

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, October 2025

Audio, Image and Text Transmission Using Li-Fi Technology

Ms. Pranali Kawade¹, Ms. Nikita Gore¹, Ms. Prerana Jawale¹, Prof. Siddheshwar Gangonda²

UG Students, Department of Electronics and Telecommunication Engineering
Assistant Professor, Department of Electronics and Telecommunication Engineering
Professor, Department of Electronics and Telecommunication Engineering
SKN Sinhgad College of Engineering, Pandharpur
kawadepranali09@gmail.com gorenikita2004@gmail.com preranajawale04@gmail.com
siddheshwar.gangonda@sknscoe.ac.in
Corresponding Email: siddheshwar.gangonda@sknscoe.ac.in

Abstract: In this project, a system for transmission of audio, text, and image data using Li-Fi (Light Fidelity) and RF (Radio Frequency) technologies has been developed. For high-speed, short- range data communication, Li-Fi uses visible light while RF is used for long-range audio signal transmission. The combination of these two technologies is a demonstration of a hybrid communication system that enables it to transmit various formats of data at the same time. The project is implemented using Arduino UNO, LED transmitter, LDR/Photodiode receiver, LCD Display, Speaker, and Audio RF module. This system is intended to demonstrate a low cost, energy-efficient and secure method of wireless data transmission for multimedia communication. The demand for high-speed and secure wireless communication has increased to a great extent as the use of internet-based services increases. Traditional wireless technologies like Wi-Fi and Bluetooth depend on radio frequency (RF) spectrum which is facing challenges of congestion, interference and security risks. To solve these problems, Li-Fi (Light Fidelity) technology has emerged as a promising solution to these problems, using the visible light spectrum to transmit data. This project shows a prototype of Li-Fi based Audio, text and image transmission system. The system uses high-brightness LEDs as transmitters and photodiodes as receivers. Audio is transmitted by pulse width modulation (PWM) and text and image information are transmitted by digital encoding techniques. An Arduino microcontroller is used for the modulation, encoding, decoding, and system control. The output is reproduced in the form of sound via a speaker, texts on a 16x2 LCD and images on a 128x64 graphical LCD display. The proposed system shows the success of Li-Fi in providing secure, cost- effective and interference-free multimedia communication. Although the system is limited by line-of-sight requirements and restrictions in range, it provides a basis for further development in highspeed visible light communication systems.

Keywords: Li-Fi, Visible Light Communication (VLC), Arduino, Audio Transmission, Text Transmission, Image Transmission, LED, Photodiode, Wireless Communication, Multimedia Data Transfer

I. INTRODUCTION

As the technology of wireless communication has grown exponentially, so has the need for faster and safer transmission of data. Wi-Fi: Radio waves have their problems, too, such as spectrum congestion, interference, and security concerns. Li-Fi is a technology which was brought to limelight by Prof. Harald Haas, it is a new technology of transmitting information using visible light instead of radio waves. In this project Li-Fi is used for text and image data transmission and RF module is used for audio data transmission to maintain analog communication without any distortion. The integration of Li-Fi and RF is a hybrid wireless communication system which is ideal for multimedia data transmission in short-range setting including classroom, laboratory and IoT applications. In the new era of wireless communication

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

STORY MANAGER STORY OF THE STOR

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

there is a never-ending demand for more data rates, secure communication channels and efficient bandwidth utilization. Conventional wireless communication systems such as Wi-Fi, Bluetooth and the cellular networks use Radio Frequency (RF) spectrum for data transfer. However, as the number of wireless devices has been exponentially rising, the RF spectrum has become very congested which has reached issues such as limited bandwidth, interference and potential data breach. To try to avoid these limitations, researchers have been exploring other means of wireless communication: one of the most promising technologies is Li-Fi (Light Fidelity) technology. Li-Fi is a high-speed, two-ways wireless communication system, using visible spectrum light, which is emitted from Light Emitting Diodes (LEDs) and this is used for information transmission. Li-Fi first came about in 2011 when Professor Harald Haas gave a presentation about the idea at the University of Edinburgh. Unlike RF waves, there is a humongous amount of spectrum bandwidth of visible light (400-800 THz) - which is expected to theoretically enable much bigger data rates than Wi-Fi. Furthermore, since visible light cannot travel through walls, Li-Fi communication is naturally far more secure and free from interference, which makes the technology ideal for use in environments such as hospitals, airplanes and laboratories where RF signals can cause disruptions. The principle of Li-Fi is Visible Light Communication (VLC) in which the LED light source is utilized to communicate data by modulating its intensity at very high speed - many times faster than the human eye can see. These fluctuations of light intensity are detected by photodiode or LDR (Light Dependent Resistor) at the receiver end and convert it back to electrical signals which is decoded by microcontroller (Arduino) for binary data. This method can be used reliably for the digital data transmission - for the transcription, images and sensor data, for example. This is a hybrid technology where Li-Fi is being used for digital communication like transmission of text information and image information in light and RF communication for audio signals. The Arduino UNO microcontroller is the central processing unit (CPU) which is responsible for encoding, decoding and synchronizing data. The transmitter section consists of LED arrays and RF transmitter and receiver section consist of photodiode sensor, RF receiver, LCD/OLED display unit and a speaker.

II. LITERATURE SURVEY

Zhang et al. 2025 - The authors have come up with an IoT-based Li-Fi system with multiple LEDs and photodiode receivers for indoor data transmission. The design is aimed at decreasing the ambient light interference, while increasing the reliability of the visible light communication for smart home and sensing networks.

Sharma et al. (2025) A prototype system which demonstrates the transmission of multimedia data (audio, text and images) using Valqua the study features performance evaluation under different light conditions, demonstrates the possibility of using this technique for educational and secure communication purposes.

Bansal et al. (2024) - A comprehensive review on the architectures of Li-Fi and its applications was conducted and the focus was given to healthcare, smart cities and industrial automation. The authors pointed out the dual-functionality of LED to be used for illumination and data transfer, which makes LiFi an economical option.

Prakash & Mehta (2024) - Their paper was a survey of high-capacity VLC systems with advanced digital signal processing techniques such as OFDM and MIMO. In this study, the performance capabilities of these techniques on the enhancement of data rate and deterioration of the bit-error performance of indoor optical wireless links were analysed.

Nireekshan et al. (2024) - The authors considered the problem of Li-Fi integration to Internet of Things (IoT) applications. They suggested the energy-efficient smart device's models and explained the benefit of Li-Fi rather than conventional-based IoT communication in terms of bandwidth and security issues.

Patel & Rao (2023) -Research on the standardization, for Li-Fi, of the interoperability level with existing Wi-Fi networks has been presented. Their paper was revealing how Li-Fi is advancing from the laboratory to commercial products through standardization and commercialization.

Deshmukh et al. (2023) -The authors developed a case study on smart classrooms using the concept of Li-Fi for wireless sharing of data. Their use minimized the use of Wi-Fi and increased security, at the same time using LEDs for lighting the room.

Kumar and Singh (2023) - Long range LiFi based on high power LEDs and the use of optical lenses has been presented. Their experiments resulted in better coverage distance showing that free space optical links can be applied to outside and industrial applications.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

Hassan et al. (2022) - In this work, a detailed review of VLC technology is published, discussing features of the channel, hardware design and limitations of LED switching speed. The study provided us with an insight on the issues faced in real-life deployment, and also a solution for ambient light interference.

Choudhary & Jain (2022) - The authors talked about the Li-Fi applications in defence and healthcare. Their paper brought much needed attention on the need for secure and interference-free communication systems and demonstrated that Li-Fi can be used to replace or complement RF systems in sensitive environments.

III. METHODOLOGY

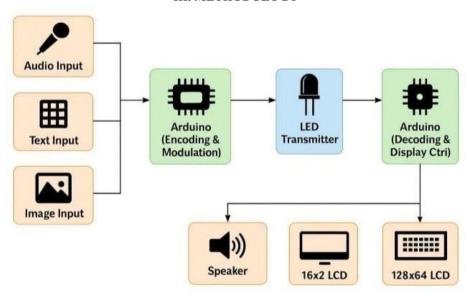


Figure 2.1: Li-Fi Communication System Flowchart

The methodology is described below:

3.1 Data Collection and Preparation

The audio is recorded by a highly sensitive microphone, the text messages are inputted through a serial monitor or keypad interface, and pictures are pre-stored and converted into the binary format to be transmitted digitally over the Li-Fi channel.

