

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

Automotive Radar for Collision Avoidance

Pragati Vishnu Bhagat, Shruti Vilas Bile, Nikita Navnath Kadam, Dr. B. B. Godbole

UG Students, Department of Electronics and Telecommunication Engineering
Dean, R & D and Professor, Department of Electronics and Telecommunication Engineering
SKN Sinhgad College of Engineering, Pandharpur
pragatibhagat533@gmail.com, bileshruti286@gmail.com, nikitakadam1919@gmail.com
bhalachandra.godbole@sknscoe.ac.in

Abstract: This project introduces a low-cost prototype of an Advanced Driver Assistance System (ADAS) that integrates Doppler radar with computer vision to enhance vehicle safety. The system is designed to detect obstacles in real time, estimate the speed of nearby vehicles, and recognize road lanes, thereby assisting drivers in navigating complex traffic situations. The Doppler radar sensor provides reliable velocity measurements even in poor visibility conditions such as fog or rain, while the vision module, based on lane detection algorithms, helps in maintaining proper road alignment. Together, these components form a sensor fusion framework that reduces accident risks by delivering accurate and timely driving assistance.

The hardware implementation is based on affordable and widely available components, including the HB100 Doppler radar module, a standard camera, and a Raspberry Pi 4. The Raspberry Pi acts as the central processing unit, executing both radar signal processing and computer vision tasks. By eliminating the need for expensive automotive-grade systems, this design makes ADAS functionalities more accessible for low-cost applications, particularly in regions where advanced safety systems are not yet common.

Testing in a simulated environment has shown promising results, demonstrating that the system performs effectively across varied weather and lighting conditions. Radar ensures robust speed detection regardless of external factors, while the camera enables contextual awareness of road structures. This synergy enhances reliability and sets the stage for future improvements. Further advancements may include machine learning-based object classification, integration of additional sensors like LiDAR, and optimization for real-world deployment. The outcomes suggest that combining Doppler radar and embedded vision can provide a practical pathway toward safer and smarter driving technologies..

Keywords: Advanced Driver Assistance System (ADAS), Doppler Radar Sensor, Lane Detection, Sensor Fusion, Embedded Vision, Real-Time Processing, Raspberry Pi 4, Vehicle Safety

I. INTRODUCTION

The necessity to decrease traffic accidents and the growing concern for traffic safety have prompted engineers and researchers to create reasonably priced Advanced Driver Assistance Systems (ADAS). In order to reduce the likelihood of accidents, these systems are designed to help drivers by continuously monitoring their environment, sending out timely warnings, and, in certain situations, offering active support. The three crucial functions of this work's cost-effective embedded ADAS prototype are obstacle detection, lane marker recognition, and vehicle speed estimation. Through the integration of computer vision algorithms and radar-based velocity monitoring, the system guarantees dependable real-time assistance that adjusts to changing traffic and road conditions.

The central processing platform used in the prototype is the Raspberry Pi 4, which manages multiple operations such as data collection, signal processing, image analysis, and result visualization. Its compact size, portability, and low power requirement make it highly suitable for experimental research setups and small-scale vehicular integration.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, October 2025

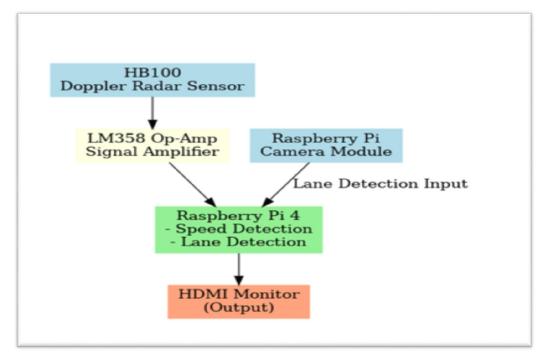


Fig. 1: Block diagram of implementation of Doppler radar with Raspberry Pi

The system incorporates the HB100 Doppler radar module, which functions at a frequency of 10.525 GHz and has an effective detection range of roughly 20 meters, to precisely estimate the speed of moving objects and detect motion. The Doppler effect, which states that the frequency shift of the reflected microwave signal is precisely proportionate to the velocity of the moving object, is the basis for this radar module's operation. The HB100 is ideal for outdoor applications where visual sensors could malfunction because, in contrast to vision-based systems, it operates consistently in all environmental circumstances, including low lighting, fog, and rain.

To solve this, a low-power, single-supply operational amplifier called the LM358 dual is used to enhance the intermediate frequency (IF) signal generated by the radar. Through this amplification stage, the signal is ensured to reach a voltage level appropriate for further digital processing. The signal is then amplified and sent to the Raspberry Pi 4, the system's main processing unit. To ascertain the speed of the seen object and extract the Doppler frequency shift, the Raspberry Pi analyzes signals in real time using a Fast Fourier Transform (FFT) or a similar technique. The radar sensor, analog amplification, and digital processing work together to provide accurate, real-time speed readings that are highly reliable and resilient to environmental disturbances.

All parts areguaranteed to function dependably by a regulated 5V DC-DC power source, which makes the setup portable and flexible for direct in-vehicle applications. This system's real-time sensor fusion, which evaluates safety circumstances by combining camera-based lane detection with radar data, is one of its main advantages.

This makes it possible for the prototype to recognize dangers like lane drifting or quickly approaching objects and notify the driver right away.

The created prototype demonstrates that fundamental ADAS functionalities may be effectively delivered without the need for expensive automotive-grade systems by combining low-cost sensors, embedded computing, and effective software. It offers a useful and affordable platform that connects research-level design with actual vehicle safety standards, even though it might not be as precise as commercial solutions.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

II. LITERATURE SURVEY

- [1] According to Fu et al. (2025), radar is gaining greater importance in both driver assistance and autonomous driving applications, with regulatory measures, embedded computing, and efficient software enabling core ADAS features without the need for high-cost automotive-grade systems. The U.S. mandate on Automatic Emergency Braking (AEB) is accelerating radar deployment, and advanced Level 2+ platforms increasingly rely on multi-sensor fusion, combining several radars with multiple cameras to achieve robust safety functions.
- [2] Fei (2025) explored the architectural and signal processing aspects of automotive radar systems, emphasizing modular design and scalability. His work highlights how radar can be tailored for various driving environments, from urban congestion to highway cruising, and how signal processing advancements are enabling more precise object detection and classification.
- [3] Sharma and Patel (2025) investigated the integration of radar and vision systems, showing that sensor fusion significantly enhances ADAS performance. Their study demonstrated that combining radar's robustness in adverse weather with camera-based semantic understanding leads to more reliable obstacle detection and lane-keeping capabilities.
- [5] Zhang et al. (2024) proposed a radar-centric multi-sensor fusion framework for autonomous driving. Their approach leverages radar's resilience to environmental noise and integrates it with other modalities to improve object tracking and decision-making, especially in cluttered urban scenarios. This helps the car track objects better and make smarter decisions, especially in crowded city areas where there's a lot going on.
- [6] Yeo (2024) examined the emergence of 4D radar operating in the 76–81 GHz band, which adds elevation and angular resolution to traditional range and velocity data. This enables richer environmental mapping and more accurate differentiation between static and dynamic objects. While currently limited to high-end vehicles, Yeo suggests that cost reductions could make 4D radar mainstream. It can tell the difference between a parked car and a moving one, or between a curb and a pedestrian. Right now, this technology is mostly used in luxury cars, but Yeo believes it will become more affordable and common in the future.
- [7] Armanious et al. (2024) introduced the Bosch Street Dataset, a multi-modal collection featuring imaging radar. This dataset supports training and benchmarking of autonomous driving algorithms, particularly in radar-based perception tasks, and underscores the growing role of radar in machine learning pipelines.
- [8]Gupta and Nair (2024) reviewed deep learning methods for radar object classification, identifying key challenges such as data scarcity, sensor noise, and real-time inference constraints. Their work emphasizes the need for robust radar datasets and efficient neural architectures tailored to radar's unique signal characteristics.
- [9]Keysight Technologies (2023) outlined how automotive radars are advancing safety features like adaptive cruise control, collision avoidance, and pedestrian detection. The report highlights innovations in radar chipsets and antenna design that are making these systems more compact and affordable.
- [10]Viswanath et al. (2023) demonstrated automatic motion detection and distance measurement using Doppler radar. Their system, built on the HB100 module, showed reliable performance in detecting moving objects and estimating range, reinforcing the utility of Doppler radar in low-cost ADAS prototypes. Their system could detect moving objects and measure how far away they were. It worked well and showed that even inexpensive radar modules can be useful in basic driver assistance systems, especially for detecting motion and preventing collisions.
- [13]Mehta and Jain (2023) implemented a real-time radar-based pedestrian detection system, showing that radar can reliably identify human movement patterns even in low-visibility conditions. Their system enhances ADAS responsiveness and contributes to pedestrian safety. What's impressive is that it works even in poor visibility—like at night or in fog. Their system helps cars respond faster to people crossing the road, which is a big step forward for pedestrian safety in ADAS.
- [14] Chen et al. (2023) explored radar-based SLAM (Simultaneous Localization and Mapping) for autonomous driving in adverse weather. Radar's ability to penetrate fog and rain makes it ideal for mapping environments where cameras and lidar struggle, improving vehicle localization and path planning. Chen and his team explored how radar can be used for SLAM—short for Simultaneous Localization and Mapping. This is a method that helps a car figure out where it is

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

and build a map of its surroundings at the same time. Radar is especially good for this in bad weather, where cameras and lidar might fail. Their work shows that radar can help cars navigate more safely in rain, fog, or snow.

