

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Automatic Movable Road Divider

Udayraj Bhosale¹, Digvijay Deshmukh², Pranav Bankar³, Prof S. R. Takale⁴

 ^{1,2,3}UG Students, Department of Electronics and Telecommunication Engineering
 ⁴Assistant Professor, Department of Electronics and Telecommunication Engineering SKN Sinhgad College of Engineering, Pandharpur pranavbankar24@gmail.com, deshmukhdigvijay1717@gmail.com, udayrajbhosale555@gmail.com, swapnil.takale@sknscoe.ac.in

Abstract: Traffic congestion and inefficient road space utilization are major challenges in modern urban transportation systems. The "Automatic Movable Road Divider" project aims to provide a dynamic and intelligent solution to these problems by designing a road divider system that can be automatically repositioned based on real-time traffic conditions. This system employs sensors, microcontrollers (e.g., Arduino), and motorized mechanisms to detect traffic density in multiple lanes and adjust the position of the divider accordingly. During peak hours, the divider shifts to allocate more lanes to the congested direction, thereby optimizing traffic flow and reducing delays. The system can be controlled automatically through an embedded program or manually via remote control, ensuring flexibility and safety The design integrates infrared or ultrasonic sensors to monitor vehicle count and lane occupancy in real-time. A central microcontroller processes the sensor data and controls a series of motors or actuators that move the divider units along embedded tracks or wheels. Safety features such as emergency stop mechanisms, LED indicators, and obstacle detection ensure reliable and secure operation. The system is powered by either a mains supply or solar energy, promoting sustainability. This adaptable infrastructure can be especially beneficial in cities with varying traffic patterns throughout the day, such as near schools, business districts, or event venues. The project has the potential to replace traditional static dividers in metropolitan areas, offering a cost-effective, adaptive, and technologically advanced approach to traffic management.

Keywords: Traffic congestion

I. INTRODUCTION

Urbanization and the rapid increase in vehicle population have led to significant traffic congestion in cities worldwide. Conventional road infrastructure often lacks the adaptability to handle fluctuating traffic volumes during different times of the day. One common issue is the unequal lane usage during peak hours where one side of the road may experience heavy traffic while the other side remains underutilized. This imbalance causes delays, fuel wastage, and increased pollution levels. Traditional road dividers are static and do not offer any flexibility in lane management. As traffic patterns vary throughout the day, there is a pressing need for a system that can dynamically allocate lanes to suit real-time conditions.

A movable road divider system provides an innovative approach to solve this problem. It offers the ability to adapt lane distribution based on actual traffic demand, optimizing road usage and minimizing congestion. The Automatic Movable Road Divider is a smart system designed to automatically adjust the position of a road barrier depending on traffic flow. It uses a combination of sensors (such as ultrasonic or IR sensors) to detect vehicle density, a microcontroller (like Arduino or Raspberry Pi) to process the data, and motorized mechanisms to move the divider units. The dividers are mounted on tracks or wheels and can shift laterally to expand or reduce the number of lanes in a specific direction.

This system offers several advantages, including improved traffic flow, reduced fuel consumption, and enhanced road safety. It can be especially useful in areas where traffic patterns vary significantly throughout the day, such as near schools, commercial zones, or highways leading into city centres. The system also supports remote and automated control, making it suitable for integration into modern intelligent transportation systems (ITS) and smart city infrastructure. The

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

primary objective of this project is to design and prototype a fully functional automatic movable road divider that can operate in real-time based on live traffic data. The system aims to be cost effective, reliable, and scalable for different types of roads and environments.

II. LITERATURE REVIEW

Supriya Sarker *et al.* [1] proposed an IoT-based intelligent accident detection and location tracking model that relies on vehicle-mounted sensing modules to continuously monitor driving conditions. The system was designed to automatically identify accidents by detecting abnormal collision forces and then retrieving real-time GPS coordinates to determine the exact accident location. Once an incident was confirmed, these coordinates were instantly transmitted to a central monitoring server and nearby hospitals through GSM and cloud-based communication channels. This automation minimized the reliance on bystanders or passersby to report accidents, thereby significantly reducing delays in initiating emergency medical services. The authors further highlighted the scalability of their IoT framework, noting its potential integration into smart city infrastructure for large-scale traffic monitoring and coordinated response mechanisms.

The study also explored how hospital networks could be integrated with the system, enabling medical facilities to receive accident alerts in advance and prepare resources such as ambulances and emergency staff proactively. This proactive approach could drastically reduce the "golden hour" response time, which is critical for saving lives in road accidents. Additionally, the authors emphasized the role of cloud connectivity in maintaining historical crash data, which could later be used for accident analysis, insurance verification, and road safety audits. Another significant contribution of their work was the foresight in suggesting the use of artificial intelligence and predictive analytics. By combining real-time crash data with machine learning models hosted on the cloud, the system could potentially move beyond detection to accident prevention by identifying high-risk driving behaviours and hazardous zones. Their research thus set a strong foundation for future intelligent transportation systems that combine IoT, cloud, and AI for holistic accident management and prevention.

R. Thamizharasi *et al.* [2] developed a real-time drowsiness detection system using an infrared (IR) eye-blink sensor that continuously tracked the driver's eye movements to determine levels of alertness. The system operated on the principle that prolonged eyelid closure or irregular blink patterns strongly correlate with fatigue and drowsiness. Once such conditions were detected, the system instantly activated an audio alarm to alert the driver and prevent a potential accident. The study demonstrated that this approach was particularly effective in reducing accidents caused by driver fatigue during night journeys, highway driving, and long-haul operations where concentration typically declines over time.

Although the system was cost-effective and simple to implement, the authors identified several limitations. Sensor accuracy was reduced under strong sunlight, where IR interference affected detection reliability, and the system occasionally misinterpreted normal eye movements as drowsiness. The presence of spectacles or tinted glasses further complicated detection due to reflection and obstruction of IR light. To address these issues, the authors suggested a hybrid approach that integrates IR sensors with complementary technologies such as image processing through cameras or EEG-based monitoring of brain activity. Such integration could enhance detection accuracy by validating IR sensor readings against additional physiological parameters.

The research also emphasized the broader implications of fatigue detection systems in intelligent transportation. By incorporating such drowsiness monitoring into modern vehicles, accidents related to human error could be significantly reduced, which is vital given that driver fatigue remains one of the leading causes of road mishaps globally. The authors further recommended connecting the system with communication modules such as GSM or IoT platforms, which would not only alert the driver but could also notify emergency contacts or fleet management systems when critical drowsiness levels were recorded. This extension would transform the solution from a simple alert system to a proactive accident-prevention and safety management tool. Thus, the study highlighted how low-cost, sensor-driven solutions, when integrated with advanced communication and analytics, could substantially enhance driver safety and road accident prevention.

R. Krishnan *et al.* [3] presented a system for alcohol detection and vehicle ignition control that utilized the MQ-3 alcohol sensor integrated with an Arduino microcontroller to enhance road safety. The system was designed to analyse the alcohol concentration in a driver's breath, and if the value exceeded a predefined threshold, the ignition circuit of the vehicle was

Copyright to IJARSCT

DOI: 10.48175/IJARSCT-29457

101

www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO POON 1:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

automatically disabled, preventing the engine from starting. This direct intervention mechanism effectively discouraged drunk driving by ensuring that intoxicated drivers could not operate their vehicles. The authors emphasized that the MQ-3 sensor, known for its high sensitivity to ethanol vapours, offered a reliable method for identifying alcohol consumption in real time, making it a practical choice for low-cost safety solutions.

Their experiments demonstrated that the system could consistently detect alcohol within seconds, offering immediate feedback and control. However, the study also highlighted some limitations related to environmental influences. Factors such as humidity, temperature, and the presence of other volatile gases could affect sensor readings, leading to possible false positives or reduced accuracy over time. These challenges necessitated periodic calibration of the sensor to maintain reliability, particularly in diverse driving environments. The researchers suggested that calibration routines could be automated or supplemented with advanced filtering algorithms to address these environmental interferences.

In addition to ignition control, the authors proposed extending the system's capabilities by integrating it with GSM and GPS modules. Such an integration would allow the system not only to prevent the vehicle from starting but also to send emergency alerts or notifications to authorities, family members, or fleet managers if intoxication was detected. This enhancement could transform the system from a preventive tool into a comprehensive safety solution that actively engages emergency communication channels. The study concluded that incorporating alcohol detection into vehicular systems could significantly reduce one of the leading causes of traffic accidents worldwide—drunk driving—and emphasized its potential for integration into both private vehicles and commercial fleets to improve overall transportation safety.