3.2 Encoding and Modulation of Data

The data received is processed by the Arduino microcontroller which encodes audio signals by pulse width modulation (PWM) and text and image data where the data is converted to binary data. This is to ensure that all types of data are ready to be reliably transmitted by light.

3.3 Transmission via LED

The encoded data is then used to drive a high-brightness LED, which conveys the information via visible light signals. The light transmits the audio, text, and image data along a line-of- sight route to the receiver.

3.4 Reception and Decoding at the Receiver End

A photodiode then receives the incoming modulated light signals and reverts them back to electrical signals. These signals are then interpreted by a second Arduino microcontroller, which reconstructs the audio, text and image data perfectly.

International Journal of Advanced Research in Science, Communication and Technology

ology | 150 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

3.5 Output Display and System Testing

The generated audio is output via a speaker, test is shown on a 16×2 LCD, and images are displayed on a 128×64 graphical LCD. These are all subjected to rigorous testing to guarantee that all multimedia data is transmitted reliably, accurately, and of high quality in varying light conditions, distances, and angles.

3.7 Features of Components Arduino Uno

The system's main microcontroller and processing unit is the Arduino Uno. It handles all encoding and decoding of information for both Li-Fi and RF modules. It digitizes the sensor signals and drives the display and speaker modules. Due to its simplicity, open-source environment, and reliable performance, the Arduino Uno can handle various digital and analog inputs and outputs that can be used for data transmission, automation, and embedded communication.

LED

The LED is the transmission element in Li-Fi technology. The LED's light output intensity is modulated at a high frequency in accordance with the digital data provided by the Arduino. While this rapid modulation does not alter the light output that human beings can see, it can be detected by the photodiode at the receiving end of the Li-Fi system. The advantages of using an LED, in addition to its low-energy consumption, are that it is compact and can change its light output intensity with a rapid frequency that is suitable for Visible Light Communication. In this project, text and image data packets are sent over the LED through the control of light pulsating on and off.

Photodiode

The photodiode acts as the receiving sensor of the Li-Fi communications system. It converts variations in the intensity of light into equivalent electrical signals. These are in an analog form and are fed to the Arduino board for decoding to readable digital data. The photodiode has a high sensitivity, a quick time response and a linear output, which are favourable when large modulation frequency from the LED must be detected. Important for the Li-Fi link ensuring error free and noise free receipt of data.

RF Module

The RF module provides the ability for radio wireless transmission of the audio signals between the transmitter and the receiver. The RF transmitter modulates the audio signal input onto a carrier wave of high frequency (in most cases 433 MHz). The RF receiver demodulates the received signal back to the audio form. This module gives the advantages of a relatively large distance, reliability in its operation, and real time communications, without line - of - sight. It operates in conjunction with the Li-Fi transmission, providing a medium of transmission for the continuous analog signal, in this case voice, thereby giving clear and undistorted audio sound output.

LCD Display (16x2) or LED Display

The display module used to show received text and image data transmitted by the Li-Fi system. The 16x2 LCD displays or the 0.96-inch OLED displays are used, providing an elementary visual output to check the success of the transmission. They are light in weight, and low power consuming, also easily interfaced with the Arduino by the use of either parallel or the I²C method of communications. They act in this application as the user-interface to monitor in real time the data transmitted.

Jumper Wires and Breadboard

Connecting Wires and the Perforated Circuit Board Jumper wires create temporary electrical connections between the different modules and sensors placed on the perforated circuit board. They make the entire circuit modular, flexible and easy to modify during the testing and troubleshooting phases. The provision of the perforated circuit board allows to prototype without soldering, thus allowing a quick layout of the circuit, that will be easily modified during the development phases.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

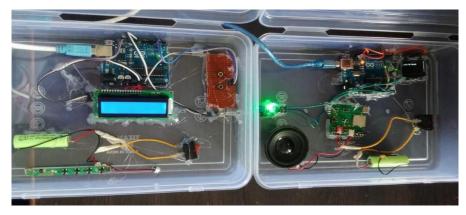
Volume 5, Issue 4, October 2025

Microphone Module

The microphone module is able to pick up the sound waves in the form of acoustic waves and convert them into analog electrical signals which can thus be fed to the RF transmitter for

transmission without wire. The module will use an electret condenser microphone which is well known for its sensitivity in output, small size and requires minimum current. This will ensure, an audio input which will be of great clarity for transmission and at the same time be able to pick up even low sounds, thus making it suitable for voice type of wireless communication systems.

Speaker


The speaker will be used at the receiver end to decode the electrical audio signals received back to the audible sounds. It will pick up the output of the RF receiver and amplifier circuit. The speaker used will be normally 8Ω , 0.5W, which will give a good clarity due to speaker at low voltage. The speaker will give back the real time audio transmission thus showing the successful operation of the wireless RF communication link.

Power Supply Unit

The power supply provided will give a regulated supply of 5V DC which is required for Arduino & LEDs, RF modules, etc. This can be powered through an USB port, battery pack and also through external adapter. The DC powered supply is guaranteed to be a stabilized supply, which will give a smooth operation of the whole circuit in operation and also eliminate any noise or fluctuations within the voltage level, which will affect in the transmitting or receiving of the signals.

IV. RESULT

This project brings together the principles of Li-Fi and RF to demonstrate that wireless transmission of data can be made to apply to various methods of data generation. In the Li-Fi section a potent LED is used as the transmitter and a photodiode as the receiver. The digital data, which was in the form of texts and pictures, is modulated in the LED by the Arduino so that the information is sent in the form of modulated light. The receiver photodiode picks up the signal which is dependent on the degree that the intensity of light changes and converts it into an electrical signal which is given as output to an LCD or an OLED. For the audio transmission the RF module is used. The microphone registers sound and converts the sound into other electrical signals which are sent to the RF transmitter. These signals are converted into radio waves which are transmitted wireless and the transmitter picks up these signals and gives the output sound through a loudspeaker. This continuous communication gives rise to clear sound being broadcast between transmitter and receiver units. The system has been successfully tried. The Li-Fi link has been found to be successful over distances of 1-2 meters with the two photodiode and LED properly aligned. The text and picture data were properly picked up with-out distortion to speak of. The RF link skilfully gave the reliable transmission of signal for audio. transmission up to 15–20 meters, even when obstacles were present.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, October 2025

The research results clearly indicate that Li-Fi technology can be utilized in local short distance and large volumes of data and secure transmission, while the RF communication technology can be used for the transfer of continuous analog signals such as voice signals. Therefore, these technologies can be combined in order to guarantee an efficient wireless communication system which could be used for transmission of audio, text and image data.

V. CONCLUSION & FUTURE SCOPE

In this project, audio, text, and image data were successfully transmitted using Li-Fi and RF technology. The Li-Fi system uses visible light as the medium for data transmission and the RF system wirelessly transmits audio in the form of radio signals. The main controller in the project is the Arduino Uno, which will control the transmission and the successfully detected reception of the required data. It has been experimented that the data provided by Li-Fi is transmitted at a faster rate and provides better security. The dependent RF work provides stable audio for a longer range. It is shown that Li-Fi can be made as an alternate mode for transmission of information as in place of the conventional Wi-Fi power which is preferred in short distances where data transfer is to be speed and secured. The combination of both can lead to a hybrid communication system which may be used for the transmission of all types of information. The work may be extended to improve the range and data rates by substituting high power LEDs or most sensitive photodiodes connected to the Arduino. The system may further be developed for the bi-directional communication to allow both to send and receive signals through light. The integration of the Internet of Things gadget may prove to be a viable integration for smart home and industrial applications. Advanced modulation techniques can be employed for the signals to achieve high data transfer rates and better noise immunity. This project presents to be an easy, effective and a low-cost utility for the further application of the wireless communication systems having light and radio frequency used together.