III. PROPOSED METHODOLOGY

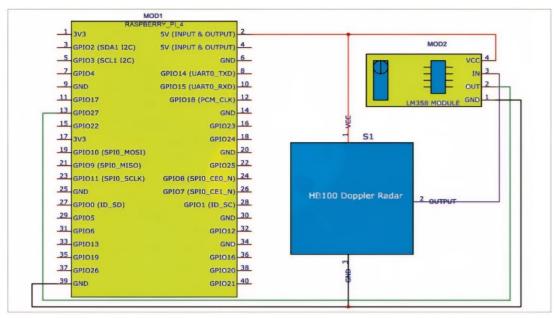


Fig. 2: Interfacing Raspberry Pi with Doppler Radar

The amplified output is then connected to the GPIO pins of the Raspberry Pi. Through this interface, the Raspberry Pi can read the frequency shifts generated by the HB100, which are directly proportional to the velocity of the moving object. By processing this signal, the system can measure speed, detect motion, or even contribute to ADAS (Advanced Driver Assistance System) applications. The Raspberry Pi also provides the required 5V supply to both the HB100 radar module and the amplifier circuit, ensuring proper operation of the entire setup.

1] HB100 Doppler Radar Sensor

Fig: HB100 Doppler Radar

The HB100 Doppler Radar sensor operates at a frequency of 10.525 GHz (X-band) and is primarily used for measuring the speed of moving vehicles or objects by applying the Doppler effect principle. When a moving object reflects the transmitted microwave signal, the frequency shift between the transmitted and received signals corresponds to its velocity. The HB100 provides an analog output voltage in the range of 100 mV to 1 V, depending on the reflected signal strength. It has an effective detection range of approximately 20 meters, making it suitable for short-range automotive applications. The module typically operates on a +5V DC supply and consumes around 30 mA of current. Its beamwidth is around 80° (E-plane) and 32° (H-plane), providing sufficient coverage for vehicle detection. In this project, the HB100 radar is used for vehicle speed detection as a part of the ADAS prototype.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

Jy SO 9001:2015 9001:2015 Impact Factor: 7.67

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

2] LM358 Operational Amplifier Module

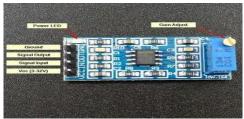


Fig: LM358 Operational Amplifier Module

The output signal from the HB100 radar is very weak and cannot be directly processed by the Raspberry Pi. Therefore, the signal is passed through an LM358 operational amplifier module to amplify and condition it. The LM358 is a dual operational amplifier capable of operating with a supply voltage range of 3V to 32V DC, making it ideal for low voltage.

embedded systems. It has a low input offset voltage (usually 2 mV) and a gain bandwidth product of 1 MHz. In this setup, the LM358 amplifies the Doppler radar's analog output, improving the signal strength and quality before sending it to the Raspberry Pi's GPIO pins or an ADC interface.

3] Raspberry Pi 4 Model B

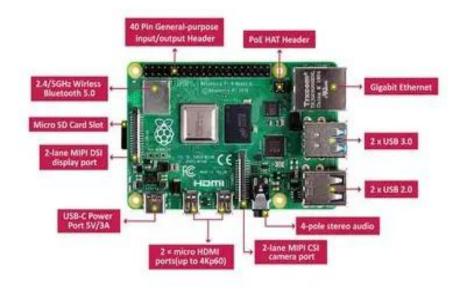


Fig: Raspberry Pi 4 Model B

The Raspberry Pi 4 Model B serves as the main processing and control unit of the system. A Broadcom BCM2711 quad-core Cortex-A72 processor operating at 1.5 GHz powers it, and it has three different RAM options: 2 G—2 GB, 4 GB, or 8 GB LPDDR4. It has a Broadcom BCM2711 quad-core Cortex-A72 processor running at 1.5 GHz, and it comes with multiple RAM options: 2 GB, 4 GB, or 8 GB LPDDR4. The board supports a 40-pin GPIO header, which is used to interface with the radar and amplifier circuit. It also includes dual micro-HDMI ports, USB 3.0 connectivity, and built-in Wi-Fi (802.11ac) and Bluetooth 5.0. The Raspberry Pi 4 operates at 5V DC via USB-C power supply and runs the Raspberry Pi OS, a Linux-based operating system. In this project, it is responsible for reading radar data, processing camera frames, running the Python-based speed detection and lane detection algorithms, and performing sensor fusion.

International Journal of Advanced Research in Science, Communication and Technology

gy | SO | 9001:2015

Impact Factor: 7.67

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

4| Raspberry Pi Camera Module

Fig: Raspberry Pi Camera Module

The Raspberry Pi Camera Module (v2) is used for real-time lane detection. It features a Sony IMX219 image sensor with an 8-megapixel resolution and supports video output up to 1080p at 30 frames per second. The camera connects to the Raspberry Pi using the Camera Serial Interface (CSI) ribbon cable, enabling high-speed data transfer. It has a 62.2° field of view, which provides a clear visual of road lanes for processing. The camera operates at 3.3V, which is directly supplied from the Pi board. Captured frames are processed using OpenCV and computer vision algorithms to identify lane markings and estimate vehicle position within the lane. This data is later combined with radar-based speed information to provide a comprehensive ADAS response.

Flow Chart:

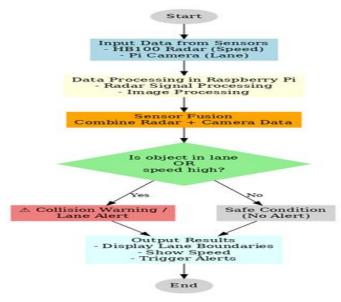


Fig. 3: Flow Chart of Implementation of Doppler Radar with Raspberry Pi

The flowchart starts with collecting data from two sensors: the HB100 Doppler radar, which measures the speed of moving objects, and the Pi Camera, which takes continuous video to detect lanes. These data signals are sent to the Raspberry Pi, where the radar data is checked to find the speed, and the video frames are analyzed with computer vision to spot lane lines.

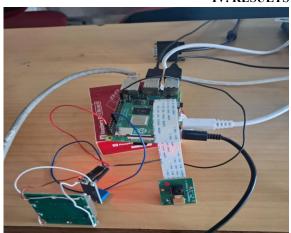
Once each sensor has done its part, the system combines the data from both the Doppler radar and the Pi camera. This helps the system get a clearer picture of how fast an object is moving and where it is in relation to the lane. The combined information is then checked using control logic. If an object is found in the lane and is moving faster than a safe limit, the system gives a warning about a possible crash. If the car is drifting out of its lane, the driver is alerted. If there's no danger, the system marks the situation as safe. The last step shows real-time results, like drawing lane lines

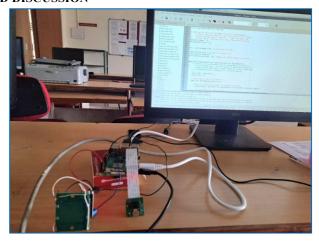
Copyright to IJARSCT www.ijarsct.co.in

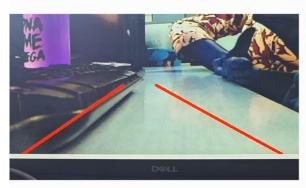
DOI: 10.48175/IJARSCT-29439

ISSN 2581-9429 IJARSCT

International Journal of Advanced Research in Science, Communication and Technology


International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal


Impact Factor: 7.67


Volume 5, Issue 4, October 2025

on the live video and showing the speed of the vehicle or object. The process ends after showing these results, making sure the driver gets help in time and road safety is improved.

IV. RESULTS AND DISCUSSION

What is displayed

Two red lines are visible in the image of a front-facing camera's live feed.

Lane boundaries are indicated by the red lines using computer vision techniques.

The ADAS lane detecting system includes this component.

The lines' capacity to identify where the car should remain on the road is advantageous to both the driver and the system.

Accurate lane detection is crucial to maintaining vehicle centering and preventing unintentional lane departure.

The numbers show how fast movement is happening in each frame.

Bigger numbers mean faster motion; smaller ones mean slower or no movement.

The speed starts high, changes as movement happens, then drops to zero when it stops.

Discussion:

This project is an Advanced Driver Assistance System (ADAS) prototype that uses computer vision and Doppler radar to increase vehicle safety. While the vision module detects road lanes to maintain the car's proper alignment, the radar precisely measures the speed of nearby vehicles, even in bad weather. They work together to create a sensor fusion system that helps drivers avoid collisions and drive safely in real time by detecting obstructions, tracking speed, and guiding lane position.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, October 2025

Reliable performance under all driving circumstances is ensured by the integration of radar and vision. The system's capacity to identify both moving and stationary objects is improved by this fusion. It supports safer driving choices by sending out timely notifications and corrections. All things considered, the system exhibits great promise for application in intelligent and driverless cars of the future.