A. Kumar *et al.* [4] designed a cost-effective accident detection and alert system by integrating an ADXL335 accelerometer with GPS and GSM modules, controlled through an Arduino microcontroller. The accelerometer was tasked with continuously monitoring acceleration along multiple axes, and sudden changes beyond a predefined threshold were interpreted as collision events. Once such an event was detected, the system immediately collected GPS coordinates to identify the exact accident location and transmitted these details via GSM to preconfigured emergency contacts. This rapid communication reduced the dependency on external reporting and enabled emergency services to be dispatched more quickly, thereby addressing the critical time gap that often determines survival rates in road accidents.

The authors validated their design through experimental testing, which showed reliable detection of collision scenarios and swift message delivery within a matter of seconds. The use of low-cost sensors and open-source hardware platforms made the system both affordable and accessible, presenting a viable solution for large-scale deployment in developing regions where advanced safety features are often absent in vehicles. However, the researchers also observed certain drawbacks. The system occasionally generated false alarms, particularly when the vehicle traversed rough terrains, speed breakers, or potholes, where the accelerometer registered abrupt movements that mimicked collision signatures. To overcome this issue, the study suggested the implementation of adaptive thresholding or machine learning algorithms capable of distinguishing between normal driving vibrations and actual accidents.

In addition, the authors emphasized that the integration of GPS and GSM modules extended the utility of their system beyond simple detection. By ensuring that real-time location data was transmitted immediately after an incident, the system created a direct channel of communication between vehicles and emergency responders. This could significantly reduce the "golden hour" response delay, which is critical in saving lives. The researchers also pointed to future advancements where such systems could be linked with centralized databases, traffic management centres, or hospital networks to enhance large-scale accident management. Overall, their work demonstrated that combining accelerometers with communication technologies provides a practical, low-cost framework for accident detection, while highlighting the importance of continuous innovation to minimize false triggers and increase reliability under real-world driving conditions.

P. Singh *et al.* [5] developed a comprehensive vehicle safety prototype that combined multiple modules, including alcohol detection, accident detection, and GSM-based emergency alerts, into a single unified framework. The system employed Arduino as the central processing unit to coordinate data from various sensors and generate corresponding outputs. For alcohol detection, the MQ-3 sensor was used to monitor the driver's breath and prevent vehicle ignition if intoxication was detected. Accident detection was managed using an accelerometer that identified sudden changes in motion, while a GPS module retrieved real-time location data, which was then transmitted through GSM to emergency contacts. Additionally, buzzers and alert systems were incorporated to provide immediate warnings in critical situations. This

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29457

101

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

multi-layered approach provided both preventive and responsive measures, making it more effective than single-feature systems.

The authors emphasized that their innovation lay in the integration of different safety features into a single low-cost platform. By combining preventive measures such as alcohol detection and drowsiness monitoring with responsive actions like automatic emergency alerts, the system addressed multiple dimensions of road safety simultaneously. Experimental results validated the reliability of sensor fusion, as the coordinated use of multiple modules reduced the probability of missed detections compared to standalone solutions. However, the prototype was tested only on a small scale and under controlled conditions, limiting its ability to fully represent real-world driving environments. The authors noted that large-scale implementation would require additional calibration and field testing to handle factors such as varying road conditions, climate, and user behaviour.

III. METHODOLOGY

Fig1. Block Diagram of the System

Arduino UNO:

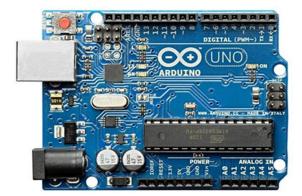


Fig2. Arduino UNO

The Arduino UNO is a microcontroller board based on the ATmega328P chip, and it functions as the brain of many DIY electronics projects. It works by reading inputs—such as light from a sensor or a button press—and converting them into outputs, like turning on an LED or spinning a motor, based on instructions written in the Arduino programming language (C/C++). These instructions are uploaded to the board through a USB connection using the Arduino IDE. The board has digital and analog input/output pins to connect sensors and actuators, and it operates on 5V power. Its simplicity and flexibility make it ideal for beginners and prototyping.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

IR Sensor:

Fig3. IR Sensor

The Infrared (IR) sensor used as an eye blink sensor plays a vital role in detecting driver drowsiness. It operates on the principle of infrared light reflection, where an IR transmitter emits light toward the driver's eye, and the reflected light is received by an IR receiver. When the driver's eyes are open, the reflection pattern differs from when they are closed, allowing the system to detect eye blinks or prolonged eye closure. This data is processed by the ESP32 microcontroller to determine signs of fatigue or sleepiness. If the eyes remain closed beyond a specific duration, the system triggers a drowsiness alert to prevent accidents. The sensor is noncontact, fast-responding, and reliable, making it highly suitable for real-time driver monitoring applications in intelligent vehicle safety systems.

LCD Display:

Fig4. LCD Display

The 16x2 LCD is a display module that shows 16 characters per line on 2 lines. It operates on 5V and is commonly used in embedded systems to display data like temperature, humidity, or status messages. It uses either 4-bit or 8-bit parallel communication with microcontrollers.

Gear Motor:

Fig5. Gear Motor

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

A gear motor is an electromechanical device that integrates an electric motor with a gearbox to deliver controlled rotational motion. While the motor provides high-speed rotation, the gearbox reduces this speed and increases the torque, making the output powerful and suitable for practical mechanical tasks. This combination allows gear motors to handle heavier loads and operate more efficiently at lower speeds. The gearbox also provides better control and stability in motion, which is why gear motors are widely used in various industries and automation systems.

There are different types of gear motors based on their power source and design. DC gear motors are very popular in small-scale applications such as robotics, DIY projects, and IoT systems because they run on low-voltage batteries, are lightweight, and easy to control. AC gear motors, on the other hand, are used in larger and more industrial applications where more power and continuous operation are required. Worm gear motors are known for their high torque and compact design, often used in conveyor systems and lifting equipment. Planetary and spur gear motors are used when precision and efficiency are needed, such as in 3D printers, CNC machines, and automated doors.

The performance of a gear motor is usually determined by several key specifications, including voltage, current, RPM (revolutions per minute), torque, gear ratio, and shaft size. A higher gear ratio means greater torque but lower speed, while a lower gear ratio provides higher speed but less torque. This allows engineers and designers to choose gear motors based on the specific needs of their project.

Gear motors offer several advantages: they are compact, energy-efficient, and provide high torque at low speeds, which is ideal for controlled mechanical movement. They are also reliable and can last long with proper care. However, they may produce some mechanical loss due to friction inside the gears, and they need periodic maintenance like lubrication. They are not suitable for extremely high-speed applications because the gearbox is designed mainly for torque multiplication and speed reduction.

Motor Driver:

Fig 6. L298N

The L298N motor driver is a dual H-bridge driver module used to control the direction and speed of DC motors. It acts as an interface between the ESP32 microcontroller and the vehicle's motor by amplifying the control signals to drive high-current motors. In this project, the motor driver is utilized for vehicle movement control, such as stopping the motor when drowsiness or an accident is detected. It can control two DC motors independently and supports both forward and reverse motion. The L298N module is efficient, reliable, and easy to interface, making it ideal for embedded and automation applications. Its use ensures safe and precise control of vehicle operations in the proposed accident prevention system.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Rack and pinion gear:

Fig7.Rack and pinion gear

A rack and pinion gear is a simple and efficient mechanical system used to convert rotational motion into linear motion. It consists of two main parts: the pinion, which is a circular gear, and the rack, which is a flat, straight gear with teeth. When the pinion rotates, its teeth mesh with the teeth on the rack, causing the rack to move in a straight line. Similarly, if the rack moves, it can make the pinion rotate. This system is widely used in machines where precise linear movement is needed.

Rack and pinion gears are commonly found in steering systems of vehicles, allowing the circular motion of the steering wheel to turn the wheels in a controlled linear way. They are also used in CNC machines, industrial automation, elevators, gates, and robotic systems where smooth and accurate movement is required. One of the biggest advantages of this mechanism is its high efficiency, simple design, and compact size. Unlike other gear systems, rack and pinion setups provide a direct and reliable transfer of motion without complex components.

The performance of a rack and pinion system depends on factors like gear material, tooth size, and gear ratio. A smaller pinion provides higher torque but slower movement, while a larger pinion provides faster movement but less torque. Materials like steel, aluminum, and hardened plastic are commonly used depending on the application and required strength.

Rack and pinion systems are easy to maintain and offer accurate control, which is why they are preferred in many mechanical and electromechanical devices. However, they do require proper alignment and lubrication to reduce friction and wear. Overall, the rack and pinion gear is a versatile and dependable mechanism that plays a key role in modern machinery and automation.