REFERENCES

- 1. Bansal, D., Khandelwal, M., & Agrawal, N. (2025). Home Automation System using IoT and Voice Control. National Conference on Information Technology & Digital Application (NCITSA- 2025).
- 2. Nireekshan, N., Sowjanya, P., Sathish, B., Harika, G., & Anvesh, K. (2025). IoT Based Home Automation System. International Journal for Multidisciplinary Research.
- 3. S.K., D., P., C., S.K., P., G., & M., M. (2024). Voice Recognition based Energy Efficient Control and Monitoring of Home Appliances through Android Mobile App using IoT. 2024 International Conference on Emerging Research in Computational Science (ICERCS), 1-8.
- 4. Lokumarambage, M., Gowrisetty, V., Rezaei, H., Sivalingam, T., Rajatheva, N., & Fernando, (2023). Wireless End-to-End Image Transmission System using Semantic Communications. arXiv preprint arXiv:2302.13721.
- Yariv, G., Gat, I., Wolf, L., Adi, Y., Schwartz, I., & Schwartz, I. (2023). Audio Token: Adaptation of Text-Conditioned Diffusion Models for Audio-to-Image Generation. arXiv preprint arXiv:2305.13050.
- 6. Wu, H., Shao, Y., Ozfatura, E., Mikolajczyk, K., & Gündüz, D. (2023). Transformer-aided Wireless Image Transmission with Channel Feedback. arXiv preprint arXiv:2306.09101.
- 7. Georlette, V., & Moeyaert, V. (2023). Li-Fi and Visible Light Communication for Smart Cities and Industry 4.0: Challenges, Research & Market Status in 2023. Proceedings of the 23rd International Conference on Transparent Optical Networks (ICTON), 1-6.
- 8. Blokken, M. (2025). Exploring Li-Fi as the Next Frontier in Military Data Transmission. Finabel European Army Interoperability Centre.
- 9. Lokumarambage, M., Gowrisetty, V., Rezaei, H., Sivalingam, T., Rajatheva, N., & Fernando, (2023). Wireless End-to-End Image Transmission System using Semantic Communications. arXiv preprint arXiv:2302.13721.
- 10. Yariv, G., Gat, I., Wolf, L., Adi, Y., Schwartz, I., & Schwartz, I. (2023). Audio Token: Adaptation of Text-Conditioned Diffusion Models for Audio-to-Image Generation. arXiv preprint arXiv:2305.13050.
- 11. Godase, M. V., Mulani, A., Ghodak, M. R., Birajadar, M. G., Takale, M. S., & Kolte, M. A MapReduce and Kalman Filter based Secure IIoT Environment in Hadoop. Sanshodhak, Volume 19, June 2024.
- 12. Mulani, A. O., & Mane, P. B. (2017). Watermarking and cryptography based image authentication on reconfigurable platform. Bulletin of Electrical Engineering and Informatics, 6(2), 181-187.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- 13. Gadade, B., Mulani, A. O., & Harale, A. D. IoT Based Smart School Bus and Student Tracking System. Sanshodhak, Volume 19, June 2024.
- 14. Dhanawadel, A., Mulani, A. O., & Pise, A. C. IOT based Smart farming using Agri BOT. Sanshodhak, Volume 20, June 2024.
- 15. Mulani, A., & Mane, P. B. (2016). DWT based robust invisible watermarking. Scholars' Press.
- 16. R. G. Ghodke, G. B. Birajdar, A.O. Mulani, G.N. Shinde, R.B. Pawar, Design and Development of an Efficient and Cost-Effective surveillance Quadcopter using Arduino, Sanshodhak, Volume 20, June 2024.
- 17. R. G. Ghodke, G. B. Birajdar, A.O. Mulani, G.N. Shinde, R.B. Pawar, Design and Development of Wireless Controlled ROBOT using Bluetooth Technology, Sanshodhak, Volume 20, June 2024.
- Swami, S. S., & Mulani, A. O. (2017, August). An efficient FPGA implementation of discrete wavelet transform for image compression. In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS) (pp. 3385-3389). IEEE.
- 19. Mane, P. B., & Mulani, A. O. (2018). High speed area efficient FPGA implementation of AES algorithm. International Journal of Reconfigurable and Embedded Systems, 7(3), 157-165.
- 20. Mulani, A. O., & Mane, P. B. (2016). Area efficient high speed FPGA based invisible watermarking for image authentication. Indian journal of Science and Technology, 9(39), 1-6.
- Kashid, M. M., Karande, K. J., & Mulani, A. O. (2022, November). IoT-based environmental parameter monitoring using machine learning approach. In Proceedings of the International Conference on Cognitive and Intelligent Computing: ICCIC 2021, Volume 1 (pp. 43-51). Singapore: Springer Nature Singapore.
- 22. Nagane, U. P., & Mulani, A. O. (2021). Moving object detection and tracking using Matlab. Journal of Science and Technology, 6(1), 2456-5660.
- 23. Kulkarni, P. R., Mulani, A. O., & Mane, P. B. (2016). Robust invisible watermarking for image authentication. In Emerging Trends in Electrical, Communications and Information Technologies: Proceedings of ICECIT-2015 (pp. 193-200). Singapore: Springer Singapore.
- 24. Ghodake, M. R. G., & Mulani, M. A. (2016). Sensor based automatic drip irrigation system. Journal for Research, 2(02).
- 25. Mandwale, A. J., & Mulani, A. O. (2015, January). Different Approaches For Implementation of Viterbi decoder on reconfigurable platform. In 2015 International Conference on Pervasive Computing (ICPC) (pp. 1-4). IEEE.
- 26. Jadhav, M. M., Chavan, G. H., & Mulani, A. O. (2021). Machine learning based autonomous fire combat turret. Turkish Journal of Computer and Mathematics Education, 12(2), 2372-2381.
- 27. Shinde, G., & Mulani, A. (2019). A robust digital image watermarking using DWT-PCA. International Journal of Innovations in Engineering Research and Technology, 6(4), 1-7.
- 28. Mane, D. P., & Mulani, A. O. (2019). High throughput and area efficient FPGA implementation of AES algorithm. International Journal of Engineering and Advanced Technology, 8(4).
- 29. Mulani, A. O., & Mane, D. P. (2017). An Efficient implementation of DWT for image compression on reconfigurable platform. International Journal of Control Theory and Applications, 10(15), 1-7.
- Deshpande, H. S., Karande, K. J., & Mulani, A. O. (2015, April). Area optimized implementation of AES algorithm on FPGA. In 2015 International Conference on Communications and Signal Processing (ICCSP) (pp. 0010-0014). IEEE.
- 31. Deshpande, H. S., Karande, K. J., & Mulani, A. O. (2014, April). Efficient implementation of AES algorithm on FPGA. In 2014 International Conference on Communication and Signal Processing (pp. 1895-1899). IEEE.
- 32. Kulkarni, P., & Mulani, A. O. (2015). Robust invisible digital image mamarking using discrete wavelet transform. International Journal of Engineering Research & Technology (IJERT), 4(01), 139-141.
- 33. Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless Non invasive blood glucose concentration level estimation using PCA and machine learning. The CRC Book entitled Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ar 2025 Impact Factor: 7.67