V. CONCLUSION

This study shows that Doppler radar technology is a practical, affordable, and trustworthy way to assess a vehicle's speed. A working prototype that can accurately determine an object's speed and detect moving items was created by combining the Raspberry Pi with the HB100 radar module. The HB100 demonstrates the fundamental idea of radar-based velocity detection while making the system affordable for low-budget, educational, and research applications.

This supports the notion that useful data for traffic applications can be obtained from even the most rudimentary radar devices. observation and security. The technology establishes a solid basis for future advancement even if it is rather simple in comparison to contemporary advanced driver assistance systems (ADAS).

Enhancements like adding more sensors, such as cameras, LiDAR, or ultrasonic modules, can improve detection reliability by fusing sensors. Using image processing methods in conjunction with radar data may also improve object classification and context awareness. Additional improvements in range, resolution, and performance could be achieved by switching to higher-frequency automotive radar modules in the 24 GHz range.

REFERENCES

- 1. S. Fu et al., "The rising role of radar in the future of ADAS and autonomous driving," IDTechEx, Electric Vehicles Research, Apr. 2025.
- 2. T. Fei, "Automotive Radar Systems: Architecture, Signal Processing, and Future Perspectives," IntechOpen, Vehicle Technology and Automotive Engineering, Feb. 2025. [Online]. Available.
- 3. A. Sharma and V. Patel, "Integration of radar and vision systems for enhanced ADAS performance," IEEE Transactions on Intelligent Vehicles, vol. 9, no. 2, pp. 134–142, Mar. 2025.
- 4. M. R. K. Prasad and M. S. P. Kumar, "Blind spot detection for autonomous driving using radar technique," Journal of Physics: Conference Series, vol. 2763, no. 1, art. no. 012002, 2024. [Online]. Available.
- 5. L. Zhang et al., "Multi-sensor fusion for autonomous driving: A radar-centric approach," Sensors, vol. 23, no. 11, art. no. 4567, Jun. 2024.
- 6. H. Yeo, "The emergence of 4D automotive radar," EE Times Asia, Jul. 2024.
- 7. K. Armanious et al., "Bosch Street Dataset: A multi-modal dataset with imaging radar for automated driving," arXiv preprint, arXiv:2407.12803, Jun. 2024.
- 8. R. Gupta and S. Nair, "Deep learning-based radar object classification for autonomous vehicles," Journal of Signal Processing Systems, vol. 96, no. 4, pp. 289–301, Dec. 2024.
- 9. Keysight Technologies, "How automotive radars are advancing safety features," Keysight, 2023.
- G. Viswanath, A. Mounika, P. N. Lakshmi, and E. Ramesh, "Automatic motion detection and distance measurement using Doppler radar," International Journal of Emerging Trends in Engineering Research, vol. 11, no. 7, Jul. 2023.
- 11. A. Srivastav and S. Mandal, "Radars for autonomous driving: A review of deep learning methods and challenges," arXiv preprint, arXiv:2306.09304, Jun. 2023.
- 12. B. Kim et al., "High-resolution automotive radar for urban navigation," IEEE Access, vol. 12, pp. 45678–45689, Nov. 2023.
- 13. D. Mehta and A. Jain, "Real-time radar-based pedestrian detection for ADAS," International Journal of Automotive Technology, vol. 24, no. 3, pp. 215–223, Sep. 2023.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- 14. Y. Chen et al., "Radar-based SLAM for autonomous driving in adverse weather," Robotics and Autonomous Systems, vol. 162, art. no. 104312, Jul. 2023.
- S. Banerjee and M. Roy, "Performance evaluation of 4D radar in highway scenarios," Transportation Research Part C: Emerging Technologies, vol. 145, art. no. 103917, May. 2023.
- 16. K. E. Keifer et al., "Building a radar gun that detects both velocity and spin (HB100 demo)," Jan. 2022.
- 17. T. Nguyen et al., "Low-cost radar solutions for ADAS in emerging markets," IEEE Sensors Journal, vol. 22, no. 10, pp. 9876–9884, Oct. 2022.
- 18. Mangla et al., "ADAS dimmer design using HB100," in Springer Proceedings, 2021.
- 19. P. Singh and R. K. Verma, "Radar signal processing techniques for autonomous vehicle navigation," Journal of Intelligent & Robotic Systems, vol. 105, no. 2, pp. 145–158, Jun. 2021.
- 20. M. A. Khan et al., "A comparative study of radar and lidar for object detection in autonomous vehicles," Procedia Computer Science, vol. 176, pp. 112–121, Dec. 2020.
- 21. M. Z. Tun and K. T. Zin, "Implementation of Doppler radar-based vehicle speed detection system," International Journal of Trend in Scientific Research and Development (IJTSRD), vol. 3, no. 5, Aug. 2019.
- 22. J. Lee, "Teardown Tuesday: HB100 Doppler radar module," All About Circuits, Oct. 2016.
- 23. Godase, M. V., Mulani, A., Ghodak, M. R., Birajadar, M. G., Takale, M. S., & Kolte, M. A MapReduce and Kalman Filter based Secure IIoT Environment in Hadoop. Sanshodhak, Volume 19, June 2024.
- 24. Mulani, A. O., & Mane, P. B. (2017). Watermarking and cryptography based image authentication on reconfigurable platform. Bulletin of Electrical Engineering and Informatics, 6(2), 181-187.
- 25. Gadade, B., Mulani, A. O., &Harale, A. D. IoT Based Smart School Bus and Student Tracking System. Sanshodhak, Volume 19, June 2024.
- 26. Dhanawadel, A., Mulani, A. O., &Pise, A. C. IOT based Smart farming using Agri BOT. Sanshodhak, Volume 20, June 2024.
- 27. Mulani, A., & Mane, P. B. (2016). DWT based robust invisible watermarking. Scholars' Press.
- 28. R. G. Ghodke, G. B. Birajdar, A.O. Mulani, G.N. Shinde, R.B. Pawar, Design and Development of an Efficient and Cost-Effective surveillance Quadcopter using Arduino, Sanshodhak, Volume 20, June 2024.
- 29. R. G. Ghodke, G. B. Birajdar, A.O. Mulani, G.N. Shinde, R.B. Pawar, Design and Development of Wireless Controlled ROBOT using Bluetooth Technology, Sanshodhak, Volume 20, June 2024.
- Swami, S. S., & Mulani, A. O. (2017, August). An efficient FPGA implementation of discrete wavelet transform for image compression. In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS) (pp. 3385-3389). IEEE.
- 31. Mane, P. B., & Mulani, A. O. (2018). High speed area efficient FPGA implementation of AES algorithm. International Journal of Reconfigurable and Embedded Systems, 7(3), 157-165.
- 32. Mulani, A. O., & Mane, P. B. (2016). Area efficient high speed FPGA based invisible watermarking for image authentication. Indian journal of Science and Technology, 9(39), 1-6.
- 33. Kashid, M. M., Karande, K. J., & Mulani, A. O. (2022, November). IoT-based environmental parameter monitoring using machine learning approach. In Proceedings of the International Conference on Cognitive and Intelligent Computing: ICCIC 2021, Volume 1 (pp. 43-51). Singapore: Springer Nature Singapore.
- 34. Nagane, U. P., & Mulani, A. O. (2021). Moving object detection and tracking using Matlab. Journal of Science and Technology, 6(1), 2456-5660.
- 35. Kulkarni, P. R., Mulani, A. O., & Mane, P. B. (2016). Robust invisible watermarking for image authentication. In Emerging Trends in Electrical, Communications and Information Technologies: Proceedings of ICECIT-2015 (pp. 193-200). Singapore: Springer Singapore.
- 36. Ghodake, M. R. G., & Mulani, M. A. (2016). Sensor based automatic drip irrigation system. Journal for Research, 2(02).