IV. RESULTS

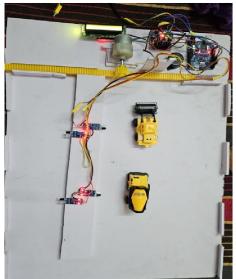


Fig1. Result-1 DOI: 10.48175/IJARSCT-29457

Copyright to IJARSCT
www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

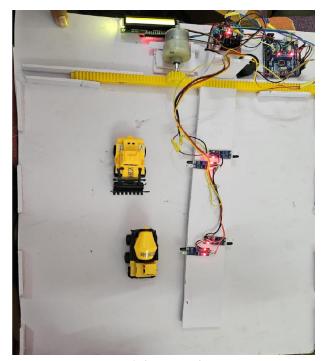


Fig2. Result-2

V. DISCUSSIONS

The Automatic Movable Road Divider System was tested under controlled scenarios to evaluate the performance of its sensing and actuation modules. The DC gear motor, controlled through the L298N motor driver, demonstrated smooth and precise movement of the divider, ensuring stable operation during both forward and reverse directions. The system maintained consistent speed and torque, enabling the divider to shift lanes accurately and efficiently without instability. The IR obstacle detection sensors accurately identified the presence of vehicles and pedestrians, triggering the motor to stop or adjust movement in real time. This prevented potential collisions, confirming the reliability of the obstacle detection mechanism.

During testing, the system responded effectively to various scenarios such as peak traffic flow, emergency lane creation, and obstruction detection. The motor's performance remained stable even under continuous operation, and the IR sensors consistently provided accurate and quick feedback.

Overall, the Automatic Movable Road Divider System exhibited high accuracy, quick response, and strong operational stability. The successful integration of IR sensors with the motor control system demonstrates the feasibility of this technology for smart traffic management. It has the potential to reduce congestion, improve road safety, and enable dynamic lane management in urban areas, making it a practical and efficient solution for modern transportation systems.

VI. CONCLUSION

The Automatic Movable Road Divider System provides an efficient and practical solution for managing traffic flow in real time. By using a DC gear motor and IR obstacle detection sensors, the system allows smooth and controlled movement of road dividers without manual intervention. It can be used to create or adjust lanes during peak traffic hours or emergency situations. The reliable response of the sensors ensures safe operation.

This system helps reduce congestion, improve lane usage, and increase overall road safety. The use of basic, cost-effective components makes it suitable for real-world applications and easy to maintain. The motor's stable performance under various test conditions shows its ability to function continuously and effectively. The quick response of the sensors enhances its reliability in dynamic traffic environments.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

In conclusion, the Automatic Movable Road Divider System is a smart and innovative approach to modern traffic management. It combines mechanical movement with sensor-based control to provide flexible lane management. This technology can be implemented in cities to improve road efficiency and safety. Its simplicity and effectiveness make it a sustainable and scalable traffic solution for the future.

REFERENCES

- 1. Godase, M. V., Mulani, A., Ghodak, M. R., Birajadar, M. G., Takale, M. S., & Kolte, M. A MapReduce and Kalman Filter based Secure IIoT Environment in Hadoop. Sanshodhak, Volume 19, June 2024.
- 2. Mulani, A. O., & Mane, P. B. (2017). Watermarking and cryptography based image authentication on reconfigurable platform. Bulletin of Electrical Engineering and Informatics, 6(2), 181-187.
- 3. Gadade, B., Mulani, A. O., & Harale, A. D. IoT Based Smart School Bus and Student Tracking System. Sanshodhak, Volume 19, June 2024.
- 4. Dhanawadel, A., Mulani, A. O., & Pise, A. C. IOT based Smart farming using Agri BOT. Sanshodhak, Volume 20, June 2024.
- 5. Mulani, A., & Mane, P. B. (2016). DWT based robust invisible watermarking. Scholars' Press.
- 6. R. G. Ghodke, G. B. Birajdar, A.O. Mulani, G.N. Shinde, R.B. Pawar, Design and Development of an Efficient and Cost-Effective surveillance Quadcopter using Arduino, Sanshodhak, Volume 20, June 2024.
- 7. R. G. Ghodke, G. B. Birajdar, A.O. Mulani, G.N. Shinde, R.B. Pawar, Design and Development of Wireless Controlled ROBOT using Bluetooth Technology, Sanshodhak, Volume 20, June 2024.
- 8. Swami, S. S., & Mulani, A. O. (2017, August). An efficient FPGA implementation of discrete wavelet transform for image compression. In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS) (pp. 3385-3389). IEEE.
- 9. Mane, P. B., & Mulani, A. O. (2018). High speed area efficient FPGA implementation of AES algorithm. International Journal of Reconfigurable and Embedded Systems, 7(3), 157-165.
- 10. Mulani, A. O., & Mane, P. B. (2016). Area efficient high speed FPGA based invisible watermarking for image authentication. Indian journal of Science and Technology, 9(39), 1-6.
- 11. Kashid, M. M., Karande, K. J., & Mulani, A. O. (2022, November). IoT-based environmental parameter monitoring using machine learning approach. In Proceedings of the International Conference on Cognitive and Intelligent Computing: ICCIC 2021, Volume 1 (pp. 43-51). Singapore: Springer Nature Singapore.
- 12. Nagane, U. P., & Mulani, A. O. (2021). Moving object detection and tracking using Matlab. Journal of Science and Technology, 6(1), 2456-5660.
- 13. Kulkarni, P. R., Mulani, A. O., & Mane, P. B. (2016). Robust invisible watermarking for image authentication. In Emerging Trends in Electrical, Communications and Information Technologies: Proceedings of ICECIT-2015 (pp. 193-200). Singapore: Springer Singapore.
- 14. Ghodake, M. R. G., & Mulani, M. A. (2016). Sensor based automatic drip irrigation system. Journal for Research, 2(02).
- 15. Mandwale, A. J., & Mulani, A. O. (2015, January). Different Approaches For Implementation of Viterbi decoder on reconfigurable platform. In 2015 International Conference on Pervasive Computing (ICPC) (pp. 1-4). IEEE.
- 16. Jadhav, M. M., Chavan, G. H., & Mulani, A. O. (2021). Machine learning based autonomous fire combat turret. Turkish Journal of Computer and Mathematics Education, 12(2), 2372-2381.
- 17. Shinde, G., & Mulani, A. (2019). A robust digital image watermarking using DWT-PCA. International Journal of Innovations in Engineering Research and Technology, 6(4), 1-7.
- 18. Mane, D. P., & Mulani, A. O. (2019). High throughput and area efficient FPGA implementation of AES algorithm. International Journal of Engineering and Advanced Technology, 8(4).
- 19. Mulani, A. O., & Mane, D. P. (2017). An Efficient implementation of DWT for image compression on reconfigurable platform. International Journal of Control Theory and Applications, 10(15), 1-7.