ISSN: 2581-9429

Volume 5, Issue 4, October 2025

- 34. Mulani, A. O., & Shinde, G. N. (2021). An approach for robust digital image watermarking using DWT PCA. Journal of Science and Technology, 6(1).
- 35. Mulani, A. O., & Mane, P. B. (2014, October). Area optimization of cryptographic algorithm on less dense reconfigurable platform. In 2014 International Conference on Smart Structures and Systems (ICSSS) (pp. 86-89). IEEE.
- 36. Jadhav, H. M., Mulani, A., & Jadhav, M. M. (2022). Design and development of chatbot based on reinforcement learning. Machine Learning Algorithms for Signal and Image Processing, 219-229.
- 37. Mulani, A. O., & Mane, P. (2018). Secure and area efficient implementation of digital image watermarking on reconfigurable platform. International Journal of Innovative Technology and Exploring Engineering, 8(2), 56-61.
- 38. Kalyankar, P. A., Mulani, A. O., Thigale, S. P., Chavhan, P. G., & Jadhav, M. M. (2022). Scalable face image retrieval using AESC technique. Journal Of Algebraic Statistics, 13(3), 173-176.
- 39. Takale, S., & Mulani, A. (2022). DWT-PCA based video watermarking. Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN, 2799-1156.
- 40. Kamble, A., & Mulani, A. O. (2022). Google assistant based device control. Int. J. of Aquatic Science, 13(1), 550-555.
- 41. Kondekar, R. P., & Mulani, A. O. (2017). Raspberry Pi based voice operated Robot. International Journal of Recent Engineering Research and Development, 2(12), 69-76.
- 42. Ghodake, R. G., & Mulani, A. O. (2018). Microcontroller based automatic drip irrigation system. In Techno-Societal 2016: Proceedings of the International Conference on Advanced Technologies for Societal Applications (pp. 109-115). Springer International Publishing.
- 43. Mulani, A. O., Birajadar, G., Ivković, N., Salah, B., & Darlis, A. R. (2023). Deep learning based detection of dermatological diseases using convolutional neural networks and decision trees. Traitement du Signal, 40(6), 2819.
- 44. Boxey, A., Jadhav, A., Gade, P., Ghanti, P., & Mulani, A. O. (2022). Face Recognition using Raspberry Pi. Journal of Image Processing and Intelligent Remote Sensing (JIPIRS) ISSN, 2815-0953.
- 45. Patale, J. P., Jagadale, A. B., Mulani, A. O., & Pise, A. (2023). A Systematic survey on Estimation of Electrical Vehicle. Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN, 2799-1156.
- 46. Gadade, B., & Mulani, A. (2022). Automatic System for Car Health Monitoring. International Journal of Innovations in Engineering Research and Technology, 57-62.
- 47. Shinde, M. R. S., & Mulani, A. O. (2015). Analysis of Biomedical Image Using Wavelet Transform. International Journal of Innovations in Engineering Research and Technology, 2(7), 1-7.
- 48. Mandwale, A., & Mulani, A. O. (2014, December). Implementation of convolutional encoder & different approaches for viterbi decoder. In IEEE International Conference on Communications, Signal Processing Computing and Information technologies.
- 49. Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless machine learning approach to estimate blood glucose level with non-invasive devices. In Artificial intelligence, internet of things (IoT) and smart materials for energy applications (pp. 83-100). CRC Press.
- 50. Maske, Y., Jagadale, A. B., Mulani, A. O., & Pise, A. C. (2023). Development of BIOBOT system to assist COVID patient and caretakers. European Journal of Molecular & Clinical Medicine, 10(01), 2023.
- 51. Utpat, V. B., Karande, D. K., & Mulani, D. A. Grading of Pomegranate Using Quality Analysis || . International Journal for Research in Applied Science & Engineering Technology (IJRASET), 10.
- 52. Takale, S., & Mulani, D. A. (2022). Video Watermarking System. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 10.
- 53. Mandwale, A., & Mulani, A. O. (2015, January). Different approaches for implementation of Viterbi decoder. In IEEE international conference on pervasive computing (ICPC).

International Journal of Advanced Research in Science, Communication and Technology

9001:2015 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- 54. Maske, Y., Jagadale, M. A., Mulani, A. O., & Pise, A. (2021). Implementation of BIOBOT System for COVID Patient and Caretakers Assistant Using IOT. International Journal of Information Technology and, 30-43.
- 55. Mulani, A. O., & Mane, D. P. (2016). Fast and Efficient VLSI Implementation of DWT for Image Compression. International Journal for Research in Applied Science & Engineering Technology, 5, 1397-1402.
- 56. Kambale, A. (2023). Home automation using google assistant. UGC care approved journal, 32(1), 1071-1077.
- 57. Pathan, A. N., Shejal, S. A., Salgar, S. A., Harale, A. D., & Mulani, A. O. (2022). Hand gesture controlled robotic system. Int. J. of Aquatic Science, 13(1), 487-493.
- Korake, D. M., & Mulani, A. O. (2016). Design of Computer/Laptop Independent Data transfer system from one USB flash drive to another using ARM11 processor. International Journal of Science, Engineering and Technology Research.
- 59. Mandwale, A., & Mulani, A. O. (2016). Implementation of High Speed Viterbi Decoder using FPGA. International Journal of Engineering Research & Technology, IJERT.
- 60. Kolekar, S. D., Walekar, V. B., Patil, P. S., Mulani, A. O., & Harale, A. D. (2022). Password Based Door Lock System. Int. J. of Aquatic Science, 13(1), 494-501.
- 61. Shinde, R., & Mulani, A. O. (2015). Analysis of Biomedical Image || . International Journal on Recent & Innovative trend in technology (IJRITT).
- 62. Sawant, R. A., & Mulani, A. O. (2022). Automatic PCB Track Design Machine. International Journal of Innovative Science and Research Technology, 7(9).
- 63. ABHANGRAO, M. R., JADHAV, M. S., GHODKE, M. P., & MULANI, A. (2017). Design And Implementation Of 8-bit Vedic Multiplier. International Journal of Research Publications in Engineering and Technology (ISSN No: 2454-7875).
- 64. Gadade, B., Mulani, A. O., & Harale, A. D. (2024). Iot based smart school bus and student monitoring system. Naturalista Campano, 28(1), 730-737.
- 65. Mulani, D. A. O. (2024). A Comprehensive Survey on Semi-Automatic Solar-Powered Pesticide Sprayers for Farming. Journal of Energy Engineering and Thermodynamics (JEET) ISSN, 2815-0945.
- 66. Salunkhe, D. S. S., & Mulani, D. A. O. (2024). Solar Mount Design Using High-Density Polyethylene. NATURALISTA CAMPANO, 28(1).
- 67. Seth, M. (2022). Painless Machine learning approach to estimate blood glucose level of Non-Invasive device. Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications.
- 68. Kolhe, V. A., Pawar, S. Y., Gohery, S., Mulani, A. O., Sundari, M. S., Kiradoo, G., ... & Sunil, J. (2024). Computational and experimental analyses of pressure drop in curved tube structural sections of Coriolis mass flow metre for laminar flow region. Ships and Offshore Structures, 19(11), 1974-1983.
- 69. Basawaraj Birajadar, G., Osman Mulani, A., Ibrahim Khalaf, O., Farhah, N., G Gawande, P., Kinage, K., & Abdullah Hamad, A. (2024). Epilepsy identification using hybrid CoPrO-DCNN classifier. International Journal of Computing and Digital Systems, 16(1), 783-796.
- 70. Kedar, M. S., & Mulani, A. (2021). IoT Based Soil, Water and Air Quality Monitoring System for Pomegranate Farming. Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN, 2799-1156.
- 71. Godse, A. P. A.O. Mulani (2009). Embedded Systems (First Edition).
- 72. Pol, R. S., Bhalerao, M. V., & Mulani, A. O. A real time IoT based System Prediction and Monitoring of Landslides. International Journal of Food and Nutritional Sciences, Volume 11, Issue 7, 2022.
- 73. Mulani, A. O., Sardey, M. P., Kinage, K., Salunkhe, S. S., Fegade, T., & Fegade, P. G. (2025). ML-powered Internet of Medical Things (MLIOMT) structure for heart disease prediction. Journal of Pharmacology and Pharmacotherapeutics, 16(1), 38-45.
- Aiwale, S., Kolte, M. T., Harpale, V., Bendre, V., Khurge, D., Bhandari, S., ... & Mulani, A. O. (2024). Non-invasive Anemia Detection and Prediagnosis. Journal of Pharmacology and Pharmacotherapeutics, 15(4), 408-416.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, October 2025

