

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Smart Wheelchair with Automated Breaking and

GPS

Prof. A. C. Pise¹, Namrata Dabade², Sumitra Deshmane³, Puja Gavade⁴, Omkar Kumbhar⁵, Sujal Mane⁶, Ruturaj Patil⁷,

¹Assistant Professor, Department of Electronics and Telecommunication Engineering ²³⁴⁵⁶⁷UG Students, Department of Electronics and Telecommunication Engineering SKN Sinhgad College of Engineering, Pandharpur

Abstract: Mobility assistance devices are essential for enhancing the quality of life for senior citizens and people with disabilities. This project introduces the design and execution of a Smart Wheelchair featuring Automated Braking and GPS, aimed at improving safety, navigation, and independence. To keep track of the environment around it and to identify possible impediments, the system makes use of both infrared and ultrasonic sensors. When detected, an automatic braking system is engaged to avert crashes and guarantee user safety. The wheelchair's movement is coordinated by a microcontroller that processes user commands and sensor inputs in real time. With its integration of embedded systems, sensor technology, and wireless communication, this smart wheelchair serves as a cost-effective solution that showcases its promise as a dependable assistive device for safe and independent mobility. To ensure that the system responds quickly to dynamic environments and minimizes human reliance in critical situations, advanced control strategies are utilized. Furthermore, location-based services help maintain connections between caregivers, family members, and the user, which promotes feelings of security and assurance. By merging modern healthcare technology with embedded control systems, the proposed wheelchair highlights the role of innovation in building inclusive and accessible mobility aids for the future.

Keywords: Smart Wheelchair, Automated Braking System, GPS Technology, Obstacle Detection Mechanism, Embedded Systems, Assistive Technology Solutions, Navigation System

I. INTRODUCTION

The advancement of technology in healthcare and assistive devices has significantly improved the quality of life for elderly and physically challenged individuals. Among these innovations, smart wheelchairs have emerged as intelligent mobility aids that combine safety, comfort, and independence.

Traditional wheelchairs often lack advanced safety features, making users vulnerable to accidents such as collisions or falls. To address these challenges, this project introduces a Smart Wheelchair with Automated Braking and GPS, designed to ensure secure navigation and real-time location tracking.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO POUT:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

The proposed system integrates ultrasonic and infrared sensors for obstacle detection, enabling the wheelchair to automatically stop or slow down to prevent accidents. A microcontroller processes the sensor inputs and user commands, ensuring smooth and safe operation. Additionally, the GPS module provides outdoor navigation and location tracking, By combining intelligent braking with GPS-based tracking, this project enhances both safety and autonomy, making it a practical solution for differently-abled individuals and elderly patients.

This work showcases the potential of combining embedded systems, sensor technology, and wireless communication to develop assistive mobility devices that are affordable, user-friendly, and reliable. Mobility is a basic human necessity, and lacking the ability to move independently can have a significant impact on a person's confidence, productivity, and overall quality of life. For individuals with mobility impairments, wheelchairs have been a crucial support for a long time; most traditional designs, however, are limited to basic movement and lack the advanced intelligence necessary for safety in dynamic environments. The emergence of embedded systems, smart sensors, and wireless communication has created the possibility of converting traditional wheelchairs into intelligent mobility platforms.

A smart wheelchair equipped with automated braking and GPS is a significant advancement in this regard. Such systems differ from standard assistive devices in that they aim to provide physical support while also improving situational awareness, decision-making, and connectivity.

II. LITERATURE SURVEY

M. EhatMahdin et.al [1] have introduced a smart wheelchair controlled by hand gestures, which includes GPS tracking and a deep learning object detection module to prevent collisions. This research centers on offering an intuitive way for users with restricted fine motor control to operate, by converting hand gestures into movement instructions. Convolutional neural networks are employed for object detection to identify obstacles and initiate automatic avoidance actions. To assist with caregiver monitoring and route logging, GPS tracking is integrated. The authors constructed a prototype and evaluated it under controlled indoor conditions, reporting encouraging results for gesture recognition accuracy and real-time obstacle detection. They talk about latency considerations and the balance between detection sensitivity and false positives. Limitations include constrained testing environments and the need for more robust evaluation outdoors and in cluttered real-world scenarios.