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- Deshpande, H. S., Karande, K. J., & Mulani, A. O. (2015, April). Area optimized implementation of AES algorithm on FPGA. In 2015 International Conference on Communications and Signal Processing (ICCSP) (pp. 0010-0014). IEEE.
- 21. Deshpande, H. S., Karande, K. J., & Mulani, A. O. (2014, April). Efficient implementation of AES algorithm on FPGA. In 2014 International Conference on Communication and Signal Processing (pp. 1895-1899). IEEE.
- 22. Kulkarni, P., & Mulani, A. O. (2015). Robust invisible digital image mamarking using discrete wavelet transform. International Journal of Engineering Research & Technology (IJERT), 4(01), 139-141.
- 23. Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless Non□invasive blood glucose concentration level estimation using PCA and machine learning. The CRC Book entitled Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications.
- 24. Mulani, A. O., & Shinde, G. N. (2021). An approach for robust digital image watermarking using DWT □ PCA. Journal of Science and Technology, 6(1).
- 25. Mulani, A. O., & Mane, P. B. (2014, October). Area optimization of cryptographic algorithm on less dense reconfigurable platform. In 2014 International Conference on Smart Structures and Systems (ICSSS) (pp. 86-89). IEEE.
- 26. Jadhav, H. M., Mulani, A., & Jadhav, M. M. (2022). Design and development of chatbot based on reinforcement learning. Machine Learning Algorithms for Signal and Image Processing, 219-229.
- 27. Mulani, A. O., & Mane, P. (2018). Secure and area efficient implementation of digital image watermarking on reconfigurable platform. International Journal of Innovative Technology and Exploring Engineering, 8(2), 56-61.
- 28. Kalyankar, P. A., Mulani, A. O., Thigale, S. P., Chavhan, P. G., & Jadhav, M. M. (2022). Scalable face image retrieval using AESC technique. Journal Of Algebraic Statistics, 13(3), 173-176.
- 29. Takale, S., & Mulani, A. (2022). DWT-PCA based video watermarking. Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN, 2799-1156.
- 30. Kamble, A., & Mulani, A. O. (2022). Google assistant based device control. Int. J. of Aquatic Science, 13(1), 550-555.
- 31. Kondekar, R. P., & Mulani, A. O. (2017). Raspberry Pi based voice operated Robot. International Journal of Recent Engineering Research and Development, 2(12), 69-76.
- 32. Ghodake, R. G., & Mulani, A. O. (2018). Microcontroller based automatic drip irrigation system. In Techno-Societal 2016: Proceedings of the International Conference on Advanced Technologies for Societal Applications (pp. 109-115). Springer International Publishing.
- 33. Mulani, A. O., Birajadar, G., Ivković, N., Salah, B., & Darlis, A. R. (2023). Deep learning based detection of dermatological diseases using convolutional neural networks and decision trees. Traitement du Signal, 40(6), 2819.
- 34. Boxey, A., Jadhav, A., Gade, P., Ghanti, P., & Mulani, A. O. (2022). Face Recognition using Raspberry Pi. Journal of Image Processing and Intelligent Remote Sensing (JIPIRS) ISSN, 2815-0953.
- 35. Patale, J. P., Jagadale, A. B., Mulani, A. O., & Pise, A. (2023). A Systematic survey on Estimation of Electrical Vehicle. Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN, 2799-1156.
- 36. Gadade, B., & Mulani, A. (2022). Automatic System for Car Health Monitoring. International Journal of Innovations in Engineering Research and Technology, 57-62.
- 37. Shinde, M. R. S., & Mulani, A. O. (2015). Analysis of Biomedical Image Using Wavelet Transform. International Journal of Innovations in Engineering Research and Technology, 2(7), 1-7.
- 38. Mandwale, A., & Mulani, A. O. (2014, December). Implementation of convolutional encoder & different approaches for viterbi decoder. In IEEE International Conference on Communications, Signal Processing Computing and Information technologies.
- 39. Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless machine learning approach to estimate blood glucose level with non-invasive devices. In Artificial intelligence, internet of things (IoT) and smart materials for energy applications (pp. 83-100). CRC Press.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 40. Maske, Y., Jagadale, A. B., Mulani, A. O., & Pise, A. C. (2023). Development of BIOBOT system to assist COVID patient and caretakers. European Journal of Molecular & Clinical Medicine, 10(01), 2023.
- 41. Utpat, V. B., Karande, D. K., & Mulani, D. A. Grading of Pomegranate Using Quality Analysis. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 10.
- 42. Takale, S., & Mulani, D. A. (2022). Video Watermarking System. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 10.
- 43. Mandwale, A., & Mulani, A. O. (2015, January). Different approaches for implementation of Viterbi decoder. In IEEE international conference on pervasive computing (ICPC).
- 44. Maske, Y., Jagadale, M. A., Mulani, A. O., & Pise, A. (2021). Implementation of BIOBOT System for COVID Patient and Caretakers Assistant Using IOT. International Journal of Information Technology and, 30-43.
- 45. Mulani, A. O., & Mane, D. P. (2016). Fast and Efficient VLSI Implementation of DWT for Image Compression. International Journal for Research in Applied Science & Engineering Technology, 5, 1397-1402.
- 46. Kambale, A. (2023). Home automation using google assistant. UGC care approved journal, 32(1), 1071-1077.
- 47. Pathan, A. N., Shejal, S. A., Salgar, S. A., Harale, A. D., & Mulani, A. O. (2022). Hand gesture controlled robotic system. Int. J. of Aquatic Science, 13(1), 487-493.
- 48. Korake, D. M., & Mulani, A. O. (2016). Design of Computer/Laptop Independent Data transfer system from one USB flash drive to another using ARM11 processor. International Journal of Science, Engineering and Technology Research.
- 49. Mandwale, A., & Mulani, A. O. (2016). Implementation of High Speed Viterbi Decoder using FPGA. International Journal of Engineering Research & Technology, IJERT.
- 50. Kolekar, S. D., Walekar, V. B., Patil, P. S., Mulani, A. O., & Harale, A. D. (2022). Password Based Door Lock System. Int. J. of Aquatic Science, 13(1), 494-501.
- 51. Shinde, R., & Mulani, A. O. (2015). Analysis of Biomedical Image. International Journal on Recent & Innovative trend in technology (IJRITT).
- 52. Sawant, R. A., & Mulani, A. O. (2022). Automatic PCB Track Design Machine. International Journal of Innovative Science and Research Technology, 7(9).
- 53. ABHANGRAO, M. R., JADHAV, M. S., GHODKE, M. P., & MULANI, A. (2017). Design And Implementation Of 8-bit Vedic Multiplier. International Journal of Research Publications in Engineering and Technology (ISSN No: 2454-7875).
- 54. Gadade, B., Mulani, A. O., & Harale, A. D. (2024). Iot based smart school bus and student monitoring system. Naturalista Campano, 28(1), 730-737.
- 55. Mulani, D. A. O. (2024). A Comprehensive Survey on Semi-Automatic Solar-Powered Pesticide Sprayers for Farming. Journal of Energy Engineering and Thermodynamics (JEET) ISSN, 2815-0945.
- 56. Salunkhe, D. S. S., & Mulani, D. A. O. (2024). Solar Mount Design Using High-Density Polyethylene. NATURALISTA CAMPANO, 28(1).
- 57. Seth, M. (2022). Painless Machine learning approach to estimate blood glucose level of Non-Invasive device. Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications.
- 58. Kolhe, V. A., Pawar, S. Y., Gohery, S., Mulani, A. O., Sundari, M. S., Kiradoo, G., ... & Sunil, J. (2024). Computational and experimental analyses of pressure drop in curved tube structural sections of Coriolis mass flow metre for laminar flow region. Ships and Offshore Structures, 19(11), 1974-1983.
- 59. Basawaraj Birajadar, G., Osman Mulani, A., Ibrahim Khalaf, O., Farhah, N., G Gawande, P., Kinage, K., & Abdullah Hamad, A. (2024). Epilepsy identification using hybrid CoPrO-DCNN classifier. International Journal of Computing and Digital Systems, 16(1), 783-796.
- 60. Kedar, M. S., & Mulani, A. (2021). IoT Based Soil, Water and Air Quality Monitoring System for Pomegranate Farming. Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN, 2799-1156.
- 61. Godse, A. P. A.O. Mulani (2009). Embedded Systems (First Edition).
- 62. Pol, R. S., Bhalerao, M. V., & Mulani, A. O. A real time IoT based System Prediction and Monitoring of Landslides. International Journal of Food and Nutritional Sciences, Volume 11, Issue 7, 2022.