- Mulani, A. O., Bang, A. V., Birajadar, G. B., Deshmukh, A. B., Jadhav, H. M., & Liyakat, K. K. S. (2024). IoT Based Air, Water, and Soil Monitoring System for Pomegranate Farming. Annals of Agri-Bio Research, 29(2), 71-86.
- 76. Kulkarni, T. M., & Mulani, A. O. (2024). Face Mask Detection on Real Time Images and Videos using Deep Learning. International Journal of Electrical Machine Analysis and Design (IJEMAD), 2(1).
- 77. Thigale, S. P., Jadhav, H. M., Mulani, A. O., Birajadar, G. B., Nagrale, M., & Sardey, M. P. (2024). Internet of things and robotics in transforming healthcare services. Afr J Biol Sci (S Afr), 6(6), 1567-1575.
- 78. Pol, D. R. S. (2021). Cloud Based Memory Efficient Biometric Attendance System Using Face Recognition. Stochastic Modeling & Applications, 25(2).
- 79. Nagtilak, M. A. G., Ulegaddi, M. S. N., Adat, M. A. S., & Mulani, A. O. (2021). Breast Cancer Prediction using Machine Learning.
- 80. Rahul, G. G., & Mulani, A. O. (2016). Microcontroller Based Drip Irrigation System.
- 81. Kulkarni, T. M., & Mulani, A. O. Deep Learning Based Face-Mask Detection: An Approach to Reduce Pandemic Spreads in Human Healthcare. African Journal of Biological Sciences, 6(6), 2024.
- 82. Mulani, A., & Mane, P. B. (2016). DWT based robust invisible watermarking. Scholars' Press.
- 83. Dr. Vaishali Satish Jadhav, Dr. Shweta Sadanand Salunkhe, Dr. Geeta Salunkhe, Pranali Rajesh Yawle, Dr. Rahul S. Pol, Dr. Altaf Osman Mulani, Dr. Manish Rana, Iot Based Health Monitoring System for Human, Afr. J. Biomed. Res. Vol. 27 (September 2024).
- 84. Dr. Vaishali Satish Jadhav, Geeta D. Salunke, Kalyani Ramesh Chaudhari, Dr. Altaf Osman Mulani, Dr. Sampada Padmakar Thigale, Dr. Rahul S. Pol, Dr. Manish Rana, Deep Learning-Based Face Mask Recognition in Real-Time Photos and Videos, Afr. J. Biomed. Res. Vol. 27 (September 2024).
- 85. Altaf Osman Mulani, Electric Vehicle Parameters Estimation Using Web Portal, Recent Trends in Electronics & Communication Systems, Volume 10, Issue 3, 2023.
- 86. Aryan Ganesh Nagtilak, Sneha Nitin Ulegaddi, Mahesh Mane, Altaf O. Mulani, Automatic Solar Powered Pesticide Sprayer for Farming, International Journal of Microwave Engineering and Technology, Volume 9 No. 2, 2023.
- 87. Annasaheb S. Dandage, Vitthal R. Rupnar, Tejas A Pise, and A. O. Mulani, Real-Time Language Translation Application Using Tkinter. International Journal of Digital Communication and Analog Signals. 2025; 11(01):
- 88. AnnaSaheb S Dandage, Vitthal R. Rupnar, Tejas A Pise, and A. O. Mulani, IoT-Powered Weather Monitoring and Irrigation Automation: Transforming Modern Farming Practices. 2025; 11(01): -p.
- 89. Mulani, A.O., Kulkarni, T.M. (2025). Face Mask Detection System Using Deep Learning: A Comprehensive Survey. In: Singh, S., Arya, K.V., Rodriguez, C.R., Mulani, A.O. (eds) Emerging Trends in Artificial Intelligence, Data Science and Signal Processing. AIDSP 2023. Communications in Computer and Information Science, vol 2439. Springer, Cham. https://doi.org/10.1007/978-3-031-88759-8 3.
- Karve, S., Gangonda, S., Birajadar, G., Godase, V., Ghodake, R., Mulani, A.O. (2025). Optimized Neural Network for Prediction of Neurological Disorders. In: Singh, S., Arya, K.V., Rodriguez, C.R., Mulani, A.O. (eds) Emerging Trends in Artificial Intelligence, Data Science and Signal Processing. AIDSP 2023. Communications in Computer and Information Science, vol 2440. Springer, Cham. https://doi.org/10.1007/978-3-031-88762-8 18.
- 91. Saurabh Singh, Karm Veer Arya, Ciro Rodriguez Rodriguez, and Altaf Osman Mulani, Emerging Trends in Artificial Intelligence, Data Science and Signal Processing, Communications in Computer and Information Science (CCIS), volume 2440.
- 92. Saurabh Singh, Karm Veer Arya, Ciro Rodriguez Rodriguez, and Altaf Osman Mulani, Emerging Trends in Artificial Intelligence, Data Science and Signal Processing, Communications in Computer and Information Science (CCIS), volume 2439.
- 93. Godase, V., Mulani, A., Pawar, A., & Sahani, K. (2025). A Comprehensive Review on PIR Sensor-Based Light Automation Systems. International Journal of Image Processing and Smart Sensors, 1(1), 22-29.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- 94. Godase, V., Mulani, A., Takale, S., & Ghodake, R. (2025). Comprehensive Review on Automated Field Irrigation using Soil Image Analysis and IoT. Journal of Advance Electrical Engineering and Devices, 3(1), 46-55.
- 95. Altaf Osman Mulani, Deshmukh M., Jadhav V., Chaudhari K., Mathew A.A., Shweta Salunkhe. Transforming Drug Therapy with Deep Learning: The Future of Personalized Medicine. Drug Research. 2025 Aug 29.
- Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), Image Authentication Using Cryptography and Watermarking, International Journal of Image Processing and Smart Sensors, Vol. 1, Issue 2, pp 27-34.
- 97. Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), Advancements in Artificial Intelligence: Transforming Industries and Society, International Journal of Artificial Intelligence of Things (AIoT) in Communication Industry, Vol. 1, Issue 2, pp 1-5.
- 98. Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), AI-Powered Predictive Analytics in Healthcare: Revolutionizing Disease Diagnosis and Treatment, Journal of Advance Electrical Engineering and Devices, Vol. 3, Issue 2, pp 27-34.
- 99. Godase, V., Mulani, A., Takale, S., & Ghodake, R. (2025). A Holistic Review of Automatic Drip Irrigation Systems: Foundations and Emerging Trends. Available at SSRN 5247778.
- 100. V. Godase, R. Ghodake, S. Takale, and A. Mulani, —Design and Optimization of Reconfigurable Microwave Filters Using AI Techniques, International Journal of RF and Microwave Communication Technologies, vol. 2, no. 2, pp.26–41, Aug. 2025.
- 101.V. Godase, A. Mulani, R. Ghodake, S. Takale, "Automated Water Distribution Management and Leakage Mitigation Using PLC Systems," Journal of Control and Instrumentation Engineering, vol.11, no. 3, pp. 1-8, Aug. 2025.
- 102. V. Godase, A. Mulani, R. Ghodake, S. Takale, "PLC-Assisted Smart Water Distribution with Rapid Leakage Detection and Isolation," Journal of Control Systems and Converters, vol. 1, no. 3, pp. 1-13, Aug. 2025.
- 103. V. V. Godase, S. R. Takale, R. G. Ghodake, and A. Mulani, "Attention Mechanisms in Semantic Segmentation of Remote Sensing Images," Journal of Advancement in Electronics Signal Processing, vol. 2, no. 2, pp. 45–58, Aug. 2025
- 104.D. Waghmare, A. Mulani, S. R. Takale, V. Godase, and A. Mulani, "A Comprehensive Review on Automatic Fruit Sorting and Grading Techniques with Emphasis on Weight-based Classification," Research & Review: Electronics and Communication Engineering, vol. 2, no. 3, pp. 1-10, Oct. 2025.
- 105. Karande, K. J., & Talbar, S. N. (2014). Independent component analysis of edge information for face recognition. Springer India.
- 106.Karande, K. J., & Talbar, S. N. (2008). Face recognition under variation of pose and illumination using independent component analysis. ICGST-GVIP, ISSN.
- 107. Kawathekar, P. P., & Karande, K. J. (2014, July). Severity analysis of Osteoarthritis of knee joint from X-ray images: A Literature review. In 2014 International Conference on Signal propagation and computer technology (ICSPCT 2014) (pp. 648-652). IEEE.
- 108. Daithankar, M. V., Karande, K. J., & Harale, A. D. (2014, April). Analysis of skin color models for face detection. In 2014 International Conference on Communication and Signal Processing (pp. 533-537). IEEE.
- 109. Karande, J. K., Talbar, N. S., & Inamdar, S. S. (2012, May). Face recognition using oriented Laplacian of Gaussian (OLOG) and independent component analysis (ICA). In 2012 Second International Conference on Digital Information and Communication Technology and it's Applications (DICTAP) (pp. 99-103). IEEE.
- 110.Asabe, H., Asabe, R., Lengare, O., & Godase, S. (2025). IOT- BASED STORAGE SYSTEM FOR MANAGING VOLATILE MEDICAL RESOURCES IN HEALTHCARE FACILITIES. INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN ENGINEERING MANAGEMENT AND SCIENCE (IJPREMS), 05(03), 2427–2433. https://www.ijprems.com

International Journal of Advanced Research in Science, Communication and Technology