S. A. V. Kuppa et.al[2] depict the design and creation of a smart wheelchair, focusing on accessibility, cost-effectiveness, and modularity. Their system combines a control unit based on a microcontroller with standard sensors and motor drivers to ensure dependable motion control. They investigate various user input methods to cater to different disabilities and underscore ergonomic design selections for user comfort. The prototype undergoes testing in indoor settings and is assessed for its responsiveness and safety attributes, including obstacle detection. A cost analysis demonstrates how the choice of components maintains a low overall price to facilitate broader adoption. The authors address battery longevity and propose enhancements in power management as future tasks. They acknowledge that including advanced autonomy would raise both complexity and cost. This article presents a pragmatic blueprint for smart solutions that are low-cost and can be manufactured locally manufacturable smart wheelchair systems.

L. Hou et.al[3] propose a smart wheelchair based on IoT that combines mobility support with health monitoring for the elderly through built-in sensors and cloud integration. The system gathers physiological and environmental data on an

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29435

571

2581-9429

International Journal of Advanced Research in Science, Communication and Technology

ISO POOT:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

ongoing basis and sends it to a remote monitoring platform for caregivers. The wheelchair preserves essential mobility functions while serving as a health-monitoring hub, facilitating the early identification of health anomalies. The implementation details cover sensor fusion, protocols for data transmission, and a lightweight server-side dashboard for alerts. The authors confirm the reliability of data collection in experimental trials, mentioning occasional transmission delays when the network is heavily loaded. The privacy and security of transmitted medical data are emphasized as concerns that necessitate encryption and access control. Their proposal includes future endeavors focused on sophisticated analytics and anomaly detection based on historical data. This work demonstrates the value of integrating healthcare monitoring into assistive mobility devices to support independent living for older adults.

- F. Ahmed et.al[4] report on a practical and affordable smart wheelchair designed for individuals with disabilities, featuring joystick control and ultrasonic obstacle detection. The aim is to provide a safe mobility aid that is affordable and can be made using readily available components. In the hardware design, simplicity, ergonomics, and ease of maintenance are prioritized. The authors provide documentation of the motor control circuitry and sensor placements. Practical testing demonstrates successful obstacle evasion and seamless user control in common indoor situations. The article addresses battery runtime and power management choices as significant design constraints. The authors additionally provide user feedback centered on comfort and usability, highlighting aspects of seat design and control sensitivity that could be enhanced. Limitations include restricted outdoor capability and the absence of higher-level autonomy. Overall, the work contributes a cost-sensitive design suitable for resource-limited settings.
- S. Basak et.al[5] investigate a gesture-based control system for wheelchairs designed to empower users with significant motor impairments. Their method utilizes low-cost sensors to capture hand gestures, which are then transformed into directional commands via a microcontroller. The research highlights the importance of a simple system, gesture-to-motion translation with low latency, and the incorporation of obstacle sensors to ensure safety. Trials of the prototype demonstrated intuitive control for basic directional commands, with testing indicating a satisfactory level of system responsiveness. The authors consider the difficulties involved in reliably detecting gestures under different lighting conditions and when users are positioned in various ways. They propose possible enhancements involving gesture recognition based on machine learning to boost robustness and accommodate a wider range of gestures. The battery life and the requirements for sensor calibration are mentioned as practical factors to take into account. This manuscript illustrates a user-centered, economical approach to hands-free wheelchair control.