International Journal of Advanced Research in Science, Communication and Technology

9001:2015 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- 37. Mandwale, A. J., & Mulani, A. O. (2015, January). Different Approaches For Implementation of Viterbi decoder on reconfigurable platform. In 2015 International Conference on Pervasive Computing (ICPC) (pp. 1-4). IEEE.
- 38. Jadhav, M. M., Chavan, G. H., & Mulani, A. O. (2021). Machine learning based autonomous fire combat turret. Turkish Journal of Computer and Mathematics Education, 12(2), 2372-2381.
- 39. Shinde, G., & Mulani, A. (2019). A robust digital image watermarking using DWT-PCA. International Journal of Innovations in Engineering Research and Technology, 6(4), 1-7.
- 40. Mane, D. P., & Mulani, A. O. (2019). High throughput and area efficient FPGA implementation of AES algorithm. International Journal of Engineering and Advanced Technology, 8(4).
- 41. Mulani, A. O., & Mane, D. P. (2017). An Efficient implementation of DWT for image compression on reconfigurable platform. International Journal of Control Theory and Applications, 10(15), 1-7.
- 42. Deshpande, H. S., Karande, K. J., & Mulani, A. O. (2015, April). Area optimized implementation of AES algorithm on FPGA. In 2015 International Conference on Communications and Signal Processing (ICCSP) (pp. 0010-0014). IEEE.
- 43. Deshpande, H. S., Karande, K. J., & Mulani, A. O. (2014, April). Efficient implementation of AES algorithm on FPGA. In 2014 International Conference on Communication and Signal Processing (pp. 1895-1899). IEEE.
- 44. Kulkarni, P., & Mulani, A. O. (2015). Robust invisible digital image mamarking using discrete wavelet transform. International Journal of Engineering Research & Technology (IJERT), 4(01), 139-141.
- 45. Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless Non-invasive blood glucose concentration level estimation using PCA and machine learning. The CRC Book entitled Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications.
- 46. Mulani, A. O., & Shinde, G. N. (2021). An approach for robust digital image watermarking using DWT-PCA. Journal of Science and Technology, 6(1).
- 47. Mulani, A. O., & Mane, P. B. (2014, October). Area optimization of cryptographic algorithm on less dense reconfigurable platform. In 2014 International Conference on Smart Structures and Systems (ICSSS) (pp. 86-89). IEEE.
- 48. Jadhav, H. M., Mulani, A., & Jadhav, M. M. (2022). Design and development of chatbot based on reinforcement learning. Machine Learning Algorithms for Signal and Image Processing, 219-229.
- 49. Mulani, A. O., & Mane, P. (2018). Secure and area efficient implementation of digital image watermarking on reconfigurable platform. International Journal of Innovative Technology and Exploring Engineering, 8(2), 56-61.
- 50. Kalyankar, P. A., Mulani, A. O., Thigale, S. P., Chavhan, P. G., & Jadhav, M. M. (2022). Scalable face image retrieval using AESC technique. Journal Of Algebraic Statistics, 13(3), 173-176.
- 51. Takale, S., & Mulani, A. (2022). DWT-PCA based video watermarking. Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN, 2799-1156.
- 52. Kamble, A., & Mulani, A. O. (2022). Google assistant based device control. Int. J. of Aquatic Science, 13(1), 550-555.
- 53. Kondekar, R. P., & Mulani, A. O. (2017). Raspberry Pi based voice operated Robot. International Journal of Recent Engineering Research and Development, 2(12), 69-76.
- 54. Ghodake, R. G., & Mulani, A. O. (2018). Microcontroller based automatic drip irrigation system. In Techno-Societal 2016: Proceedings of the International Conference on Advanced Technologies for Societal Applications (pp. 109-115). Springer International Publishing.
- 55. Mulani, A. O., Birajadar, G., Ivković, N., Salah, B., & Darlis, A. R. (2023). Deep learning based detection of dermatological diseases using convolutional neural networks and decision trees. Traitement du Signal, 40(6), 2819.
- Boxey, A., Jadhav, A., Gade, P., Ghanti, P., & Mulani, A. O. (2022). Face Recognition using Raspberry Pi. Journal of Image Processing and Intelligent Remote Sensing (JIPIRS) ISSN, 2815-0953.

International Journal of Advanced Research in Science, Communication and Technology

9001:2015 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- 57. Patale, J. P., Jagadale, A. B., Mulani, A. O., &Pise, A. (2023). A Systematic survey on Estimation of Electrical Vehicle. Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN, 2799-1156.
- 58. Gadade, B., & Mulani, A. (2022). Automatic System for Car Health Monitoring. International Journal of Innovations in Engineering Research and Technology, 57-62.
- 59. Shinde, M. R. S., & Mulani, A. O. (2015). Analysis of Biomedical Image Using Wavelet Transform. International Journal of Innovations in Engineering Research and Technology, 2(7), 1-7.
- 60. Mandwale, A., & Mulani, A. O. (2014, December). Implementation of convolutional encoder & different approaches for viterbi decoder. In IEEE International Conference on Communications, Signal Processing Computing and Information technologies.
- 61. Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless machine learning approach to estimate blood glucose level with non-invasive devices. In Artificial intelligence, internet of things (IoT) and smart materials for energy applications (pp. 83-100). CRC Press.
- 62. Maske, Y., Jagadale, A. B., Mulani, A. O., &Pise, A. C. (2023). Development of BIOBOT system to assist COVID patient and caretakers. European Journal of Molecular & Clinical Medicine, 10(01), 2023.
- 63. Utpat, V. B., Karande, D. K., & Mulani, D. A. Grading of Pomegranate Using Quality Analysis. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 10.
- 64. Takale, S., & Mulani, D. A. (2022). Video Watermarking System. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 10.
- 65. Mandwale, A., & Mulani, A. O. (2015, January). Different approaches for implementation of Viterbi decoder. In IEEE international conference on pervasive computing (ICPC).
- 66. Maske, Y., Jagadale, M. A., Mulani, A. O., &Pise, A. (2021). Implementation of BIOBOT System for COVID Patient and Caretakers Assistant Using IOT. International Journal of Information Technology and, 30-43.
- 67. Mulani, A. O., & Mane, D. P. (2016). Fast and Efficient VLSI Implementation of DWT for Image Compression. International Journal for Research in Applied Science & Engineering Technology, 5, 1397-1402.
- 68. Kambale, A. (2023). Home automation using google assistant. UGC care approved journal, 32(1), 1071-1077.
- 69. Pathan, A. N., Shejal, S. A., Salgar, S. A., Harale, A. D., & Mulani, A. O. (2022). Hand gesture controlled robotic system. Int. J. of Aquatic Science, 13(1), 487-493.
- Korake, D. M., & Mulani, A. O. (2016). Design of Computer/Laptop Independent Data transfer system from one USB flash drive to another using ARM11 processor. International Journal of Science, Engineering and Technology Research.
- 71. Mandwale, A., & Mulani, A. O. (2016). Implementation of High Speed Viterbi Decoder using FPGA. International Journal of Engineering Research & Technology, IJERT.
- 72. Kolekar, S. D., Walekar, V. B., Patil, P. S., Mulani, A. O., & Harale, A. D. (2022). Password Based Door Lock System. Int. J. of Aquatic Science, 13(1), 494-501.
- 73. Shinde, R., & Mulani, A. O. (2015). Analysis of Biomedical Imagell. International Journal on Recent & Innovative trend in technology (IJRITT).
- 74. Sawant, R. A., & Mulani, A. O. (2022). Automatic PCB Track Design Machine. International Journal of Innovative Science and Research Technology, 7(9).
- ABHANGRAO, M. R., JADHAV, M. S., GHODKE, M. P., & MULANI, A. (2017). Design And Implementation Of 8-bit Vedic Multiplier. International Journal of Research Publications in Engineering and Technology (ISSN No: 2454-7875).
- 76. Gadade, B., Mulani, A. O., &Harale, A. D. (2024). Iot based smart school bus and student monitoring system. Naturalista Campano, 28(1), 730-737.
- 77. Mulani, D. A. O. (2024). A Comprehensive Survey on Semi-Automatic Solar-Powered Pesticide Sprayers for Farming. Journal of Energy Engineering and Thermodynamics (JEET) ISSN, 2815-0945.

International Journal of Advanced Research in Science, Communication and Technology

