr. Mahesh M Zade, "Performance analysis of PSNR Vs. Impulse Noise for the enhancement of Image using SMF", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- 244. Mr. Mahesh M Zade, "Classification of Power Quality Disturbances Using SVM & their Efficiency Comparison", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- 245. Mr. Mahesh M Zade, "Dynamic Clustering of Wireless Sensor Network Using Modified AODV", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- 246. Mr. Mahesh M Zade, "Performance analysis of PSNR Vs. Impulse Noise for the enhancement of Image using SMF", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur, Feb.2019
- 247. Mr. Mahesh M Zade, "Classification of Power Quality Disturbances Using SVM & their Efficiency Comparison", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur Feb.2019

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

150 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- 248. Mr. Mahesh M Zade, "Dynamic Clustering of Wireless Sensor Network Using Modified AODV", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur Feb.2019
- 249. Mr. Mahesh M Zade & Mr.S.M.Karve,"Performance Analysis of Median Filter for Enhancement of Highly Corrupted Images", National Conference on Advanced Trends in Engineering, Association with IRJMS, Karmyogi Engineering College, Shelave, Pandharpur, March 2016.
- 250. Mr. Mahesh M Zade & Mr.S.M.Karve,"Implementation of Reed Solomen Encoder & Decoder Using FPGA", National Conference on Advanced Trends in Engineering, Association with IRJMS, Karmyogi Engineering College, Shelave, Pandharpur, March 2016.
- 251. Mr. Mahesh M Zade & Dr.S.M.Mukane,"Performance of Switching Median Filter for Enhancement of Image", National Conference on Mechatronics at Sinhgad Institute of Technology and Science, Narhe, Pune, Feb. 2016.
- 252. Mr. Mahesh M Zade & Dr.S.M.Mukane, "Enhancement of Image with the help of Switching Median Filter", National Conference on Emerging Trends in Electronics & Telecommunication Engineering, SVERI's College of Engineering Pandharpur, NCET 2013.
- 253. Mr.Mahesh M Zade & Dr.S.M.Mukane, "Enhancement of Image with the help of Switching Median Filter", International Journal of Computer Application (IJCA) SVERI's College of Engineering, Pandharpur, Dec. 2013.
- 254. A. O. Mulani, V. Godase, S. Takale, and R. Ghodake, "Secure Image Authentication using AES and DWT Watermarking on Reconfigurable Platform," International Journal of Embedded System and VLSI Design, vol. 1, no. 2, pp. 14-20, Oct. 2025.