A. Bumulleret.al[6] have present a modular smart wheelchair platform aimed at making upgrades and customization easier to meet various user needs. Thanks to their modular design, drive, sensing, and user-interface modules are separated from one another, allowing for independent swapping or upgrading of components. The paper describes the mechanical and electrical interfaces, as well as software abstractions that facilitate module interoperability. They carried out the implementation of various modules—motor control, ultrasonic sensing, and a basic user interface—and evaluated the system for stability and ease of maintenance. The authors emphasize the advantages of modularity for long-term serviceability and customizing the platform to meet clinical or research requirements. Limitations consist of the initial intricacy involved in establishing standard module interfaces and the increased weight due to modular connectors. They promote the use of community-driven module libraries and future standardization as a means to speed up development.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

S. N. Nijhumet.al[7] suggest an Android-operated smart wheelchair that can be controlled by joystick, gestures, and voice, with the goal of creating a low-cost and adaptable user interface. The smartphone functions as both the controller and telemetry gateway, utilizing its integrated sensors and communication stacks to minimize the need for dedicated hardware. Through the mobile app, the system incorporates voice recognition and gesture interpretation via a Bluetooth or Wi-Fi connection to the wheelchair controller. Under quiet conditions, tests indicated a reasonable accuracy for voice commands and effective joystick/gesture control for navigation. The authors highlight the benefit of the widespread presence of smartphones for reducing costs and expediting feature updates. Identified challenges include robustness against background noise for voice, smartphone battery longevity, and the necessity of a dependable wireless connection. They propose enhancements such as edge-based ML for better gesture recognition and offline voice models. The paper demonstrates an accessible architecture leveraging smartphones to broaden smart wheelchair functionality.

S. R. K. S. Giri et.al[8] depict a smart wheelchair that utilizes IoT technology for mobility aid and patient observation, integrating sensor networks with cloud services. The architecture they use includes environmental, physiological, and obstacle-detection sensors that transmit data to a cloud dashboard for caregivers and clinicians. The system enables remote alerts and logging, allowing caregivers to react to emergencies or deviations in user health patterns. The authors describe the integration of hardware and software, assess system reliability in standard usage scenarios, and note that data transmission rates are within acceptable limits. Challenges related to security and data integrity are highlighted, along with suggestions for encrypted channels and authentication. Additionally, they look into latency issues regarding crucial alerts and suggest local fallback actions on the wheelchair controller. Constraints comprise reliance on network availability and the necessity for a user-focused UI improvement. The study highlights IoT's potential to make wheelchairs both mobility devices and remote health-monitoring platforms.

S. S. Sheth et.al[9] introduce a smart wheelchair solution that utilizes IoT technology to aid individuals with physical challenges via remote monitoring and automated safety features. The article describes a hardware-software stack that comprises obstacle sensors, motor controllers, and a cloud-based telemetry backend. During testing of the prototype, the writers show features for real-time monitoring and mechanisms for alerting caregivers. They emphasize that dependable obstacle detection is necessary for autonomous or semi-autonomous behaviors. The study incorporates a usability discussion that draws on caregiver feedback and simulated patient scenarios. The pointed out limitations are the scalability of cloud storage and the need for strong offline operation. They suggest prospective avenues like predictive analytics based on usage patterns and the incorporation of supplementary assistive sensors. The contribution is a unified IoT-centered strategy highlighting caregiver support and remote oversight.

R. and S. S. Tippannavaret.al[10] explore the use of Raspberry Pi in an EEG-based smart wheelchair aimed at elderly and paralyzed individuals who are unable to use conventional controls. After processing and classifying the signals, the system translates user-intent signals captured through EEG into directional commands. The authors address preprocessing measures, feature extraction, and the classifier selected for mapping EEG patterns to control intents. The onboard controller, which connects to motors and other sensors, is a Raspberry Pi. It offers a compact and cost-effective solution. While tests demonstrate potential under controlled circumstances, they underscore the challenges of dependable EEG interpretation for intricate commands and emphasize the necessity for training and calibration.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

A. G. S. et.al[11] put forward a high-tech wheelchair for paralyzed individuals, highlighting sophisticated IoT integration for remote monitoring and enhanced assistive services. The system architecture connects on-board sensors (physiological, environmental, and obstacle detectors) with cloud services for logging, alerts, and caregiver interfaces. The communication stack, power management, and data flow from device to cloud are detailed in the paper, which highlights use cases such as fall detection and route history. While prototype testing shows trustworthy telemetry and caregiver alerts in uncomplicated situations, latency is noted during network congestion. The authors recommend encryption and access controls for medical data while discussing privacy-preserving techniques conceptually. They pinpoint difficulties in guaranteeing strong operation in areas with inadequate network coverage and propose localized fail-safe actions. Future work proposed includes model personalization and incorporation of edge AI for latency-sensitive tasks. Overall, the paper contributes a comprehensive IoT-forward design targeted at intensive-care user groups.