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29457

ISSN 2581-9429 IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 63. Mulani, A. O., Sardey, M. P., Kinage, K., Salunkhe, S. S., Fegade, T., & Fegade, P. G. (2025). ML-powered Internet of Medical Things (MLIOMT) structure for heart disease prediction. Journal of Pharmacology and Pharmacotherapeutics, 16(1), 38-45.
- 64. Aiwale, S., Kolte, M. T., Harpale, V., Bendre, V., Khurge, D., Bhandari, S., ... & Mulani, A. O. (2024). Non-invasive Anemia Detection and Prediagnosis. Journal of Pharmacology and Pharmacotherapeutics, 15(4), 408-416.
- 65. Mulani, A. O., Bang, A. V., Birajadar, G. B., Deshmukh, A. B., Jadhav, H. M., & Liyakat, K. K. S. (2024). IoT Based Air, Water, and Soil Monitoring System for Pomegranate Farming. Annals of Agri-Bio Research, 29(2), 71-86.
- 66. Kulkarni, T. M., & Mulani, A. O. (2024). Face Mask Detection on Real Time Images and Videos using Deep Learning. International Journal of Electrical Machine Analysis and Design (IJEMAD), 2(1).
- 67. Thigale, S. P., Jadhav, H. M., Mulani, A. O., Birajadar, G. B., Nagrale, M., & Sardey, M. P. (2024). Internet of things and robotics in transforming healthcare services. Afr J Biol Sci (S Afr), 6(6), 1567-1575.
- 68. Pol, D. R. S. (2021). Cloud Based Memory Efficient Biometric Attendance System Using Face Recognition. Stochastic Modeling & Applications, 25(2).
- 69. Nagtilak, M. A. G., Ulegaddi, M. S. N., Adat, M. A. S., & Mulani, A. O. (2021). Breast Cancer Prediction using Machine Learning.
- 70. Rahul, G. G., & Mulani, A. O. (2016). Microcontroller Based Drip Irrigation System.
- 71. Kulkarni, T. M., & Mulani, A. O. Deep Learning Based Face-Mask Detection: An Approach to Reduce Pandemic Spreads in Human Healthcare. African Journal of Biological Sciences, 6(6), 2024.
- 72. Mulani, A., & Mane, P. B. (2016). DWT based robust invisible watermarking. Scholars' Press.
- 73. Dr. Vaishali Satish Jadhav, Dr. Shweta Sadanand Salunkhe, Dr. Geeta Salunkhe, Pranali Rajesh Yawle, Dr. Rahul S. Pol, Dr. Altaf Osman Mulani, Dr. Manish Rana, Iot Based Health Monitoring System for Human, Afr. J. Biomed. Res. Vol. 27 (September 2024).
- 74. Dr. Vaishali Satish Jadhav, Geeta D. Salunke, Kalyani Ramesh Chaudhari, Dr. Altaf Osman Mulani, Dr. Sampada Padmakar Thigale, Dr. Rahul S. Pol, Dr. Manish Rana, Deep Learning-Based Face Mask Recognition in Real-Time Photos and Videos, Afr. J. Biomed. Res. Vol. 27 (September 2024).
- 75. Altaf Osman Mulani, Electric Vehicle Parameters Estimation Using Web Portal, Recent Trends in Electronics & Communication Systems, Volume 10, Issue 3, 2023.
- 76. Aryan Ganesh Nagtilak, Sneha Nitin Ulegaddi, Mahesh Mane, Altaf O. Mulani, Automatic Solar Powered Pesticide Sprayer for Farming, International Journal of Microwave Engineering and Technology, Volume 9 No. 2, 2023.
- 77. Annasaheb S. Dandage, Vitthal R. Rupnar, Tejas A Pise, and A. O. Mulani, Real-Time Language Translation Application Using Tkinter. International Journal of Digital Communication and Analog Signals. 2025; 11(01): p.
- 78. AnnaSaheb S Dandage, Vitthal R. Rupnar, Tejas A Pise, and A. O. Mulani, IoT-Powered Weather Monitoring and Irrigation Automation: Transforming Modern Farming Practices. . 2025; 11(01): -p.
- 79. Mulani, A.O., Kulkarni, T.M. (2025). Face Mask Detection System Using Deep Learning: A Comprehensive Survey. In: Singh, S., Arya, K.V., Rodriguez, C.R., Mulani, A.O. (eds) Emerging Trends in Artificial Intelligence, Data Science and Signal Processing. AIDSP 2023. Communications in Computer and Information Science, vol 2439. Springer, Cham. https://doi.org/10.1007/978-3-031-88759-8_3.
- 80. Karve, S., Gangonda, S., Birajadar, G., Godase, V., Ghodake, R., Mulani, A.O. (2025). Optimized Neural Network for Prediction of Neurological Disorders. In: Singh, S., Arya, K.V., Rodriguez, C.R., Mulani, A.O. (eds) Emerging Trends in Artificial Intelligence, Data Science and Signal Processing. AIDSP 2023. Communications in Computer and Information Science, vol 2440. Springer, Cham. https://doi.org/10.1007/978-3-031-88762-8 18.
- 81. Saurabh Singh, Karm Veer Arya, Ciro Rodriguez Rodriguez, and Altaf Osman Mulani, Emerging Trends in Artificial Intelligence, Data Science and Signal Processing, Communications in Computer and Information Science (CCIS), volume 2440.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 82. Saurabh Singh, Karm Veer Arya, Ciro Rodriguez Rodriguez, and Altaf Osman Mulani, Emerging Trends in Artificial Intelligence, Data Science and Signal Processing, Communications in Computer and Information Science (CCIS), volume 2439.
- 83. Godase, V., Mulani, A., Pawar, A., & Sahani, K. (2025). A Comprehensive Review on PIR Sensor-Based Light Automation Systems. International Journal of Image Processing and Smart Sensors, 1(1), 22-29.
- 84. Godase, V., Mulani, A., Takale, S., & Ghodake, R. (2025). Comprehensive Review on Automated Field Irrigation using Soil Image Analysis and IoT. Journal of Advance Electrical Engineering and Devices, 3(1), 46-55.
- 85. Altaf Osman Mulani, Deshmukh M., Jadhav V., Chaudhari K., Mathew A.A., Shweta Salunkhe. Transforming Drug Therapy with Deep Learning: The Future of Personalized Medicine. Drug Research. 2025 Aug 29.
- 86. Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), Image Authentication Using Cryptography and Watermarking, International Journal of Image Processing and Smart Sensors, Vol. 1, Issue 2, pp 27-34.
- 87. Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), Advancements in Artificial Intelligence: Transforming Industries and Society, International Journal of Artificial Intelligence of Things (AIoT) in Communication Industry, Vol. 1, Issue 2, pp 1-5.
- 88. Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), AI-Powered Predictive Analytics in Healthcare: Revolutionizing Disease Diagnosis and Treatment, Journal of Advance Electrical Engineering and Devices, Vol. 3, Issue 2, pp 27-34.
- 89. Godase, V., Mulani, A., Takale, S., & Ghodake, R. (2025). A Holistic Review of Automatic Drip Irrigation Systems: Foundations and Emerging Trends. Available at SSRN 5247778.
- 90. V. Godase, R. Ghodake, S. Takale, and A. Mulani, —Design and Optimization of Reconfigurable Microwave Filters Using AI Techniques, International Journal of RF and Microwave Communication Technologies, vol. 2, no. 2, pp.26–41, Aug. 2025.
- 91. V. Godase, A. Mulani, R. Ghodake, S. Takale, "Automated Water Distribution Management and Leakage Mitigation Using PLC Systems," Journal of Control and Instrumentation Engineering, vol.11, no. 3, pp. 1-8, Aug. 2025.
- 92. V. Godase, A. Mulani, R. Ghodake, S. Takale, "PLC-Assisted Smart Water Distribution with Rapid Leakage Detection and Isolation," Journal of Control Systems and Converters, vol. 1, no. 3, pp. 1-13, Aug. 2025.
- 93. V. V. Godase, S. R. Takale, R. G. Ghodake, and A. Mulani, "Attention Mechanisms in Semantic Segmentation of Remote Sensing Images," Journal of Advancement in Electronics Signal Processing, vol. 2, no. 2, pp. 45–58, Aug. 2025.
- 94. D. Waghmare, A. Mulani, S. R. Takale, V. Godase, and A. Mulani, "A Comprehensive Review on Automatic Fruit Sorting and Grading Techniques with Emphasis on Weight-based Classification," Research & Review: Electronics and Communication Engineering, vol. 2, no. 3, pp. 1-10, Oct. 2025.
- 95. Karande, K. J., & Talbar, S. N. (2014). Independent component analysis of edge information for face recognition. Springer India.
- 96. Karande, K. J., & Talbar, S. N. (2008). Face recognition under variation of pose and illumination using independent component analysis. ICGST-GVIP, ISSN.
- 97. Kawathekar, P. P., & Karande, K. J. (2014, July). Severity analysis of Osteoarthritis of knee joint from X-ray images: A Literature review. In 2014 International Conference on Signal propagation and computer technology (ICSPCT 2014) (pp. 648-652). IEEE.
- 98. Daithankar, M. V., Karande, K. J., & Harale, A. D. (2014, April). Analysis of skin color models for face detection. In 2014 International Conference on Communication and Signal Processing (pp. 533-537). IEEE.
- 99. Karande, J. K., Talbar, N. S., & Inamdar, S. S. (2012, May). Face recognition using oriented Laplacian of Gaussian (OLOG) and independent component analysis (ICA). In 2012 Second International Conference on Digital Information and Communication Technology and it's Applications (DICTAP) (pp. 99-103). IEEE.
- 100. Asabe, H., Asabe, R., Lengare, O., & Godase, S. (2025). IOT- BASED STORAGE SYSTEM FOR MANAGING VOLATILE MEDICAL RESOURCES IN HEALTHCARE FACILITIES. INTERNATIONAL