gy 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 78. Salunkhe, D. S. S., & Mulani, D. A. O. (2024). Solar Mount Design Using High-Density Polyethylene. NATURALISTA CAMPANO, 28(1).
- 79. Seth, M. (2022). Painless Machine learning approach to estimate blood glucose level of Non-Invasive device. Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications.
- 80. Kolhe, V. A., Pawar, S. Y., Gohery, S., Mulani, A. O., Sundari, M. S., Kiradoo, G., ... & Sunil, J. (2024). Computational and experimental analyses of pressure drop in curved tube structural sections of Coriolis mass flow metre for laminar flow region. Ships and Offshore Structures, 19(11), 1974-1983.
- 81. Basawaraj Birajadar, G., Osman Mulani, A., Ibrahim Khalaf, O., Farhah, N., G Gawande, P., Kinage, K., & Abdullah Hamad, A. (2024). Epilepsy identification using hybrid CoPrO-DCNN classifier. International Journal of Computing and Digital Systems, 16(1), 783-796.
- 82. Kedar, M. S., & Mulani, A. (2021). IoT Based Soil, Water and Air Quality Monitoring System for Pomegranate Farming. Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN, 2799-1156.
- 83. Godse, A. P. A.O. Mulani (2009). Embedded Systems (First Edition).
- 84. Pol, R. S., Bhalerao, M. V., & Mulani, A. O. A real time IoT based System Prediction and Monitoring of Landslides. International Journal of Food and Nutritional Sciences, Volume 11, Issue 7, 2022.
- 85. Mulani, A. O., Sardey, M. P., Kinage, K., Salunkhe, S. S., Fegade, T., &Fegade, P. G. (2025). ML-powered Internet of Medical Things (MLIOMT) structure for heart disease prediction. Journal of Pharmacology and Pharmacotherapeutics, 16(1), 38-45.
- Aiwale, S., Kolte, M. T., Harpale, V., Bendre, V., Khurge, D., Bhandari, S., ... & Mulani, A. O. (2024). Non-invasive Anemia Detection and Prediagnosis. Journal of Pharmacology and Pharmacotherapeutics, 15(4), 408-416.
- 87. Mulani, A. O., Bang, A. V., Birajadar, G. B., Deshmukh, A. B., Jadhav, H. M., & Liyakat, K. K. S. (2024). IoT Based Air, Water, and Soil Monitoring System for Pomegranate Farming. Annals of Agri-Bio Research, 29(2), 71-86.
- 88. Kulkarni, T. M., & Mulani, A. O. (2024). Face Mask Detection on Real Time Images and Videos using Deep Learning. International Journal of Electrical Machine Analysis and Design (IJEMAD), 2(1).
- 89. Thigale, S. P., Jadhav, H. M., Mulani, A. O., Birajadar, G. B., Nagrale, M., &Sardey, M. P. (2024). Internet of things and robotics in transforming healthcare services. Afr J Biol Sci (S Afr), 6(6), 1567-1575.
- 90. Pol, D. R. S. (2021). Cloud Based Memory Efficient Biometric Attendance System Using Face Recognition. Stochastic Modeling & Applications, 25(2).
- 91. Nagtilak, M. A. G., Ulegaddi, M. S. N., Adat, M. A. S., & Mulani, A. O. (2021). Breast Cancer Prediction using Machine Learning.
- 92. Rahul, G. G., & Mulani, A. O. (2016). Microcontroller Based Drip Irrigation System.
- 93. Kulkarni, T. M., & Mulani, A. O. Deep Learning Based Face-Mask Detection: An Approach to Reduce Pandemic Spreads in Human Healthcare. African Journal of Biological Sciences, 6(6), 2024.
- 94. Mulani, A., & Mane, P. B. (2016). DWT based robust invisible watermarking. Scholars' Press.
- 95. Dr. Vaishali Satish Jadhav, Dr. Shweta Sadanand Salunkhe, Dr. Geeta Salunkhe, Pranali Rajesh Yawle, Dr. Rahul S. Pol, Dr. Altaf Osman Mulani, Dr. Manish Rana, Iot Based Health Monitoring System for Human, Afr. J. Biomed. Res. Vol. 27 (September 2024).
- 96. Dr. Vaishali Satish Jadhav, Geeta D. Salunke, Kalyani Ramesh Chaudhari, Dr. Altaf Osman Mulani, Dr. Sampada Padmakar Thigale, Dr. Rahul S. Pol, Dr. Manish Rana, Deep Learning-Based Face Mask Recognition in Real-Time Photos and Videos, Afr. J. Biomed. Res. Vol. 27 (September 2024).
- 97. Altaf Osman Mulani, Electric Vehicle Parameters Estimation Using Web Portal, Recent Trends in Electronics & Communication Systems, Volume 10, Issue 3, 2023.
- 98. Aryan Ganesh Nagtilak, Sneha Nitin Ulegaddi, Mahesh Mane, Altaf O. Mulani, Automatic Solar Powered Pesticide Sprayer for Farming, International Journal of Microwave Engineering and Technology, Volume 9 No. 2, 2023.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- 99. Annasaheb S. Dandage, Vitthal R. Rupnar, Tejas A Pise, and A. O. Mulani, Real-Time Language Translation Application Using Tkinter. International Journal of Digital Communication and Analog Signals. 2025; 11(01): -p.
- 100. AnnaSaheb S Dandage, Vitthal R. Rupnar, Tejas A Pise, and A. O. Mulani, IoT-Powered Weather Monitoring and Irrigation Automation: Transforming Modern Farming Practices. . 2025; 11(01): -p.
- 101.Mulani, A.O., Kulkarni, T.M. (2025). Face Mask Detection System Using Deep Learning: A Comprehensive Survey. In: Singh, S., Arya, K.V., Rodriguez, C.R., Mulani, A.O. (eds) Emerging Trends in Artificial Intelligence, Data Science and Signal Processing. AIDSP 2023. Communications in Computer and Information Science, vol 2439. Springer, Cham. https://doi.org/10.1007/978-3-031-88759-8 3.
- 102. Karve, S., Gangonda, S., Birajadar, G., Godase, V., Ghodake, R., Mulani, A.O. (2025). Optimized Neural Network for Prediction of Neurological Disorders. In: Singh, S., Arya, K.V., Rodriguez, C.R., Mulani, A.O. (eds) Emerging Trends in Artificial Intelligence, Data Science and Signal Processing. AIDSP 2023. Communications in Computer and Information Science, vol 2440. Springer, Cham. https://doi.org/10.1007/978-3-031-88762-8 18.
- 103. Saurabh Singh, Karm Veer Arya, Ciro Rodriguez Rodriguez, and Altaf Osman Mulani, Emerging Trends in Artificial Intelligence, Data Science and Signal Processing, Communications in Computer and Information Science (CCIS), volume 2440.
- 104. Saurabh Singh, Karm Veer Arya, Ciro Rodriguez Rodriguez, and Altaf Osman Mulani, Emerging Trends in Artificial Intelligence, Data Science and Signal Processing, Communications in Computer and Information Science (CCIS), volume 2439.
- 105. Godase, V., Mulani, A., Pawar, A., & Sahani, K. (2025). A Comprehensive Review on PIR Sensor-Based Light Automation Systems. International Journal of Image Processing and Smart Sensors, 1(1), 22-29.
- 106.Godase, V., Mulani, A., Takale, S., &Ghodake, R. (2025). Comprehensive Review on Automated Field Irrigation using Soil Image Analysis and IoT. Journal of Advance Electrical Engineering and Devices, 3(1), 46-55.
- 107. Altaf Osman Mulani, Deshmukh M., Jadhav V., Chaudhari K., Mathew A.A., Shweta Salunkhe. Transforming Drug Therapy with Deep Learning: The Future of Personalized Medicine. Drug Research. 2025 Aug 29.
- 108.Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), Image Authentication Using Cryptography and Watermarking, International Journal of Image Processing and Smart Sensors, Vol. 1, Issue 2, pp 27-34.
- 109.Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), Advancements in Artificial Intelligence: Transforming Industries and Society, International Journal of Artificial Intelligence of Things (AIoT) in Communication Industry, Vol. 1, Issue 2, pp 1-5.
- 110. Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), AI-Powered Predictive Analytics in Healthcare: Revolutionizing Disease Diagnosis and Treatment, Journal of Advance Electrical Engineering and Devices, Vol. 3, Issue 2, pp 27-34.
- 111. Godase, V., Mulani, A., Takale, S., &Ghodake, R. (2025). A Holistic Review of Automatic Drip Irrigation Systems: Foundations and Emerging Trends. Available at SSRN 5247778.
- 112. V. Godase, R. Ghodake, S. Takale, and A. Mulani, —Design and Optimization of Reconfigurable Microwave Filters Using AI Techniques, International Journal of RF and Microwave Communication Technologies, vol. 2, no. 2, pp.26–41, Aug. 2025.
- 113.V. Godase, A. Mulani, R. Ghodake, S. Takale, "Automated Water Distribution Management and Leakage Mitigation Using PLC Systems," Journal of Control and Instrumentation Engineering, vol.11, no. 3, pp. 1-8, Aug. 2025.
- 114.V. Godase, A. Mulani, R. Ghodake, S. Takale, "PLC-Assisted Smart Water Distribution with Rapid Leakage Detection and Isolation," Journal of Control Systems and Converters, vol. 1, no. 3, pp. 1-13, Aug. 2025.