S. M. Shifa et.al[12] showcase an intelligent wheelchair featuring state-of-the-art control systems, investigating multi-modal inputs and tiered safety measures. Their implementation combines joystick, gesture, and voice control with obstacle detection and an arbitration layer that prioritizes safety over direct commands when necessary. It contains accounts of the signal processing pipelines, sensor fusion logic, and control arbitration strategies employed to merge user intent with autonomous safety actions. Usability is enhanced and collision incidents are reduced in shared-control modes as opposed to pure manual control, according to experimental validation conducted in indoor settings. The authors emphasize the difficulties of combining noisy or contradictory inputs, particularly in the context of voice recognition amidst fluctuating noise levels. To reduce these problems, they suggest adapting the weight of inputs and calibrating to the individual user.

C. R. Teenetiet.al[13] adopt a system-level engineering perspective on wireless charging for power wheelchairs, emphasizing free-positioning wireless power transfer. This study explores coil designs, resonant coupling techniques, and the control electronics necessary for optimizing efficiency in cases of misalignment. We present detailed experiments and simulations that assess transfer efficiency, misalignment tolerance, and thermal profiles during charging sessions. Safety is a key focus: they talk about detecting foreign objects, ensuring electromagnetic compatibility, and managing thermal issues. The results indicate that although the convenience of WPT is high, efficiency and cost are still trade-offs in comparison to wired charging. The authors present practical design recommendations and suggest methods for integrating charging docks in residential and clinical settings. Current hardware costs and lower peak efficiencies compared to wired solutions are among the limitations. The paper is a thorough technical treatment enabling practical WPT adoption in wheelchair systems.

S. Naresh et.al[14]describe the design of a powered wheelchair focusing on mechanical robustness, ergonomics, and cost-effective component choices. Tests conducted with different loads and on typical indoor surfaces demonstrate stable handling and sufficient traction. The authors also report that battery sizing decisions are in line with anticipated daily usage. They stress the importance of adjustable seating and control settings to cater to various user body types and impairments. Limitations comprise the lack of advanced autonomy features and restricted outdoor performance on uneven terrain. The authors propose modular upgrades for sensors and path-planning algorithms as potential future

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

work. The contribution serves as a practical engineering blueprint for dependable powered wheelchairs in resourcelimited settings.