150 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 111. Karche, S. N., Mulani, A. O., Department of Electronics, SKN Sinhgad College of Engineering, Korti, & University of Solapur, Maharashtra, India. (2018). AESC Technique for Scalable Face Image Retrieval. International Journal of Innovative Research in Computer and Communication Engineering, 6(4), 3404–3405.
- 112.https://doi.org/10.15680/IJIRCCE.2018.0604036
- 113.Bankar, A. S., Harale, A. D., & Karande, K. J. (2021). Gestures Controlled Home Automation using Deep Learning: A Review. International Journal of Current Engineering and Technology, 11(06), 617–621. https://doi.org/10.14741/ijcet/v.11.6.4
- 114. Mali, A. S., Ghadge, S. K., Adat, A. S., & Karande, S. V. (2024). Intelligent Medication Management System. IJSRD International Journal for Scientific Research & Development, Vol. 12(Issue 3).
- 115. Water Level Control, Monitoring and Altering System by using GSM in Irrigation Based on Season. (2019). In International Research Journal of Engineering and Technology (IRJET) (Vol. 06, Issue 04, p. 1035) [Journal-article]. https://www.irjet.net
- 116.Modi, S., Misal, V., Kulkarni, S., & Mali A.S. (2025). Hydroponic Farming Monitoring System Automated system to monitor and control nutrient and pH levels. In Journal of Microcontroller Engineering and Applications (Vol. 12, Issue 3, pp. 11–16). https://doi.org/10.37591/JoMEA
- 117. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "VGHN: variations aware geometric moments and histogram features normalization for robust uncontrolled face recognition", International Journal of Information Technology, https://doi.org/10.1007/s41870-021-00703-0.
- 118.Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition using MFCC & DTW Features", International Journal of Engineering Research And Applications (IJERA) pp. 118-122, ISSN: 2248-9622.
- 119.Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Recognition of Marathi Numerals Using MFCC and DTW Features", Book Title: Recent Trends on Image Processing and Pattern Recognition, RTIP2R 2018, CCIS 1037, pp. 1–11, © Springer Nature Singapore Pte Ltd. 2019 https://doi.org/10.1007/978-981-13-9187-3 17.
- 120. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Analysis of Face Recognition Algorithms for Uncontrolled Environments", Book Title: Computing, Communication and Signal Processing, pp. 919–926, © Springer Nature Singapore Pte Ltd. 2018.
- 121.Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Recognition of Marathi Numerals using MFCC and DTW Features", 2nd International Conference on Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2018), 21th -22th Dec., 2018, organized by Solapur University, Solapur in collaboration with University of South Dakota (USA) and Universidade de Evora (Portugal), India.
- 122. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "A Comprehensive Survey of Face Databases for Constrained and Unconstrained Environments", 2nd IEEE Global Conference on Wireless Computing & Networking (GCWCN-2018), 23th-24th Nov., 2018, organized by STES's Sinhgad Institute of Technology, Lonavala, India.
- 123. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "An Extensive Survey of Prominent Researches in Face Recognition under different Conditions", 4th International Conference on Computing, Communication, Control And Automation (ICCUBEA-2018), 16th to 18th Aug. 2018 organized by Pimpri Chinchwad College of Engineering (PCCOE), Pune, India.
- 124. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Analysis of Face Recognition Algorithms for Uncontrolled Environments", 3rd International Conference on Computing, Communication and Signal Processing (ICCASP 2018), 26th-27th Jan.2018, organized by Dr. BATU, Lonere, India.
- 125. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", International Conference on Recent Trends, Feb 2012, IOK COE, Pune.
- 126.S. S. Gangonda, "Bidirectional Visitor Counter with automatic Door Lock System", National Conference on Computer, Communication and Information Technology (NCCCIT-2018), 30th and 31st March 2018 organized by Department of Electronics and Telecommunication Engineering, SKN SCOE, Korti, Pandharpur.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 127. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition using MFCC & DTW Features", ePGCON 2012, 23rd and 24th April 2012 organized by Commins COE for Woman, Pune.
- 128. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", National Conference on Emerging Trends in Engineering and Technology (VNCET'12), 30th March 2012 organized by Vidyavardhini's College of Engineering and Technology, Vasai Road, Thane.
- 129. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", ePGCON 2011, 26th April 2011 organized by MAEER's MIT, Kothrud, Pune-38.
- 130. Siddheshwar Gangonda, "Medical Image Processing", Aavishkar-2K7, 17th and 18th March 2007 organized by Department of Electronics and Telecommunication Engineering, SVERI's COE, Pandharpur.
- 131.Siddheshwar Gangonda, "Image enhancement & Denoising", VISION 2k7, 28th Feb-2nd March 2007 organized by M.T.E. Society's Walchand College of Engineering, Sangli.
- 132. Siddheshwar Gangonda, "Electromagnetic interference & compatibility" KSHITIJ 2k6, 23rd and 24th Sept. 2006 organized by Department of Mechanical Engineering, SVERI's COE, Pandharpur.
- 133.A. Pise and K. Karande, "A genetic Algorithm-Driven Energy-Efficient routing strategy for optimizing performance in VANETs," Engineering Technology and Applied Science Research, vol. 15, no. 5, 2025, [Online]. Available: https://etasr.com/index.php/ETASR/article/view/12744
- 134.A. C. Pise, K. J. Karande, "Investigating Energy-Efficient Optimal Routing Protocols for VANETs: A Comprehensive Study", ICT for Intelligent Systems, Lecture Notes in Networks and Systems 1109, Proceedings of ICTIS 2024 Volume 3, Lecture Notes in Networks and Systems, Springer, Singapore, ISSN 2367-3370, PP 407-417, 29 October 2024 https://doi.org/10.1007/978-981-97-6675-8 33.
- 135.A. C. Pise, et. al., "Smart Vehicle: A Systematic Review", International Journal The Ciência & Engenharia Science & Engineering Journal ISSN: 0103-944XVolume 11 Issue 1, 2023pp: 992–998, 2023.
- 136.A. C. Pise, et. al., "Smart Vehicle: A Systematic Review", International Journal of Research Publication and Reviews, ISSN 2582-7421, Vol 4, no 10, pp 2728-2731 October 2023.
- 137.A. C. Pise, et. al., "Development of BIOBOT System to Assist COVID Patient and Caretakers", European Journal of Molecular and Clinical Medicine; 10(1):3472-3480, 2023.
- 138.A. C. Pise, et. al., "IoT Based Landmine Detection Robot", International Journal of Research in Science & EngineeringISSN: 2394-8299Vol: 03, No. 04, June-July 2023.
- 139.A. C. Pise, et. al., "A Systematic survey on Estimation of Electrical Vehicle", Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN: 2799-1156, Volume 3, Issue 01, Pages 1-6, December 2023.
- 140.A. C. Pise, et. al., "Python Algorithm to Estimate Range of Electrical Vehicle", Web of Science, Vol 21, No 1 (2022) December 2022
- 141.A. C. Pise, et. al., "Implementation of BIOBOT System for COVID Patient and Caretakers Assistant using IOT", International Journal of Information technology and Computer Engineering. 30-43. 10.55529/ijitc.21.30.43, (2022).
- 142.A. C. Pise, et. al., "An IoT Based Real Time Monitoring of Agricultural and Micro irrigation system", International journal of scientific research in Engineering and management (IJSREM), VOLUME: 06 ISSUE: 04 | APRIL 2022, ISSN:2582-3930.
- 143.A. C. Pise, Dr. K. J. Karande, "An Exploratory study of Cluster Based Routing Protocol in VANET: A Review",
 International Journal of Advanced Research in Engineering and Technology(IJARET), 12,10, 2021, 17-30,
 Manuscript ID :00000-94375 Source ID : 00000006, Journal_uploads/IJARET/VOLUME 12 ISSUE 10/IJARET 12 10 002.pdf
- 144.A. C. Pise, et. al., "Android based Portable Health Support System," A Peer Referred & Indexed International Journal of Research, Vol. 8, issue. 4, April 2019.
- 145.A. C. Pise, et. al., "Facial Expression Recognition Using Image Processing," International Journal of VLSI Design, Microelectronics and Embedded System, Vol. 3, issue . 2, July 2018.