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- 115. V. V. Godase, S. R. Takale, R. G. Ghodake, and A. Mulani, "Attention Mechanisms in Semantic Segmentation of Remote Sensing Images," Journal of Advancement in Electronics Signal Processing, vol. 2, no. 2, pp. 45–58, Aug. 2025.
- 116.D. Waghmare, A. Mulani, S. R. Takale, V. Godase, and A. Mulani, "A Comprehensive Review on Automatic Fruit Sorting and Grading Techniques with Emphasis on Weight-based Classification," Research & Review: Electronics and Communication Engineering, vol. 2, no. 3, pp. 1-10, Oct. 2025.
- 117. Karande, K. J., &Talbar, S. N. (2014). Independent component analysis of edge information for face recognition. Springer India.
- 118.Karande, K. J., &Talbar, S. N. (2008). Face recognition under variation of pose and illumination using independent component analysis. ICGST-GVIP, ISSN.
- 119. Kawathekar, P. P., & Karande, K. J. (2014, July). Severity analysis of Osteoarthritis of knee joint from X-ray images: A Literature review. In 2014 International Conference on Signal propagation and computer technology (ICSPCT 2014) (pp. 648-652). IEEE.
- 120. Daithankar, M. V., Karande, K. J., & Harale, A. D. (2014, April). Analysis of skin color models for face detection. In 2014 International Conference on Communication and Signal Processing (pp. 533-537). IEEE.
- 121.Karande, J. K., Talbar, N. S., & Inamdar, S. S. (2012, May). Face recognition using oriented Laplacian of Gaussian (OLOG) and independent component analysis (ICA). In 2012 Second International Conference on Digital Information and Communication Technology and it's Applications (DICTAP) (pp. 99-103). IEEE.
- 122. Shubham Salunkhe, Pruthviraj Zambare, Sakshi Shinde, S. K. Godase. (2024). API Development for Cloud Parameter Curation International. Journal of Electrical and Communication Engineering Technology, 2(1). https://doi.org/10.37591/ijecet
- 123.Badave, A., Pawale, A., Andhale, T., Godase, S. K., & STM JOURNALS. (2024). Smart home safety using fire and gas detection system. Recent Trends in Fluid Mechanics, 1, 35–43. https://journals.stmjournals.com/rtfm
- 124.Asabe, H., Asabe, R., Lengare, O., &Godase, S. (2025). IOT- BASED STORAGE SYSTEM FOR MANAGING VOLATILE MEDICAL RESOURCES IN HEALTHCARE FACILITIES. INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN ENGINEERING MANAGEMENT AND SCIENCE (IJPREMS), 05(03), 2427–2433. https://www.ijprems.com
- 125.Karche, S. N., Mulani, A. O., Department of Electronics, SKN Sinhgad College of Engineering, Korti, & University of Solapur, Maharashtra, India. (2018). AESC Technique for Scalable Face Image Retrieval. International Journal of Innovative Research in Computer and Communication Engineering, 6(4), 3404–3405.
- 126.https://doi.org/10.15680/IJIRCCE.2018.0604036
- 127.Bankar, A. S., Harale, A. D., &Karande, K. J. (2021). Gestures Controlled Home Automation using Deep Learning: A Review. International Journal of Current Engineering and Technology, 11(06), 617–621. https://doi.org/10.14741/ijcet/v.11.6.4
- 128. Mali, A. S., Ghadge, S. K., Adat, A. S., & Karande, S. V. (2024). Intelligent Medication Management System. IJSRD International Journal for Scientific Research & Development, Vol. 12(Issue 3).
- 129. Water Level Control, Monitoring and Altering System by using GSM in Irrigation Based on Season. (2019). In International Research Journal of Engineering and Technology (IRJET) (Vol. 06, Issue 04, p. 1035) [Journal-article]. https://www.irjet.net
- 130.Modi, S., Misal, V., Kulkarni, S., & Mali A.S. (2025). Hydroponic Farming Monitoring System Automated system to monitor and control nutrient and pH levels. In Journal of Microcontroller Engineering and Applications (Vol. 12, Issue 3, pp. 11–16). https://doi.org/10.37591/JoMEA
- 131.Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "VGHN: variations aware geometric moments and histogram features normalization for robust uncontrolled face recognition", International Journal of Information Technology, https://doi.org/10.1007/s41870-021-00703-0.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- 132. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition using MFCC & DTW Features", International Journal of Engineering Research And Applications (IJERA) pp. 118-122, ISSN: 2248-9622.
- 133. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Recognition of Marathi Numerals Using MFCC and DTW Features", Book Title: Recent Trends on Image Processing and Pattern Recognition, RTIP2R 2018, CCIS 1037, pp. 1–11, © Springer Nature Singapore Pte Ltd. 2019 https://doi.org/10.1007/978-981-13-9187-3 17.
- 134. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Analysis of Face Recognition Algorithms for Uncontrolled Environments", Book Title: Computing, Communication and Signal Processing, pp. 919–926, © Springer Nature Singapore Pte Ltd. 2018.
- 135. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Recognition of Marathi Numerals using MFCC and DTW Features", 2nd International Conference on Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2018), 21th -22th Dec., 2018, organized by Solapur University, Solapur in collaboration with University of South Dakota (USA) and Universidade de Evora (Portugal), India.
- 136. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "A Comprehensive Survey of Face Databases for Constrained and Unconstrained Environments", 2nd IEEE Global Conference on Wireless Computing & Networking (GCWCN-2018), 23th-24th Nov., 2018, organized by STES's Sinhgad Institute of Technology, Lonavala, India.
- 137. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "An Extensive Survey of Prominent Researches in Face Recognition under different Conditions", 4th International Conference on Computing, Communication, Control And Automation (ICCUBEA-2018), 16th to 18th Aug. 2018 organized by Pimpri Chinchwad College of Engineering (PCCOE), Pune, India.
- 138. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Analysis of Face Recognition Algorithms for Uncontrolled Environments", 3rd International Conference on Computing, Communication and Signal Processing (ICCASP 2018), 26th-27th Jan. 2018, organized by Dr. BATU, Lonere, India.
- 139. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", International Conference on Recent Trends, Feb 2012, IOK COE, Pune.
- 140.S. S. Gangonda, "Bidirectional Visitor Counter with automatic Door Lock System", National Conference on Computer, Communication and Information Technology (NCCCIT-2018), 30th and 31st March 2018 organized by Department of Electronics and Telecommunication Engineering, SKN SCOE, Korti, Pandharpur.
- 141.Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition using MFCC & DTW Features", ePGCON 2012, 23rd and 24th April 2012 organized by Commins COE for Woman, Pune.
- 142. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", National Conference on Emerging Trends in Engineering and Technology (VNCET'12), 30th March 2012 organized by Vidyavardhini's College of Engineering and Technology, Vasai Road, Thane.
- 143. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", ePGCON 2011, 26th April 2011 organized by MAEER's MIT, Kothrud, Pune-38.
- 144. Siddheshwar Gangonda, "Medical Image Processing", Aavishkar-2K7, 17th and 18th March 2007 organized by Department of Electronics and Telecommunication Engineering, SVERI's COE, Pandharpur.
- 145. Siddheshwar Gangonda, "Image enhancement & Denoising", VISION 2k7, 28th Feb-2nd March 2007 organized by M.T.E. Society's Walchand College of Engineering, Sangli.
- 146. Siddheshwar Gangonda, "Electromagnetic interference & compatibility" KSHITIJ 2k6, 23rd and 24th Sept. 2006 organized by Department of Mechanical Engineering, SVERI's COE, Pandharpur.
- 147.A. Pise and K. Karande, "A genetic Algorithm-Driven Energy-Efficient routing strategy for optimizing performance in VANETs," Engineering Technology and Applied Science Research, vol. 15, no. 5, 2025, [Online]. Available: https://etasr.com/index.php/ETASR/article/view/12744

International Journal of Advanced Research in Science, Communication and Technology

150 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 148.A. C. Pise, K. J. Karande, "Investigating Energy-Efficient Optimal Routing Protocols for VANETs: A Comprehensive Study", ICT for Intelligent Systems, Lecture Notes in Networks and Systems 1109, Proceedings of ICTIS 2024 Volume 3, Lecture Notes in Networks and Systems, Springer, Singapore, ISSN 2367-3370, PP 407-417, 29 October 2024 https://doi.org/10.1007/978-981-97-6675-8_33.
- 149.A. C. Pise, et. al., "Smart Vehicle: A Systematic Review", International Journal The Ciência&Engenharia Science & Engineering Journal ISSN: 0103-944XVolume 11 Issue 1, 2023pp: 992–998, 2023.
- 150.A. C. Pise, et. al., "Smart Vehicle: A Systematic Review", International Journal of Research Publication and Reviews, ISSN 2582-7421, Vol 4, no 10, pp 2728-2731 October 2023.
- 151.A. C. Pise, et. al., "Development of BIOBOT System to Assist COVID Patient and Caretakers", European Journal of Molecular and Clinical Medicine; 10(1):3472-3480, 2023.
- 152.A. C. Pise, et. al., "IoT Based Landmine Detection Robot", International Journal of Research in Science &EngineeringISSN: 2394-8299Vol: 03, No. 04, June-July 2023.
- 153.A. C. Pise, et. al., "A Systematic survey on Estimation of Electrical Vehicle", Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN: 2799-1156, Volume 3, Issue 01, Pages 1-6, December 2023.
- 154.A. C. Pise, et. al., "Python Algorithm to Estimate Range of Electrical Vehicle", Web of Science, Vol 21, No 1 (2022) December 2022
- 155.A. C. Pise, et. al., "Implementation of BIOBOT System for COVID Patient and Caretakers Assistant using IOT", International Journal of Information technology and Computer Engineering. 30-43. 10.55529/ijite.21.30.43, (2022).
- 156.A. C. Pise, et. al., "An IoT Based Real Time Monitoring of Agricultural and Micro irrigation system", International journal of scientific research in Engineering and management (IJSREM), VOLUME: 06 ISSUE: 04 | APRIL 2022, ISSN:2582-3930.
- 157.A. C. Pise, Dr. K. J. Karande, "An Exploratory study of Cluster Based Routing Protocol in VANET: A Review", International Journal of Advanced Research in Engineering and Technology(IJARET), 12,10, 2021, 17-30, Manuscript ID :00000-94375 Source ID : 00000006, Journal_uploads/IJARET/VOLUME_12_ISSUE_10/IJARET_12_10_002.pdf
- 158.A. C. Pise, et. al., "Android based Portable Health Support System," A Peer Referred & Indexed International Journal ofResearch, Vol. 8, issue. 4, April 2019.
- 159.A. C. Pise, et. al., "Facial Expression Recognition Using Image Processing," International Journal of VLSI Design, Microelectronics and Embedded System, Vol. 3, issue. 2, July 2018.
- 160.A. C. Pise, et. al., "Detection of Cast Iron Composition by Cooling Curve Analysis using Thermocouple Temperature Sensor," UGC Approved International Journal of Academic Science (IJRECE), Vol. 6, Issue.3, July-September 2018.
- 161.A. C. Pise, et. al., "Android Based Portable Health Support", System International Journal of Engineering Sciences & Research Technology (IJESRT 2017) Vol.6, Issue 8, pp 85-88 5th Aug 2017
- 162.A. C. Pise, et. al., "Adaptive Noise Cancellation in Speech Signal", International Journal of Innovative Engg and Technology, 2017
- 163.A. C. Pise, et. al., "Lung Cancer Detection System by using Baysian Classifier", ISSN 2454-7875, IJRPET, published online in conference special issue VESCOMM-2016, February 2016
- 164.A. C. Pise, et. al., "Review on Agricultural Plant Diseases Detection by Image Processing", ISSN 2278-62IX, IJLTET, Vol 7, Issue 1 May 2016
- 165.A. C. Pise, et. al. "Segmentation of Retinal Images for Glaucoma Detection", International Journal of Engineering Research and Technology (06, June-2015).
- 166.A. C. Pise, et. al. "Color Local Texture Features Based Face Recognition", International Journal of Innovations in Engineering and Technology(IJIET), Dec. 2014
- 167.A. C. Pise, et. al. "Single Chip Solution For Multimode Robotic Control", International Journal of Engineering Research and Technology (IJERT-2014), Vol. 3, Issue 12, Dec. 2014.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, October 2025