- R. A. Ramlee et.al[15] research a Bluetooth-based smart-home integration system for disabled individuals that allows wheelchairs to connect with home appliances. The project concentrates on user interfaces and pairing strategies for lighting, doors, and various other smart devices, with the goal of improving home independence. This paper describes implementation specifics, latency assessments, and user-focused UI design factors for simplified control. The writers emphasize concerns about reliability regarding Bluetooth range and interference, and they address backup strategies in the event that connectivity is lost. Security issues particularly the risk of unauthorized entry to domestic devices are scrutinized, accompanied by suggestions for combining security measures with authentication. Due to Bluetooth's limited range and bandwidth, the study has its constraints. The authors recommend looking into other protocols for larger homes or multi-room setups. Overall, it shows how integrating mobility aids with home automation can substantially boost user autonomy.
- S. Soma et.al[16] propose a method to construct a smart, intelligent wheelchair that integrates sensing, control, and lightweight autonomy for navigation indoors. Methods for obstacle detection, straightforward path-planning heuristics for doorways and corridors, and factors regarding embedded-processing constraints are detailed in the paper. The writers emphasize how crucial it is for hardware with limited resources to be computationally efficient and responsive in real time. The simplicity of the user interface and ergonomic factors are considered crucial for actual use, they discuss. Limitations encompass simplified testing scenarios and limited participation of target end-users in the evaluation process. The writers propose future actions: enhanced perception (such as vision-based SLAM) and adaptation based on user behavior through learning. The study contributes an implementation-minded view balancing intelligence with embedded-system practicality.
- O. Horn et.al [17] The review synthesizes trends in smart wheelchairs up to 2012, including control methods, sensing modalities, human-machine interaction, and clinical deployment issues. Historically arranging the domain, the article demonstrates how it advanced from mechanical power-assist features to nascent biosignal interfaces and semi-autonomous behaviors. Horn addresses obstacles to clinical adoption, including safety certification, user acceptance, and the difficulty of designing for a diverse user population. The review emphasizes the need for standardized benchmarks and collaboration across disciplines among engineers, clinicians, and patients. Additionally, it emphasizes the research gaps of that period, such as robust perception in cluttered environments and studies on long-term usability. The review's limitations include its temporal cutoff and the swift developments in AI and sensing technologies post-2012. Nonetheless, it remains a useful foundational reference for understanding early research trajectories.
- N. Aziz et.al[18] provide a concentrated evaluation of control techniques for smart wheelchairs, contrasting manual, shared and fully autonomous approaches. This paper surveys algorithmic approaches like potential fields, behavior-based control, and probabilistic planners, assessing them for latency, safety, and computational complexity. It highlights human factors, contending that shared-control paradigms frequently provide the best compromise between autonomy and user agency. Practical constraints such as sensor noise, computational limitations, and the need for personalization are recognized as significant obstacles for actual deployments. The review emphasizes the lack of standardized performance metrics and urges the establishment of consistent experimental protocols. The authors

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29435

575

2581-9429

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

suggest future avenues such as adaptive control that learns user-specific behaviors and online model updating. This review summarizes control-focused research and underscores evident avenues for technical enhancement.

- P. G. Pinheiro et al. [19] put forward a predictive shared-control framework that forecasts user intent in the short run and modifies control commands to enhance safety and efficiency. To avoid harm while maintaining user autonomy, their method employs a predictive model to encourage or supersede direct commands when a collision or unsafe maneuver is probable. Simulated obstacles were used in experimental assessments, which demonstrated that anticipative control results in fewer collisions and smoother trajectories compared to direct manual control. The article addresses the trade-offs involving human factors, emphasizing the necessity of balancing assistance with a perceived loss of control. Limitations consist of the possibility of predictive inaccuracies in cases where user behavior shows significant fluctuation and the necessity for tailoring to individual user preferences. The authors propose adaptive thresholds for adjusting assistance levels and recommend future validation with actual users.
- P. V. Baiju et al. [20] the paper is marked as retracted; the initial submission, which was retracted from the proceedings, described a smart wheelchair intended for individuals with physical disabilities. The retraction states that the findings should not be considered a dependable technical source without comprehension of the withdrawal's rationale. During a literature survey, it is crucial to highlight retracted work so that readers do not base their work on or reference results that may be invalid. This inclusion is solely for the purpose of documenting the record and reminding researchers to favor peer-validated and reproducible studies. In case a reason for the retraction is required, it should be examined through the records of the publisher or conference. This instance bolsters the custom of verifying citations against one another in the course of literature reviews and system design.
- F. E. Casado and Y. Demiris et.al [21] investigate federated learning-from-demonstration to create assistive policies for smart wheelchairs, ensuring privacy preservation. This method collects demonstration models that have been trained locally and aggregates updates to the model at a central location, all without sharing raw user data. This allows for collaborative learning among users. Their experiments suggest that federated aggregation can enhance the generalization of assistance policies while reducing privacy exposure. This paper addresses issues like the variety of user demonstrations, communication overhead, and robustness against noisy or adversarial updates. They suggest merging global models with local fine-tuning for personalized assistance. Limitations include the necessity for realistic, large-scale user demonstrations and effective communication protocols for actual deployments. This contribution represents a new application of federated learning concepts in assistive robotics that prioritizes user privacy.
- P. Gawli et al. [22] showcase a wheelchair that is controlled by voice and gestures, highlighting multimodal redundancy to enhance resilience and provide users with options. Their system processes inputs from speech and gestures, employing an arbitration scheme to resolve conflicts or revert to the most reliable modality in context. Testing of the prototype shows that when multiple input modes are offered, task completion improves and user satisfaction increases—this is particularly true in noisy or physically constrained environments. Latency trade-offs and advantages of local processing for commands critical to safety are examined by the authors. Limitations encompass the necessity for adaptation of accent and gesture styles for different users, as well as the energy costs associated with operating multiple sensing modalities. Future work suggested involves developing adaptive fusion algorithms and conducting