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- JOURNAL OF PROGRESSIVE RESEARCH IN ENGINEERING MANAGEMENT AND SCIENCE (IJPREMS), 05(03), 2427–2433. https://www.ijprems.com
- 101. Karche, S. N., Mulani, A. O., Department of Electronics, SKN Sinhgad College of Engineering, Korti, & University of Solapur, Maharashtra, India. (2018). AESC Technique for Scalable Face Image Retrieval. International Journal of Innovative Research in Computer and Communication Engineering, 6(4), 3404–3405.
- 102. https://doi.org/10.15680/IJIRCCE.2018.0604036
- 103. Bankar, A. S., Harale, A. D., & Karande, K. J. (2021). Gestures Controlled Home Automation using Deep Learning: A Review. International Journal of Current Engineering and Technology, 11(06), 617–621. https://doi.org/10.14741/ijcet/v.11.6.4
- 104. Mali, A. S., Ghadge, S. K., Adat, A. S., & Karande, S. V. (2024). Intelligent Medication Management System. IJSRD International Journal for Scientific Research & Development, Vol. 12(Issue 3).
- 105. Water Level Control, Monitoring and Altering System by using GSM in Irrigation Based on Season. (2019). In International Research Journal of Engineering and Technology (IRJET) (Vol. 06, Issue 04, p. 1035) [Journal-article]. https://www.irjet.net
- 106. Modi, S., Misal, V., Kulkarni, S., & Mali A.S. (2025). Hydroponic Farming Monitoring System Automated system to monitor and control nutrient and pH levels. In Journal of Microcontroller Engineering and Applications (Vol. 12, Issue 3, pp. 11–16). https://doi.org/10.37591/JoMEA
- 107. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "VGHN: variations aware geometric moments and histogram features normalization for robust uncontrolled face recognition", International Journal of Information Technology, https://doi.org/10.1007/s41870-021-00703-0.
- 108. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition using MFCC & DTW Features", International Journal of Engineering Research And Applications (IJERA) pp. 118-122, ISSN: 2248-9622.
- 109. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Recognition of Marathi Numerals Using MFCC and DTW Features", Book Title: Recent Trends on Image Processing and Pattern Recognition, RTIP2R 2018, CCIS 1037, pp. 1–11, © Springer Nature Singapore Pte Ltd. 2019 https://doi.org/10.1007/978-981-13-9187-3 17.
- 110. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Analysis of Face Recognition Algorithms for Uncontrolled Environments", Book Title: Computing, Communication and Signal Processing, pp. 919–926, © Springer Nature Singapore Pte Ltd. 2018.
- 111. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Recognition of Marathi Numerals using MFCC and DTW Features", 2nd International Conference on Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2018), 21th -22th Dec., 2018, organized by Solapur University, Solapur in collaboration with University of South Dakota (USA) and Universidade de Evora (Portugal), India.
- 112. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "A Comprehensive Survey of Face Databases for Constrained and Unconstrained Environments", 2nd IEEE Global Conference on Wireless Computing & Networking (GCWCN-2018), 23th-24th Nov., 2018, organized by STES's Sinhgad Institute of Technology, Lonavala, India.
- 113. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "An Extensive Survey of Prominent Researches in Face Recognition under different Conditions", 4th International Conference on Computing, Communication, Control And Automation (ICCUBEA-2018), 16th to 18th Aug. 2018 organized by Pimpri Chinchwad College of Engineering (PCCOE), Pune, India.
- 114. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Analysis of Face Recognition Algorithms for Uncontrolled Environments", 3rd International Conference on Computing, Communication and Signal Processing (ICCASP 2018), 26th-27th Jan.2018, organized by Dr. BATU, Lonere, India.
- 115. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", International Conference on Recent Trends, Feb 2012, IOK COE, Pune.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 116. S. S. Gangonda, "Bidirectional Visitor Counter with automatic Door Lock System", National Conference on Computer, Communication and Information Technology (NCCCIT-2018), 30th and 31st March 2018 organized by Department of Electronics and Telecommunication Engineering, SKN SCOE, Korti, Pandharpur.
- 117. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition using MFCC & DTW Features", ePGCON 2012, 23rd and 24th April 2012 organized by Commins COE for Woman, Pune.
- 118. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", National Conference on Emerging Trends in Engineering and Technology (VNCET'12), 30th March 2012 organized by Vidyavardhini's College of Engineering and Technology, Vasai Road, Thane.
- 119. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", ePGCON 2011, 26th April 2011 organized by MAEER's MIT, Kothrud, Pune-38.
- 120. Siddheshwar Gangonda, "Medical Image Processing", Aavishkar-2K7, 17th and 18th March 2007 organized by Department of Electronics and Telecommunication Engineering, SVERI's COE, Pandharpur.
- 121. Siddheshwar Gangonda, "Image enhancement & Denoising", VISION 2k7, 28th Feb-2nd March 2007 organized by M.T.E. Society's Walchand College of Engineering, Sangli.
- 122. Siddheshwar Gangonda, "Electromagnetic interference & compatibility" KSHITIJ 2k6, 23rd and 24th Sept. 2006 organized by Department of Mechanical Engineering, SVERI's COE, Pandharpur.
- 123. A. Pise and K. Karande, "A genetic Algorithm-Driven Energy-Efficient routing strategy for optimizing performance in VANETs," Engineering Technology and Applied Science Research, vol. 15, no. 5, 2025, [Online]. Available: https://etasr.com/index.php/ETASR/article/view/12744
- 124. A. C. Pise, K. J. Karande, "Investigating Energy-Efficient Optimal Routing Protocols for VANETs: A Comprehensive Study", ICT for Intelligent Systems, Lecture Notes in Networks and Systems 1109, Proceedings of ICTIS 2024 Volume 3, Lecture Notes in Networks and Systems, Springer, Singapore, ISSN 2367-3370, PP 407-417, 29 October 2024 https://doi.org/10.1007/978-981-97-6675-8 33.
- 125. A. C. Pise, et. al., "Smart Vehicle: A Systematic Review", International Journal The Ciência & Engenharia Science & Engineering Journal ISSN: 0103-944XVolume 11 Issue 1, 2023pp: 992–998, 2023.
- 126. A. C. Pise, et. al., "Smart Vehicle: A Systematic Review", International Journal of Research Publication and Reviews, ISSN 2582-7421, Vol 4, no 10, pp 2728-2731 October 2023.
- 127. A. C. Pise, et. al., "Development of BIOBOT System to Assist COVID Patient and Caretakers", European Journal of Molecular and Clinical Medicine; 10(1):3472-3480, 2023.
- 128. A. C. Pise, et. al., "IoT Based Landmine Detection Robot", International Journal of Research in Science & EngineeringISSN: 2394-8299Vol: 03, No. 04, June-July 2023.
- 129. A. C. Pise, et. al., "A Systematic survey on Estimation of Electrical Vehicle", Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN: 2799-1156, Volume 3, Issue 01, Pages 1-6, December 2023.
- 130. A. C. Pise, et. al., "Python Algorithm to Estimate Range of Electrical Vehicle", Web of Science, Vol 21, No 1 (2022) December 2022
- 131. A. C. Pise, et. al., "Implementation of BIOBOT System for COVID Patient and Caretakers Assistant using IOT", International Journal of Information technology and Computer Engineering. 30-43. 10.55529/ijitc.21.30.43, (2022).
- 132. A. C. Pise, et. al., "An IoT Based Real Time Monitoring of Agricultural and Micro irrigation system", International journal of scientific research in Engineering and management (IJSREM), VOLUME: 06 ISSUE: 04 | APRIL 2022, ISSN:2582-3930.
- 133. A. C. Pise, Dr. K. J. Karande, "An Exploratory study of Cluster Based Routing Protocol in VANET: A Review", International Journal of Advanced Research in Engineering and Technology(IJARET), 12,10, 2021, 17-30, Manuscript ID :00000-94375 Source ID : 00000006, Journal_uploads/IJARET/VOLUME_12_ISSUE_10/IJARET_12_10_002.pdf