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29472

ISSN 2581-9429 IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, October 2025

- 146.A. C. Pise, et. al., "Detection of Cast Iron Composition by Cooling Curve Analysis using Thermocouple Temperature Sensor," UGC Approved International Journal of Academic Science (IJRECE), Vol. 6, Issue. 3, July-September 2018.
- 147.A. C. Pise, et. al., "Android Based Portable Health Support", System International Journal of Engineering Sciences & Research Technology (IJESRT 2017) Vol.6, Issue 8, pp 85-88 5th Aug 2017
- 148.A. C. Pise, et. al., "Adaptive Noise Cancellation in Speech Signal", International Journal of Innovative Engg and Technology, 2017
- 149.A. C. Pise, et. al., "Lung Cancer Detection System by using Baysian Classifier", ISSN 2454-7875, IJRPET, published online in conference special issue VESCOMM-2016, February 2016
- 150.A. C. Pise, et. al., "Review on Agricultural Plant Diseases Detection by Image Processing", ISSN 2278-62IX, IJLTET, Vol 7, Issue 1 May 2016
- 151.A. C. Pise, et. al. "Segmentation of Retinal Images for Glaucoma Detection", International Journal of Engineering Research and Technology (06, June-2015).
- 152.A. C. Pise, et. al. "Color Local Texture Features Based Face Recognition", International Journal of Innovations in Engineering and Technology(IJIET), Dec. 2014
- 153.A. C. Pise, et. al. "Single Chip Solution For Multimode Robotic Control", International Journal of Engineering Research and Technology (IJERT-2014), Vol. 3, Issue 12, Dec. 2014.
- 154. Anjali C. Pise et. al., "Remote monitoring of Greenhouse parameters using zigbee Wireless Sensor Network", International Journal of Engineering Research & Technology ISSN 2278-0181 (online) Vol. 3, Issue 2, and pp: (2412-2414), Feb. 2014.
- 155.A. C. Pise, K. J. Karande, "Cluster Head Selection Based on ACO In Vehicular Ad-hoc Networks", Machine Learning for Environmental Monitoring in Wireless Sensor Networks
- 156.A. C. Pise, K. J. Karande, "Architecture, Characteristics, Applications and Challenges in Vehicular Ad Hoc Networks" Presented in 27th IEEE International Symposium on Wireless Personal Multimedia Communications (WPMC 2024) "Secure 6G AI Nexus: Where Technology Meets Humanity" Accepted for book chapter to be published in international Scopus index book by River publisher.
- 157.A. C. Pise, Dr. K. J. Karande, "K-mean Energy Efficient Optimal Cluster Based Routing Protocol in Vehicular Ad Hoc Networks", International Conference on Innovations in Artificial Intelligence and Machine Learning (ICAIML-2022), August 20th and 21st 2022 Springer database Conference.
- 158.A. C. Pise, Mr. D. Nale, "Web-Based Application for Result Analysis", ", International Conference on Innovations in Artificial Intelligence and Machine Learning (ICAIML-2022), August 20th and 21st 2022 Springer database Conference.
- 159.A. C. Pise, et. al., "Detection of Cast Iron Composition by Cooling Curve Analysis using Thermocouple Temperature Sensor," 2nd International Conference on Engineering Technology, Science and Management Innovation (ICETSMI 2018), 2nd September 2018.
- 160.A. C. Pise, et. al., "Facial Expression Recognition Using Facial Features," IEEE International Conference on Communication and Electronics Systems (ICCES 2018), October 2018.
- 161.A. C. Pise, et. al., "Estimating Parameters of Cast Iron Composition using Cooling Curve Analysis," IEEE International Conference on Communication and Electronics Systems (ICCES 2018), Coimbatore, October 2018.
- 162.A. C. Pise, et. al., "Android based portable Health Support System," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 163.A. C. Pise, et. al., "Baysian Classifier & FCM Segmentation for Lung Cancer Detection in early stage," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 164.A. C. Pise, et. al., "Cast Iron Composition Measurement by Coding Curve Analysis," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 165.A. C. Pise, et. al., "War field Intelligence Defence Flaging Vehicle," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 166.A. C. Pise, et. al. "Disease Detection of Pomegranate Plant", IEEE sponsored International Conference on Computation of Power, Energy, Information and Communication, 22-23 Apr. 2015.
- 167.A. C. Pise, P. Bankar. "Face Recognition by using GABOR and LBP", IEEE International Conference on Communication and Signal Processing, ICCSP, 2-4 Apr. 2015
- 168.A. C. Pise, et. al. "Single Chip Solution For Multimode Robotic Control", Ist IEEE International Conference on Computing Communication and Automation, 26-27 Feb2015.
- 169.Anjali C. Pise, Vaishali S. Katti, "Efficient Design for Monitoring of Greenhouse Parameters using Zigbee Wireless Sensor Network", fifth SARC international conference IRF,IEEE forum ISBN 978-93-84209-21-6,pp 24-26, 25th May 2014
- 170.A. C. Pise, P. Bankar, "Face Recognition using Color Local Texture Features", International Conference on Electronics and Telecommunication, Electrical and Computer Engineering, Apr. 2014.
- 171.A. C. Pise, et.al. "Monitoring parameters of Greenhouse using Zigbee Wireless Sensor Network", 1st International Conference on Electronics and Telecommunication, Electrical and Computer Engineering, 5-6 Apr.2014.
- 172.A. C. Pise, et. al. "Compensation schemes and performance Analysis of IQ Imbalances in Direct Conversion Receivers", International Conference at GHPCOE, Gujarat, (Online Proceeding is Available), 2009.
- 173.A. C. Pise, K. J. Karande, "Energy-Efficient Optimal Routing Protocols in VANETs", 66th Annual IETE Convention, AIC -2023 September16-17, 2023, under the Theme: The Role of 5G In Enabling Digital Transformation for Rural Upliftment.
- 174.A. C. Pise, et. al. "Automatic Bottle Filling Machine using Raspberry Pi", National Conference on computer; Communication & information Technology (NCCIT-2018) dated 30th & 31st March 2018.
- 175.A. C. Pise, et. al. "Design & Implementation of ALU using VHDL", National Conference on computer; Communication & information Technology (NCCIT-2018) dated 30th & 31st March 2018.
- 176.A. C. Pise, et. al. "Mechanism and Control of Autonomus four rotor Quad copter", National Conference on Computer, Electrical and Electronics Engineering, 23- 24 Apr. 2016.
- 177.A. C. Pise, et. al. "Segmentation of Optic Disk and Optic Cup from retinal Images", ICEECMPE Chennai, June 2015
- 178.A. C. Pise, et. al. "Diseases Detection of Pomegranate Plant", IEEE Sponsored International conference on Computation of Power, Energy, April 2015.
- 179.A. C. Pise, et. al. "Compensation Techniques for I/Q Imbalance in Direct-Conversion Receivers", Conference at SCOE, Pune 2010.
- 180.A. C. Pise, et. al. "I/Q Imbalance compensation Techniques in Direct Conversion Receiver", Advancing Trends in Engineering and Management Technologies, ATEMT-2009, Conference at Shri Ramdeobaba Kamla Nehru Engineering College, Nagpur, 20-21 November 2009
- 181.A. C. Pise, et. al. "Compensation Techniques for I/Q Imbalance in Direct Conversion Receiver", Conference at PICT, Pune 2008.
- 182.A. C. Pise, et. al. "I/Q Imbalance compensation Techniques in Direct Conversion Receiver", Conference at DYCOE, Pune 2008.
- 183.A. C. Pise, et. al. "DUCHA: A New Dual channel MAC protocol for Multihop Ad-Hoc Networks", Conference at SVCP, Pune 2007.
- 184. Godase, V., Pawar, P., Nagane, S., & Kumbhar, S. (2024). Automatic railway horn system using node MCU. Journal of Control & Instrumentation, 15(1).
- 185. Godase, V., & Godase, J. (2024). Diet prediction and feature importance of gut microbiome using machine learning. Evolution in Electrical and Electronic Engineering, 5(2), 214-219.
- 186. Jamadade, V. K., Ghodke, M. G., Katakdhond, S. S., & Godase, V. A Comprehensive Review on Scalable Arduino Radar Platform for Real-time Object Detection and Mapping.