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, October 2025

clinical trials to evaluate long-term usability. This paper provides additional evidence that multimodal input increases accessibility in assistive systems.

M. Nirmala et al. [23] depict a wheelchair that incorporates gesture control, emphasizing uncomplicated and sturdy gesture sets as well as cost-effective sensor components. Microcontroller-based processing is utilized in the design to convert detected gestures into navigation commands, and it incorporates obstacle detection for safety. Their experiments demonstrate successful navigation for typical actions in indoor environments and underscore frequent failure modes, such as sensor sensitivity to environmental factors. The authors stress the importance of calibration procedures and tailoring gesture sets to individual users in order to enhance reliability. Some constraints involve the necessity of constant recalibration in certain conditions and diminished robustness in low-light situations. Their proposal includes the future integration of gesture recognition based on machine learning to achieve user generalization. This research provides a practical and inexpensive approach to gesture-based control.

R. Chauhan et al. [24] present an innovative IoT-enabled wheelchair designed specifically for quadriplegic patients, focusing on alternative input modalities and caregiver integration. The architecture includes environmental sensors, physiological monitors, and cloud connectivity for remote supervision and alerting. Prototype demonstrations emphasize safety behaviors and caregiver notification during emergencies. The authors discuss challenges in translating limited user inputs into effective navigation and about ensuring robust behavior under network variability. Limitations include the absence of extended clinical trials and the need to validate user acceptance in real-world contexts. Future directions proposed include adaptive control schemes and integration of predictive analytics to anticipate care needs. This work addresses a high-need patient group with a practical IoT-first solution.

A. Azad et al. [25] investigate a clever, self-directed, and battery-free transmission system for electric wheelchairs that enables free-positioning charging and alleviates the need for exact alignment. This paper introduces coil geometries, resonant coupling strategies, and control logic that ensure charging efficiency even in the presence of misalignments. The charging power over realistic misalignment ranges is demonstrated through experiments, which also address the thermal and safety management necessary for home deployment. In comparison to wired charging, the authors discuss enhancements to user experience and system-level integration. Limitations include increased system cost and somewhat diminished efficiency compared to wired chargers. They suggest further optimizing coil design and power electronics to bridge the performance gap. The contribution strongly advocates for a charging convenience focused on users in mobility devices.

M. D. Zbancioc et al. [26] a method for recognizing voice commands in Romanian based on CNNs, which has direct applications for voice-operated wheelchair controls in languages that lack sufficient representation. The article addresses the creation of datasets, model design, and techniques for data augmentation to enhance robustness when data is scarce. According to experimental findings, CNNs can reach competitive accuracy when customized for language-specific phonetics and trained with suitable augmentation. Practical issues including background noise, variability in accents, and limitations of on-device deployment are investigated. The authors propose using transfer learning from larger multilingual models as a solution in situations where training data are limited. Limitations comprise the relatively small sizes of datasets and the necessity for robustness testing in real-world scenarios. Inclusive voice-driven assistive systems greatly benefit from language-specific models, as the study emphasizes.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