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 134. A. C. Pise, et. al., "Android based Portable Health Support System," A Peer Referred & Indexed International Journal of Research, Vol. 8, issue. 4, April 2019.
- 135. A. C. Pise, et. al., "Facial Expression Recognition Using Image Processing," International Journal of VLSI Design, Microelectronics and Embedded System, Vol. 3, issue . 2, July 2018.
- 136. A. C. Pise, et. al., "Detection of Cast Iron Composition by Cooling Curve Analysis using Thermocouple Temperature Sensor," UGC Approved International Journal of Academic Science (IJRECE), Vol.6, Issue.3, July-September 2018.
- 137. A. C. Pise, et. al., "Android Based Portable Health Support", System International Journal of Engineering Sciences & Research Technology (IJESRT 2017) Vol.6, Issue 8, pp 85-88 5th Aug 2017
- 138. A. C. Pise, et. al., "Adaptive Noise Cancellation in Speech Signal", International Journal of Innovative Engg and Technology, 2017
- 139. A. C. Pise, et. al., "Lung Cancer Detection System by using Baysian Classifier", ISSN 2454-7875, IJRPET, published online in conference special issue VESCOMM-2016, February 2016
- 140. A. C. Pise, et. al., "Review on Agricultural Plant Diseases Detection by Image Processing", ISSN 2278-62IX, IJLTET, Vol 7, Issue 1 May 2016
- 141. A. C. Pise, et. al. "Segmentation of Retinal Images for Glaucoma Detection", International Journal of Engineering Research and Technology (06, June-2015).
- 142. A. C. Pise, et. al. "Color Local Texture Features Based Face Recognition", International Journal of Innovations in Engineering and Technology(IJIET), Dec. 2014
- 143. A. C. Pise, et. al. "Single Chip Solution For Multimode Robotic Control", International Journal of Engineering Research and Technology (IJERT-2014), Vol. 3, Issue 12, Dec. 2014.
- 144. Anjali C. Pise et. al., "Remote monitoring of Greenhouse parameters using zigbee Wireless Sensor Network", International Journal of Engineering Research & Technology ISSN 2278-0181 (online) Vol. 3, Issue 2, and pp: (2412-2414), Feb. 2014.
- 145. A. C. Pise, K. J. Karande, "Cluster Head Selection Based on ACO In Vehicular Ad-hoc Networks", Machine Learning for Environmental Monitoring in Wireless Sensor Networks
- 146. A. C. Pise, K. J. Karande, "Architecture, Characteristics, Applications and Challenges in Vehicular Ad Hoc Networks" Presented in 27th IEEE International Symposium on Wireless Personal Multimedia Communications (WPMC 2024) "Secure 6G AI Nexus: Where Technology Meets Humanity" Accepted for book chapter to be published in international Scopus index book by River publisher.
- 147. A. C. Pise, Dr. K. J. Karande, "K-mean Energy Efficient Optimal Cluster Based Routing Protocol in Vehicular Ad Hoc Networks", International Conference on Innovations in Artificial Intelligence and Machine Learning (ICAIML-2022), August 20th and 21st 2022 Springer database Conference.
- 148. A. C. Pise, Mr. D. Nale, "Web-Based Application for Result Analysis", ", International Conference on Innovations in Artificial Intelligence and Machine Learning (ICAIML-2022), August 20th and 21st 2022 Springer database Conference.
- 149. A. C. Pise, et. al., "Detection of Cast Iron Composition by Cooling Curve Analysis using Thermocouple Temperature Sensor," 2nd International Conference on Engineering Technology, Science and Management Innovation (ICETSMI 2018), 2nd September 2018.
- 150. A. C. Pise, et. al., "Facial Expression Recognition Using Facial Features," IEEE International Conference on Communication and Electronics Systems (ICCES 2018), October 2018.
- 151. A. C. Pise, et. al., "Estimating Parameters of Cast Iron Composition using Cooling Curve Analysis," IEEE International Conference on Communication and Electronics Systems (ICCES 2018), Coimbatore, October 2018.
- 152. A. C. Pise, et. al., "Android based portable Health Support System," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 153. A. C. Pise, et. al., "Baysian Classifier & FCM Segmentation for Lung Cancer Detection in early stage," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 154. A. C. Pise, et. al., "Cast Iron Composition Measurement by Coding Curve Analysis," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 155. A. C. Pise, et. al., "War field Intelligence Defence Flaging Vehicle," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 156. A. C. Pise, et. al. "Disease Detection of Pomegranate Plant", IEEE sponsored International Conference on Computation of Power, Energy, Information and Communication, 22-23 Apr. 2015.
- 157. A. C. Pise, P. Bankar. "Face Recognition by using GABOR and LBP", IEEE International Conference on Communication and Signal Processing, ICCSP, 2-4 Apr. 2015
- 158. A. C. Pise, et. al. "Single Chip Solution For Multimode Robotic Control", Ist IEEE International Conference on Computing Communication and Automation, 26-27 Feb2015.
- 159. Anjali C. Pise, Vaishali S. Katti, "Efficient Design for Monitoring of Greenhouse Parameters using Zigbee Wireless Sensor Network", fifth SARC international conference IRF,IEEE forum ISBN 978-93-84209-21-6,pp 24-26, 25th May 2014
- 160. A. C. Pise, P. Bankar, "Face Recognition using Color Local Texture Features", International Conference on Electronics and Telecommunication, Electrical and Computer Engineering, Apr.2014.
- 161. A. C. Pise, et.al. "Monitoring parameters of Greenhouse using Zigbee Wireless Sensor Network", 1st International Conference on Electronics and Telecommunication, Electrical and Computer Engineering, 5-6 Apr.2014.
- 162. A. C. Pise, et. al. "Compensation schemes and performance Analysis of IQ Imbalances in Direct Conversion Receivers", International Conference at GHPCOE, Gujarat, (Online Proceeding is Available), 2009.
- 163. A. C. Pise, K. J. Karande, "Energy-Efficient Optimal Routing Protocols in VANETs", 66th Annual IETE Convention, AIC -2023 September16-17, 2023, under the Theme: The Role of 5G In Enabling Digital Transformation for Rural Upliftment.
- 164. A. C. Pise, et. al. "Automatic Bottle Filling Machine using Raspberry Pi", National Conference on computer ;Communication & information Technology (NCCIT-2018) dated 30th & 31st March 2018.
- 165. A. C. Pise, et. al. "Design & Implementation of ALU using VHDL", National Conference on computer ;Communication & information Technology (NCCIT-2018) dated 30th & 31st March 2018.
- 166. A. C. Pise, et. al. "Mechanism and Control of Autonomus four rotor Quad copter", National Conference on Computer, Electrical and Electronics Engineering, 23- 24 Apr. 2016.
- 167. A. C. Pise, et. al. "Segmentation of Optic Disk and Optic Cup from retinal Images", ICEECMPE Chennai, June 2015
- 168. A. C. Pise, et. al. "Diseases Detection of Pomegranate Plant", IEEE Sponsored International conference on Computation of Power, Energy, April 2015.
- 169. A. C. Pise, et. al. "Compensation Techniques for I/Q Imbalance in Direct-Conversion Receivers", Conference at SCOE, Pune 2010.
- 170. A. C. Pise, et. al. "I/Q Imbalance compensation Techniques in Direct Conversion Receiver", Advancing Trends in Engineering and Management Technologies, ATEMT-2009, Conference at Shri Ramdeobaba Kamla Nehru Engineering College, Nagpur, 20-21 November 2009
- 171. A. C. Pise, et. al. "Compensation Techniques for I/Q Imbalance in Direct Conversion Receiver", Conference at PICT, Pune 2008.
- 172. A. C. Pise, et. al. "I/Q Imbalance compensation Techniques in Direct Conversion Receiver", Conference at DYCOE, Pune 2008.
- 173. A. C. Pise, et. al. "DUCHA: A New Dual channel MAC protocol for Multihop Ad-Hoc Networks", Conference at SVCP, Pune 2007.
- 174. Godase, V., Pawar, P., Nagane, S., & Kumbhar, S. (2024). Automatic railway horn system using node MCU. Journal of Control & Instrumentation, 15(1).