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29472

1307

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, October 2025

- 187. Godase, V. (2025). A comprehensive study of revolutionizing EV charging with solar-powered wireless solutions. Advance Research in Power Electronics and Devices e-ISSN, 3048-7145.
- 188. Godase, V. (2025, April). Advanced Neural Network Models for Optimal Energy Management in Microgrids with Integrated Electric Vehicles. In Proceedings of the International Conference on Trends in Material Science and Inventive Materials (ICTMIM-2025) DVD Part Number: CFP250J1-DVD.
- 189. Dange, R., Attar, E., Ghodake, P., & Godase, V. (2023). Smart agriculture automation using ESP8266 NodeMCU. J. Electron. Comput. Netw. Appl. Math, (35), 1-9.
- 190.Godase, V. (2025). Optimized Algorithm for Face Recognition using Deepface and Multi-task Cascaded Convolutional Network (MTCNN). Optimum Science Journal.
- 191. Mane, V. G. A. L. K., & Gangonda, K. D. S. Pipeline Survey Robot.
- 192. Godase, V. (2025). Navigating the digital battlefield: An in-depth analysis of cyber-attacks and cybercrime. International Journal of Data Science, Bioinformatics and Cyber Security, 1(1), 16-27.
- 193. Godase, V., & Jagadale, A. (2019). Three element control using PLC, PID & SCADA interface. International Journal for Scientific Research & Development, 7(2), 1105-1109.
- 194.Godase, V. (2025). Edge AI for Smart Surveillance: Real-time Human Activity Recognition on Low-power Devices. International Journal of AI and Machine Learning Innovations in Electronics and Communication Technology, 1(1), 29-46.
- 195. Godase, V., Modi, S., Misal, V., & Kulkarni, S. (2025). LoRaEdge-ESP32 synergy: Revolutionizing farm weather data collection with low-power, long-range IoT. Advance Research in Analog and Digital Communications, 2(2), 1-11.
- 196.Godase, V. (2025). Comparative study of ladder logic and structured text programming for PLC. Available at SSRN 5383802.
- 197. Godase, V., Modi, S., Misal, V., & Kulkarni, S. Real-time object detection for autonomous drone navigation using YOLOv8, || . Advance Research in Communication Engineering and its Innovations, 2(2), 17-27.
- 198.Godase, V. (2025). Smart energy management in manufacturing plants using PLC and SCADA. Advance Research in Power Electronics and Devices, 2(2), 14-24.
- 199.Godase, V. (2025). IoT-MCU Integrated Framework for Field Pond Surveillance and Water Resource Optimization. International Journal of Emerging IoT Technologies in Smart Electronics and Communication, 1(1), 9-19.
- 200.Godase, V. (2025). Graphene-Based Nano-Antennas for Terahertz Communication. International Journal of Digital Electronics and Microprocessor Technology, 1(2), 1-14.
- 201. Godase, V., Khiste, R., & Palimkar, V. (2025). AI-Optimized Reconfigurable Antennas for 6G Communication Systems. Journal of RF and Microwave Communication Technologies, 2(3), 1-12.
- 202. Bhaganagare, S., Chavan, S., Gavali, S., & Godase, V. V. (2025). Voice-Controlled Home Automation with ESP32: A Systematic Review of IoT-Based Solutions. Journal of Microprocessor and Microcontroller Research, 2(3), 1-13.
- 203. Jamadade, V. K., Ghodke, M. G., Katakdhond, S. S., & Godase, V. A Comprehensive Review on Scalable Arduino Radar Platform for Real-time Object Detection and Mapping.
- 204.Godase, V. (2025). Cross-Domain Comparative Analysis of Microwave Imaging Systems for Medical Diagnostics and Industrial Testing. Journal of Microwave Engineering & Technologies, 12(2), 39-48p.
- 205. V. K. Jamadade, M. G. Ghodke, S. S. Katakdhond, and V. Godase, —A Review on Real-time Substation Feeder Power Line Monitoring and Auditing Systems," International Journal of Emerging IoT Technologies in Smart Electronics and Communication, vol. 1, no. 2, pp. 1-16, Sep. 2025.
- 206. V. V. Godase, "VLSI-Integrated Energy Harvesting Architectures for Battery-Free IoT Edge Systems," Journal of Electronics Design and Technology, vol. 2, no. 3, pp. 1-12, Sep. 2025.
- 207.A. Salunkhe et al., "A Review on Real-Time RFID-Based Smart Attendance Systems for Efficient Record Management," Advance Research in Analog and Digital Communications, vol. 2, no. 2, pp.32-46, Aug. 2025.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, October 2025

- 208. Vaibhav, V. G. (2025). A Neuromorphic-Inspired, Low-Power VLSI Architecture for Edge AI in IoT Sensor Nodes. Journal of Microelectronics and Solid State Devices, 12(2), 41-47p.
- 209. Nagane, M.S., Pawar, M.P., & Godase, P.V. (2022). Cinematica Sentiment Analysis. Journal of Image Processing and Intelligent Remote Sensing.
- 210. Godase, V.V. (2025). Tools of Research. SSRN Electronic Journal.
- 211.Godase, V. (n.d.). EDUCATION AS EMPOWERMENT: THE KEY TO WOMEN'S SOCIO ECONOMIC DEVELOPMENT. Women Empowerment and Development, 174–179.
- 212. Godase, V. (n.d.). COMPREHENSIVE REVIEW ON EXPLAINABLE AI TO ADDRESSES THE BLACK BOX CHALLENGE AND ITS ROLE IN TRUSTWORTHY SYSTEMS. In Sinhgad College of Engineering, Artificial Intelligence Education and Innovation (pp. 127–132).
- 213.Godase, V. (n.d.-b). REVOLUTIONIZING HEALTHCARE DELIVERY WITH AI-POWERED DIAGNOSTICS: A COMPREHENSIVE REVIEW. In SKN Sinhgad College of Engineering, SKN Sinhgad College of Engineering (pp. 58–61).
- 214.Dhope, V. (2024). SMART PLANT MONITORING SYSTEM. In International Journal of Creative Research Thoughts (IJCRT). https://www.ijcrt.org
- 215.M. M. Zade, Sushant D. Kambale, Shweta A. Mane, Prathamesh M. Jadhav. (2025) "IOT Based early fire detection in Jungles". RIGJA&AR Volume 2 Issue 1, ISSN: 2998-4459. DOI: https://doi.org/10.5281/zendo.15056435
- 216.M. M. Zade, Bramhadev B. Rupanar, Vrushal S. Shilawant, Akansha R. Pawar(2025) "IOT Flood Monitoring & Alerting System using Rasberry Pi-Pico" International Journal of Research Publication & Reviews, Volume 6, Issue 3,ISSN:2582-7421.DOI:https://ijrpr.com/uploads/V6ISSUE3/IJRPR40251.pdf
- 217.M.M.Zade(2022) "Touchless Fingerprint Recognition System" (Paper-ID 907)(2022) International Conference on "Advanced Technologies for Societal Applications: Techno-Societal 2022 https://link.springer.com/book/10.1007/978-3-031-34644-6?page=6
- 218.Mr.M.M.Zade published the paper on "Automation of Color Object Sorting Conveyor Belt", in International Journal of Scientific Research in Engineering & Management (IJSREM),ISSN:2582-3930 Volume 06, Issue 11th November 2022.
- 219.Mr.M.M.Zade published the paper on "Cloud Based Patient Health Record Tracking web Developement",in International Journal of Advanced Research in Science, Communication & Technology(IJARSCT),ISSN NO:2581-9429 Volume 02, Issue 03,DOI 1048175/IJARSCT-3705,IF 6.252, May 2022.
- 220.Mr. Mahesh M Zade, "Performance analysis of PSNR Vs. Impulse Noise for the enhancement of Image using SMF", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- 221.Mr. Mahesh M Zade, "Classification of Power Quality Disturbances Using SVM & their Efficiency Comparison", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- 222.Mr. Mahesh M Zade, "Dynamic Clustering of Wireless Sensor Network Using Modified AODV", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- 223.Mr. Mahesh M Zade, "Performance analysis of PSNR Vs. Impulse Noise for the enhancement of Image using SMF", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur, Feb.2019
- 224.Mr. Mahesh M Zade, "Classification of Power Quality Disturbances Using SVM & their Efficiency Comparison", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur Feb.2019
- 225.Mr. Mahesh M Zade, "Dynamic Clustering of Wireless Sensor Network Using Modified AODV", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur Feb.2019
- 226.Mr. Mahesh M Zade & Mr.S.M.Karve,"Performance Analysis of Median Filter for Enhancement of Highly Corrupted Images", National Conference on Advanced Trends in Engineering, Association with IRJMS, Karmyogi Engineering College, Shelave, Pandharpur, March 2016.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO POUT:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- 227.Mr. Mahesh M Zade & Mr.S.M.Karve,"Implementation of Reed Solomen Encoder & Decoder Using FPGA", National Conference on Advanced Trends in Engineering, Association with IRJMS, Karmyogi Engineering College, Shelave, Pandharpur, March 2016.
- 228.Mr. Mahesh M Zade & Dr.S.M.Mukane,"Performance of Switching Median Filter for Enhancement of Image", National Conference on Mechatronics at Sinhgad Institute of Technology and Science, Narhe, Pune, Feb. 2016.
- 229.Mr. Mahesh M Zade & Dr.S.M.Mukane,"Enhancement of Image with the help of Switching Median Filter", National Conference on Emerging Trends in Electronics & Telecommunication Engineering, SVERI's College of Engineering Pandharpur, NCET 2013.
- 230.Mr.Mahesh M Zade & Dr.S.M.Mukane,"Enhancement of Image with the help of Switching Median Filter", International Journal of Computer Application (IJCA) SVERI's College of Engineering, Pandharpur, Dec.2013