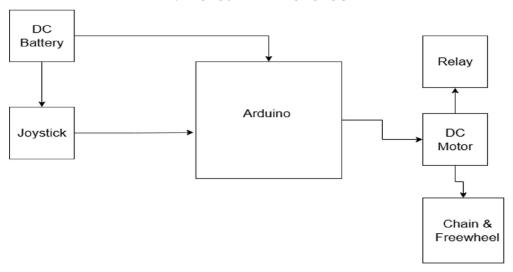
ISO POUT:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- J. C. Luna et al. [27] create a virtual training system that incorporates lateral trunk motion into wheelchair mobility training, with the goal of enhancing user skill, balance, and safety. The system emulates realistic navigation situations and offers feedback on biomechanical cues, aiding users in learning safer postures and maneuvering techniques. According to pilot trials, the acquisition of skills occurs at a quicker pace and risky maneuvers are less frequent during the initial phases of training. The authors highlight possible advantages for rehabilitation and therapist-supervised training, along with instances of remote learning. Limitations include the necessity of longitudinal studies to verify retention and transfer to daily mobility tasks. Proposed enhancements comprise of adaptive difficulty scaling and more sophisticated haptic feedback to more closely mimic real-world dynamics. This study links rehabilitation science with virtual training aimed at assistive mobility.
- F. Harrou et al. [28] document a pilot study utilizing AI that focuses on automatic sitting-posture recognition for wheelchair users, with the goal of diminishing pressure-sore risks and aiding in posture-aware interventions. The paper outlines sensor configurations, the extraction of features from time-series signals, and classification models that differentiate common sitting postures. The pilot study results indicate a promising level of accuracy under controlled conditions, suggesting possible applications in real-time monitoring and alerting caregivers. According to the writers, sensor wearability, comfort over extended periods, and false alarm risk are all significant practical issues. Limitations encompass small pilot cohorts and restricted assessment across diverse daily-living situations. The research recommends personalizing thresholds and incorporating automated posture-adjustment mechanisms as subsequent steps. It provides initial proof that AI posture monitoring can have clinical applications in wheelchairs care.
- R. Khande and S. Rajapurkar et.al[29] introduce a wheelchair that is controlled through voice and gestures, which seeks to enhance user choice and control robustness. Their system combines a speech-recognition module with gesture sensors and employs arbitration logic to manage conflicts and fallback situations. While trials demonstrate functional navigation ability in quiet settings, voice recognition performance diminishes in high-noise environments. The authors examine the energy and processing trade-offs involved in continuous multimodal sensing. Limitations encompass the necessity for customization for various accents and gesture styles, as well as the lack of larger-scale user studies. It is suggested that future work includes the use of machine-learning-based fusion to enhance robustness, as well as offline speech models for greater reliability and privacy. This work provides another practical demonstration of multimodal control for assistive devices.
- S. A. K. Kumar et al. [30] depict a voice-controlled wheelchair management system that utilizes IoT technology and highlights modular design, oversight of caregivers, and use of readily available components in order to maintain low costs. The system integrates voice-command navigation with cloud telemetry to enable remote monitoring and recording of usage patterns. Prototype testing demonstrates that command recognition and caregiver alerts are feasible in controlled settings, but their reliability in noisy, real-world conditions is still a concern. The authors suggest offline voice models and edge processing as solutions for problems related to latency, privacy, and reliability. Noted limitations include a lack of extensive clinical validation and testing on a small user sample. The paper presents a practical architecture that combines voice-driven control with caregiver-focused IoT capabilities.


International Journal of Advanced Research in Science, Communication and Technology

y Solition of the section of the sec

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

III. PROPOSED METHODOLOGY

The suggested wheelchair system aims to offer safe, dependable, and easy-to-use mobility support by combining electrical and mechanical elements into one automated unit. The system starts with the DC battery, which acts as the main power source for the whole configuration. It delivers consistent electrical energy for the operation of the Arduino microcontroller, joystick, relay modules, and DC motors. The system's portability and convenience are enhanced by the use of a rechargeable battery, which removes reliance on external power sources and guarantees long-term operation.

The joystick serves as the primary input device that allows the user to engage with the wheelchair. It offers directional control for movements forward, backward, to the left, and to the right. These inputs are produced as ananalog voltage signal that change based on the direction chosen by the user. As people with limited mobility need control mechanisms that are both effective and uncomplicated, the joystick provides a solution that is both ergonomic and familiar. These signals are sent to the Arduino microcontroller, which acts as the central processing unit.