- 168. Anjali C. Pise et. al., "Remote monitoring of Greenhouse parameters using zigbee Wireless Sensor Network", International Journal of Engineering Research & Technology ISSN 2278-0181 (online) Vol. 3, Issue 2, and pp: (2412-2414), Feb. 2014.
- 169.A. C. Pise, K. J. Karande, "Cluster Head Selection Based on ACO In Vehicular Ad-hoc Networks", Machine Learning for Environmental Monitoring in Wireless Sensor Networks
- 170.A. C. Pise, K. J. Karande, "Architecture, Characteristics, Applications and Challenges in Vehicular Ad Hoc Networks" Presented in 27th IEEE International Symposium on Wireless Personal Multimedia Communications (WPMC 2024) "Secure 6G - AI Nexus: Where Technology Meets Humanity" Accepted for book chapter to be published in international Scopus index book by River publisher.
- 171.A. C. Pise, Dr. K. J. Karande, "K-mean Energy Efficient Optimal Cluster Based Routing Protocol in Vehicular Ad Hoc Networks", International Conference on Innovations in Artificial Intelligence and Machine Learning (ICAIML-2022), August 20th and 21st 2022 Springer database Conference.
- 172.A. C. Pise, Mr. D. Nale, "Web-Based Application for Result Analysis", ", International Conference on Innovations in Artificial Intelligence and Machine Learning (ICAIML-2022), August 20th and 21st 2022 Springer database Conference.
- 173.A. C. Pise, et. al., "Detection of Cast Iron Composition by Cooling Curve Analysis using Thermocouple Temperature Sensor," 2nd International Conference on Engineering Technology, Science and Management Innovation (ICETSMI – 2018), 2nd September 2018.
- 174.A. C. Pise, et. al., "Facial Expression Recognition Using Facial Features," IEEE International Conference on Communication and Electronics Systems (ICCES 2018), October 2018.
- 175.A. C. Pise, et. al., "Estimating Parameters of Cast Iron Composition using Cooling Curve Analysis," IEEE International Conference on Communication and Electronics Systems (ICCES 2018), Coimbatore, October 2018.
- 176.A. C. Pise, et. al., "Android based portable Health Support System," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 177.A. C. Pise, et. al., "Baysian Classifier & FCM Segmentation for Lung Cancer Detection in early stage," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 178.A. C. Pise, et. al., "Cast Iron Composition Measurement by Coding Curve Analysis," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 179.A. C. Pise, et. al., "War field Intelligence DefenceFlaging Vehicle," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 180.A. C. Pise, et. al. "Disease Detection of Pomegranate Plant", IEEE sponsored International Conference on Computation of Power, Energy, Information and Communication, 22-23 Apr. 2015.
- 181.A. C. Pise, P. Bankar. "Face Recognition by using GABOR and LBP", IEEE International Conference on Communication and Signal Processing, ICCSP, 2-4 Apr. 2015
- 182.A. C. Pise, et. al. "Single Chip Solution For Multimode Robotic Control", Ist IEEE International Conferene on Computing Communication and Automation, 26-27 Feb2015.
- 183. Anjali C. Pise, Vaishali S. Katti, "Efficient Design for Monitoring of Greenhouse Parameters using Zigbee Wireless Sensor Network", fifth SARC international conference IRF, IEEE forum ISBN 978-93-84209-21-6,pp 24-26, 25th May 2014
- 184.A. C. Pise, P. Bankar, "Face Recognition using Color Local Texture Features", International Conference on Electronics and Telecommunication, Electrical and Computer Engineering, Apr.2014.
- 185.A. C. Pise, et.al. "Monitoring parameters of Greenhouse using Zigbee Wireless Sensor Network", 1st International Conference on Electronics and Telecommunication, Electrical and Computer Engineering, 5-6 Apr.2014.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, October 2025