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO POON 1:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 175. Godase, V., & Godase, J. (2024). Diet prediction and feature importance of gut microbiome using machine learning. Evolution in Electrical and Electronic Engineering, 5(2), 214-219.
- 176. Jamadade, V. K., Ghodke, M. G., Katakdhond, S. S., & Godase, V. A Comprehensive Review on Scalable Arduino Radar Platform for Real-time Object Detection and Mapping.
- 177. Godase, V. (2025). A comprehensive study of revolutionizing EV charging with solar-powered wireless solutions. Advance Research in Power Electronics and Devices e-ISSN, 3048-7145.
- 178. Godase, V. (2025, April). Advanced Neural Network Models for Optimal Energy Management in Microgrids with Integrated Electric Vehicles. In Proceedings of the International Conference on Trends in Material Science and Inventive Materials (ICTMIM-2025) DVD Part Number: CFP250J1-DVD.
- 179. Dange, R., Attar, E., Ghodake, P., & Godase, V. (2023). Smart agriculture automation using ESP8266 NodeMCU. J. Electron. Comput. Netw. Appl. Math, (35), 1-9.
- 180. Godase, V. (2025). Optimized Algorithm for Face Recognition using Deepface and Multi-task Cascaded Convolutional Network (MTCNN). Optimum Science Journal.
- 181. Mane, V. G. A. L. K., & Gangonda, K. D. S. Pipeline Survey Robot.
- 182. Godase, V. (2025). Navigating the digital battlefield: An in-depth analysis of cyber-attacks and cybercrime. International Journal of Data Science, Bioinformatics and Cyber Security, 1(1), 16-27.
- 183. Godase, V., & Jagadale, A. (2019). Three element control using PLC, PID & SCADA interface. International Journal for Scientific Research & Development, 7(2), 1105-1109.
- 184. Godase, V. (2025). Edge AI for Smart Surveillance: Real-time Human Activity Recognition on Low-power Devices. International Journal of AI and Machine Learning Innovations in Electronics and Communication Technology, 1(1), 29-46.
- 185. Godase, V., Modi, S., Misal, V., & Kulkarni, S. (2025). LoRaEdge-ESP32 synergy: Revolutionizing farm weather data collection with low-power, long-range IoT. Advance Research in Analog and Digital Communications, 2(2), 1-11.
- 186. Godase, V. (2025). Comparative study of ladder logic and structured text programming for PLC. Available at SSRN 5383802.
- 187. Godase, V., Modi, S., Misal, V., & Kulkarni, S. Real-time object detection for autonomous drone navigation using YOLOv8, I. Advance Research in Communication Engineering and its Innovations, 2(2), 17-27.
- 188. Godase, V. (2025). Smart energy management in manufacturing plants using PLC and SCADA. Advance Research in Power Electronics and Devices, 2(2), 14-24.
- 189. Godase, V. (2025). IoT-MCU Integrated Framework for Field Pond Surveillance and Water Resource Optimization. International Journal of Emerging IoT Technologies in Smart Electronics and Communication, 1(1), 9-19.
- 190. Godase, V. (2025). Graphene-Based Nano-Antennas for Terahertz Communication. International Journal of Digital Electronics and Microprocessor Technology, 1(2), 1-14.
- 191. Godase, V., Khiste, R., & Palimkar, V. (2025). AI-Optimized Reconfigurable Antennas for 6G Communication Systems. Journal of RF and Microwave Communication Technologies, 2(3), 1-12.
- 192. Bhaganagare, S., Chavan, S., Gavali, S., & Godase, V. V. (2025). Voice-Controlled Home Automation with ESP32: A Systematic Review of IoT-Based Solutions. Journal of Microprocessor and Microcontroller Research, 2(3), 1-13.
- 193. Jamadade, V. K., Ghodke, M. G., Katakdhond, S. S., & Godase, V. A Comprehensive Review on Scalable Arduino Radar Platform for Real-time Object Detection and Mapping.
- 194. Godase, V. (2025). Cross-Domain Comparative Analysis of Microwave Imaging Systems for Medical Diagnostics and Industrial Testing. Journal of Microwave Engineering & Technologies, 12(2), 39-48p.
- 195. V. K. Jamadade, M. G. Ghodke, S. S. Katakdhond, and V. Godase, —A Review on Real-time Substation Feeder Power Line Monitoring and Auditing Systems," International Journal of Emerging IoT Technologies in Smart Electronics and Communication, vol. 1, no. 2, pp. 1-16, Sep. 2025.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 2 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 196. V. V. Godase, "VLSI-Integrated Energy Harvesting Architectures for Battery-Free IoT Edge Systems," Journal of Electronics Design and Technology, vol. 2, no. 3, pp. 1-12, Sep. 2025.
- 197. A. Salunkhe et al., "A Review on Real-Time RFID-Based Smart Attendance Systems for Efficient Record Management," Advance Research in Analog and Digital Communications, vol. 2, no. 2, pp.32-46, Aug. 2025.
- 198. Vaibhav, V. G. (2025). A Neuromorphic-Inspired, Low-Power VLSI Architecture for Edge AI in IoT Sensor Nodes. Journal of Microelectronics and Solid State Devices, 12(2), 41-47p.
- 199. Nagane, M.S., Pawar, M.P., & Godase, P.V. (2022). Cinematica Sentiment Analysis. Journal of Image Processing and Intelligent Remote Sensing.
- 200. Godase, V.V. (2025). Tools of Research. SSRN Electronic Journal.
- 201. Godase, V. (n.d.). EDUCATION AS EMPOWERMENT: THE KEY TO WOMEN'S SOCIO ECONOMIC DEVELOPMENT. Women Empowerment and Development, 174–179.
- 202. Godase, V. (n.d.). COMPREHENSIVE REVIEW ON EXPLAINABLE AI TO ADDRESSES THE BLACK BOX CHALLENGE AND ITS ROLE IN TRUSTWORTHY SYSTEMS. In Sinhgad College of Engineering, Artificial Intelligence Education and Innovation (pp. 127–132).
- 203. Godase, V. (n.d.-b). REVOLUTIONIZING HEALTHCARE DELIVERY WITH AI-POWERED DIAGNOSTICS: A COMPREHENSIVE REVIEW. In SKN Sinhgad College of Engineering, SKN Sinhgad College of Engineering (pp. 58–61).
- 204. Dhope, V. (2024). SMART PLANT MONITORING SYSTEM. In International Journal of Creative Research Thoughts (IJCRT). https://www.ijcrt.org
- 205. M. M. Zade, Sushant D. Kambale, Shweta A. Mane, Prathamesh M. Jadhav. (2025) "IOT Based early fire detection in Jungles". RIGJA&AR Volume 2 Issue 1, ISSN: 2998-4459. DOI: https://doi.org/10.5281/zendo.15056435
- 206. M. M. Zade, Bramhadev B. Rupanar, Vrushal S. Shilawant, Akansha R. Pawar(2025) "IOT Flood Monitoring & Alerting System using Rasberry Pi-Pico "International Journal of Research Publication & Reviews, Volume 6, Issue 3,ISSN:2582-7421.DOI:https://ijrpr.com/uploads/V6ISSUE3/IJRPR40251.pdf
- 207. M.M.Zade(2022) "Touchless Fingerprint Recognition System" (Paper-ID 907)(2022) International Conference on "Advanced Technologies for Societal Applications: Techno-Societal 2022 https://link.springer.com/book/10.1007/978-3-031-34644-6?page=6
- 208. Mr.M.M.Zade published the paper on "Automation of Color Object Sorting Conveyor Belt", in International Journal of Scientific Research in Engineering & Management (IJSREM),ISSN:2582-3930 Volume 06, Issue 11th November 2022.
- 209. Mr.M.M.Zade published the paper on "Cloud Based Patient Health Record Tracking web Developement",in International Journal of Advanced Research in Science, Communication & Technology(IJARSCT),ISSN NO:2581-9429 Volume 02, Issue 03,DOI 1048175/IJARSCT-3705,IF 6.252, May 2022.
- 210. Mr. Mahesh M Zade, "Performance analysis of PSNR Vs. Impulse Noise for the enhancement of Image using SMF", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- 211. Mr. Mahesh M Zade, "Classification of Power Quality Disturbances Using SVM & their Efficiency Comparison", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- 212. Mr. Mahesh M Zade, "Dynamic Clustering of Wireless Sensor Network Using Modified AODV", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- 213. Mr. Mahesh M Zade, "Performance analysis of PSNR Vs. Impulse Noise for the enhancement of Image using SMF", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur, Feb.2019
- 214. Mr. Mahesh M Zade, "Classification of Power Quality Disturbances Using SVM & their Efficiency Comparison", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur Feb.2019

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 215. Mr. Mahesh M Zade, "Dynamic Clustering of Wireless Sensor Network Using Modified AODV", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur Feb.2019
- 216. Mr. Mahesh M Zade & Mr.S.M.Karve,"Performance Analysis of Median Filter for Enhancement of Highly Corrupted Images", National Conference on Advanced Trends in Engineering, Association with IRJMS, Karmyogi Engineering College, Shelave, Pandharpur, March 2016.
- 217. Mr. Mahesh M Zade & Mr.S.M.Karve,"Implementation of Reed Solomen Encoder & Decoder Using FPGA", National Conference on Advanced Trends in Engineering, Association with IRJMS, Karmyogi Engineering College, Shelave, Pandharpur, March 2016.
- 218. Mr. Mahesh M Zade & Dr.S.M.Mukane,"Performance of Switching Median Filter for Enhancement of Image", National Conference on Mechatronics at Sinhgad Institute of Technology and Science, Narhe, Pune, Feb. 2016.
- 219. Mr. Mahesh M Zade & Dr.S.M.Mukane, "Enhancement of Image with the help of Switching Median Filter", National Conference on Emerging Trends in Electronics & Telecommunication Engineering, SVERI's College of Engineering Pandharpur, NCET 2013.
- 220. Mr.Mahesh M Zade & Dr.S.M.Mukane,"Enhancement of Image with the help of Switching Median Filter", International Journal of Computer Application (IJCA) SVERI's College of Engineering, Pandharpur, Dec.2013.