- 186.A. C. Pise, et. al. "Compensation schemes and performance Analysis of IQ Imbalances in Direct Conversion Receivers", International Conference at GHPCOE, Gujarat, (Online Proceeding is Available), 2009.
- 187.A. C. Pise, K. J. Karande, "Energy-Efficient Optimal Routing Protocols in VANETs", 66th Annual IETE Convention, AIC -2023 September16-17, 2023, under the Theme: The Role of 5G In Enabling Digital Transformation for Rural Upliftment.
- 188.A. C. Pise, et. al. "Automatic Bottle Filling Machine using Raspberry Pi", National Conference on computer ;Communication& information Technology (NCCIT-2018) dated 30th & 31st March 2018.
- 189.A. C. Pise, et. al. "Design & Implementation of ALU using VHDL", National Conference on computer ;Communication& information Technology (NCCIT-2018) dated 30th & 31st March 2018.
- 190.A. C. Pise, et. al. "Mechanism and Control of Autonomus four rotor Quad copter", National Conference on Computer, Electrical and Electronics Engineering, 23- 24 Apr. 2016.
- 191.A. C. Pise, et. al. "Segmentation of Optic Disk and Optic Cup from retinal Images", ICEECMPE Chennai, June 2015
- 192.A. C. Pise, et. al. "Diseases Detection of Pomegranate Plant", IEEE Sponsored International conference on Computation of Power, Energy, April 2015.
- 193.A. C. Pise, et. al. "Compensation Techniques for I/Q Imbalance in Direct-Conversion Receivers", Conference at SCOE, Pune 2010.
- 194.A. C. Pise, et. al. "I/Q Imbalance compensation Techniques in Direct Conversion Receiver", Advancing Trends in Engineering and Management Technologies, ATEMT-2009, Conference at Shri Ramdeobaba Kamla Nehru Engineering College, Nagpur, 20-21 November 2009
- 195.A. C. Pise, et. al. "Compensation Techniques for I/Q Imbalance in Direct Conversion Receiver", Conference at PICT, Pune 2008.
- 196.A. C. Pise, et. al. "I/Q Imbalance compensation Techniques in Direct Conversion Receiver", Conference at DYCOE, Pune 2008.
- 197.A. C. Pise, et. al. "DUCHA: A New Dual channel MAC protocol for Multihop Ad-Hoc Networks", Conference at SVCP, Pune 2007.
- 198. Godase, V., Pawar, P., Nagane, S., & Kumbhar, S. (2024). Automatic railway horn system using node MCU. Journal of Control & Instrumentation, 15(1).
- 199. Godase, V., &Godase, J. (2024). Diet prediction and feature importance of gut microbiome using machine learning. Evolution in Electrical and Electronic Engineering, 5(2), 214-219.
- 200. Jamadade, V. K., Ghodke, M. G., Katakdhond, S. S., &Godase, V. A Comprehensive Review on Scalable Arduino Radar Platform for Real-time Object Detection and Mapping.
- 201.Godase, V. (2025). A comprehensive study of revolutionizing EV charging with solar-powered wireless solutions. Advance Research in Power Electronics and Devices e-ISSN, 3048-7145.
- 202.Godase, V. (2025, April). Advanced Neural Network Models for Optimal Energy Management in Microgrids with Integrated Electric Vehicles. In Proceedings of the International Conference on Trends in Material Science and Inventive Materials (ICTMIM-2025) DVD Part Number: CFP250J1-DVD.
- 203. Dange, R., Attar, E., Ghodake, P., &Godase, V. (2023). Smart agriculture automation using ESP8266 NodeMCU. J. Electron. Comput. Netw. Appl. Math, (35), 1-9.
- 204.Godase, V. (2025). Optimized Algorithm for Face Recognition using Deepface and Multi-task Cascaded Convolutional Network (MTCNN). Optimum Science Journal.
- 205. Mane, V. G. A. L. K., & Gangonda, K. D. S. Pipeline Survey Robot.
- 206.Godase, V. (2025). Navigating the digital battlefield: An in-depth analysis of cyber-attacks and cybercrime. International Journal of Data Science, Bioinformatics and Cyber Security, 1(1), 16-27.
- 207. Godase, V., & Jagadale, A. (2019). Three element control using PLC, PID & SCADA interface. International Journal for Scientific Research & Development, 7(2), 1105-1109.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- 208. Godase, V. (2025). Edge AI for Smart Surveillance: Real-time Human Activity Recognition on Low-power Devices. International Journal of AI and Machine Learning Innovations in Electronics and Communication Technology, 1(1), 29-46.
- 209. Godase, V., Modi, S., Misal, V., & Kulkarni, S. (2025). LoRaEdge-ESP32 synergy: Revolutionizing farm weather data collection with low-power, long-range IoT. Advance Research in Analog and Digital Communications, 2(2), 1-11.
- 210.Godase, V. (2025). Comparative study of ladder logic and structured text programming for PLC. Available at SSRN 5383802.
- 211. Godase, V., Modi, S., Misal, V., & Kulkarni, S. Real-time object detection for autonomous drone navigation using YOLOv8, I. Advance Research in Communication Engineering and its Innovations, 2(2), 17-27.
- 212.Godase, V. (2025). Smart energy management in manufacturing plants using PLC and SCADA. Advance Research in Power Electronics and Devices, 2(2), 14-24.
- 213.Godase, V. (2025). IoT-MCU Integrated Framework for Field Pond Surveillance and Water Resource Optimization. International Journal of Emerging IoT Technologies in Smart Electronics and Communication, 1(1), 9-19.
- 214. Godase, V. (2025). Graphene-Based Nano-Antennas for Terahertz Communication. International Journal of Digital Electronics and Microprocessor Technology, 1(2), 1-14.
- 215. Godase, V., Khiste, R., & Palimkar, V. (2025). AI-Optimized Reconfigurable Antennas for 6G Communication Systems. Journal of RF and Microwave Communication Technologies, 2(3), 1-12.
- 216.Bhaganagare, S., Chavan, S., Gavali, S., &Godase, V. V. (2025). Voice-Controlled Home Automation with ESP32: A Systematic Review of IoT-Based Solutions. Journal of Microprocessor and Microcontroller Research, 2(3), 1-13.
- 217. Jamadade, V. K., Ghodke, M. G., Katakdhond, S. S., &Godase, V. A Comprehensive Review on Scalable Arduino Radar Platform for Real-time Object Detection and Mapping.
- 218.Godase, V. (2025). Cross-Domain Comparative Analysis of Microwave Imaging Systems for Medical Diagnostics and Industrial Testing. Journal of Microwave Engineering & Technologies, 12(2), 39-48p.
- 219.V. K. Jamadade, M. G. Ghodke, S. S. Katakdhond, and V. Godase, —A Review on Real-time Substation Feeder Power Line Monitoring and Auditing Systems," International Journal of Emerging IoT Technologies in Smart Electronics and Communication, vol. 1, no. 2, pp. 1-16, Sep. 2025.
- 220. V. V. Godase, "VLSI-Integrated Energy Harvesting Architectures for Battery-Free IoT Edge Systems," Journal of Electronics Design and Technology, vol. 2, no. 3, pp. 1-12, Sep. 2025.
- 221.A. Salunkhe et al., "A Review on Real-Time RFID-Based Smart Attendance Systems for Efficient Record Management," Advance Research in Analog and Digital Communications, vol. 2, no. 2, pp.32-46, Aug. 2025.
- 222. Vaibhav, V. G. (2025). A Neuromorphic-Inspired, Low-Power VLSI Architecture for Edge AI in IoT Sensor Nodes. Journal of Microelectronics and Solid State Devices, 12(2), 41-47p.
- 223. Nagane, M.S., Pawar, M.P., &Godase, P.V. (2022). Cinematica Sentiment Analysis. *Journal of Image Processing and Intelligent Remote Sensing*.
- 224. Godase, V.V. (2025). Tools of Research. SSRN Electronic Journal.
- 225.Godase, V. (n.d.). EDUCATION AS EMPOWERMENT: THE KEY TO WOMEN'S SOCIO ECONOMIC DEVELOPMENT. Women Empowerment and Development, 174–179.
- 226. Godase, V. (n.d.). COMPREHENSIVE REVIEW ON EXPLAINABLE AI TO ADDRESSES THE BLACK BOX CHALLENGE AND ITS ROLE IN TRUSTWORTHY SYSTEMS. In Sinhgad College of Engineering, Artificial Intelligence Education and Innovation (pp. 127–132).
- 227.Godase, V. (n.d.-b). REVOLUTIONIZING HEALTHCARE DELIVERY WITH AI-POWERED DIAGNOSTICS: A COMPREHENSIVE REVIEW. In SKN Sinhgad College of Engineering, SKN Sinhgad College of Engineering (pp. 58–61).
- 228. Dhope, V. (2024). SMART PLANT MONITORING SYSTEM. In International Journal of Creative Research Thoughts (IJCRT). https://www.ijcrt.org

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- 229.M. M. Zade, Sushant D. Kambale, Shweta A. Mane, Prathamesh M. Jadhav. (2025) "IOT Based early fire detection in Jungles". RIGJA&AR Volume 2 Issue 1, ISSN: 2998-4459. DOI: https://doi.org/10.5281/zendo.15056435
- 230.M. M. Zade, Bramhadev B. Rupanar, Vrushal S. Shilawant, Akansha R. Pawar(2025) "IOT Flood Monitoring & Alerting System using Rasberry Pi-Pico" International Journal of Research Publication & Reviews, Volume 6, Issue3, ISSN:2582-7421.DOI:https://ijrpr.com/uploads/V6ISSUE3/IJRPR40251.pdf
- 231.M.M.Zade(2022) "Touchless Fingerprint Recognition System" (Paper-ID 907)(2022) International Conference on "Advanced Technologies for Societal Applications: Techno-Societal 2022 https://link.springer.com/book/10.1007/978-3-031-34644-6?page=6
- 232.Mr.M.M.Zade published the paper on "Automation of Color Object Sorting Conveyor Belt", in International Journal of Scientific Research in Engineering & Management (IJSREM),ISSN:2582-3930 Volume 06, Issue 11th November 2022.
- 233.Mr.M.M.Zade published the paper on "Cloud Based Patient Health Record Tracking web Developement",in International Journal of Advanced Research in Science, Communication & Technology(IJARSCT),ISSN NO:2581-9429 Volume 02, Issue03,DOI 1048175/IJARSCT-3705,IF 6.252, May 2022.
- 234.Mr. Mahesh M Zade, "Performance analysis of PSNR Vs. Impulse Noise for the enhancement of Image using SMF", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- 235.Mr. Mahesh M Zade, "Classification of Power Quality Disturbances Using SVM & their Efficiency Comparison", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb 2019
- 236.Mr. Mahesh M Zade, "Dynamic Clustering of Wireless Sensor Network Using Modified AODV", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- 237.Mr. Mahesh M Zade, "Performance analysis of PSNR Vs. Impulse Noise for the enhancement of Image using SMF", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur, Feb.2019
- 238.Mr. Mahesh M Zade, "Classification of Power Quality Disturbances Using SVM & their Efficiency Comparison", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur Feb.2019
- 239.Mr. Mahesh M Zade, "Dynamic Clustering of Wireless Sensor Network Using Modified AODV", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur Feb.2019
- 240.Mr. Mahesh M Zade &Mr.S.M.Karve,"Performance Analysis of Median Filter for Enhancement of Highly Corrupted Images", National Conference on Advanced Trends in Engineering, Association with IRJMS, Karmyogi Engineering College, Shelave, Pandharpur, March 2016.
- 241.Mr. Mahesh M Zade &Mr.S.M.Karve,"Implementation of Reed Solomen Encoder & Decoder Using FPGA", National Conference on Advanced Trends in Engineering, Association with IRJMS, Karmyogi Engineering College, Shelave, Pandharpur, March 2016.
- 242.Mr. Mahesh M Zade & Dr.S.M.Mukane,"Performance of Switching Median Filter for Enhancement of Image", National Conference on Mechatronics at Sinhgad Institute of Technology and Science, Narhe, Pune, Feb. 2016.
- 243.Mr. Mahesh M Zade & Dr.S.M.Mukane, "Enhancement of Image with the help of Switching Median Filter", National Conference on Emerging Trends in Electronics & Telecommunication Engineering, SVERI's College of Engineering Pandharpur, NCET 2013.
- 244.Mr.Mahesh M Zade & Dr.S.M.Mukane,"Enhancement of Image with the help of Switching Median Filter", International Journal of Computer Application (IJCA) SVERI's College of Engineering, Pandharpur, Dec.2013.