The Arduino serves as the wheelchair's "brain," interpreting signals from the analog joystick and transforming them into commands for decision-making. It processes the inputs, identifies the intended movement, and sends suitable control signals to the relay circuit. The Arduino guarantees that thewheelchair is controlled smoothly, responsively, and accurately. Moreover, due to its programmable nature, it is highly adaptable and can incorporate additional features like speed regulation, obstacle avoidance sensors, or emergency stop The relay serves an essential function as a switch operated by electricity. The relay serves as a connector betweenthe two, as the Arduino works with low-power control signals while the DC motor needs a higher current to operate. It enables the Arduino to safely turn the high-power motor ON or OFF and control its rotational direction, all without direct exposure to high currents. The main drive system that generates motion is the DC motor. Once it gets controlled power through the relay, it transforms electrical energy into mechanical rotational energy, producing the torque necessary for moving the wheelchair.

The motor's efficiency has a direct impact on the wheelchair's performance, speed, and load capacity. The system uses a chain and freewheel mechanism to transmit this power effectively. The chain conveys the rotational torque from the motor shaft to the wheels, guaranteeing effective energy transmission. The freewheel component enhances safety by preventing reverse jamming, enabling smooth forward movement and minimizing the risk of mechanical damage

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29435

579

2581-9429

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

during sudden stops or changes in direction. The mechanical energy is ultimately transferred to the wheelchair's wheels, causing movement according to the user's command. Based on the joystick's input, the wheelchair can execute move linearly in either direction or rotate left and right by manipulating the motors' rotational direction.

IV. CONCLUSION

The aim of developing the smart wheelchair is to improve mobility and independence for those who are elderly or disabled. With GPS tracking, it allows for real-time observation and guarantees the user's safety by being aware of their location. By stopping accidents and crashes from occurring, the addition of an automatic braking system offers further safeguarding. The Bluetooth-based control enables remote operation, enhancing the convenience and user-friendliness of the wheelchair. This innovation lessens reliance on caregivers while providing assistance through emergency response features. The project emphasizes how modern technology can be effectively utilized in healthcare and rehabilitation systems. Although it faces challenges like greater expense, ongoing upkeep, and reliance on batteries, the benefits far surpass the disadvantages.

The wheelchair demonstrates reliability in guaranteeing user safety, comfort, and ease of navigation. Its uses range from hospitals and assisted living facilities to smart city accessibility initiatives. All in all, this project exemplifies an important advance in the integration of technology into assistive devices for a safer and more intelligent future.

REFERENCES

- M. Ehat Mahdin et al., "Hand Gesture Controlled Smart Wheelchair with GPS Tracking and Deep Learning Based Object Detection for Collision Avoidance," 2022 IEEE International Women in Engineering Conference on Electrical and Computer Engineering, Naya Raipur, India, 2022, pp. 147-152, doi: 10.1109/WIECON-ECE57977.2022.10150558.
- S. A. V. Kuppa, M. S. H. Reddy, A. Sanjana, J. Sridevi and V. U. Rani, "Design and Development of Smart WheelChair," 2022 IEEE 2nd International Conference on Sustainable Energy and Future Electric Transportation, Hyderabad, India, 2022, pp. 1-5, doi: 10.1109/SeFeT55524.2022.9908983.
- 3. L. Hou, J. Latif, P. Mehryar, A. Zulfiqur, S. Withers and A. Plastropoulos, "IoT Based Smart Wheelchair for Elderly Healthcare Monitoring," 2021 IEEE 6th International Conference on Computer and Communication Systems Chengdu, China, 2021, pp. 917-921, doi: 10.1109/ICCCS52626.2021.9449273.
- F. Ahmed, R. Paul, M. M. Ahmad, A. Ahammad and S. Singha, "Design and Development of a Smart Wheelchair for the Disabled People," 2021 International Conference on Information and Communication Technology for Sustainable Development, Dhaka, Bangladesh, 2021, pp. 45-49, doi: 10.1109/ICICT4SD50815.2021.9397034.
- S. Basak, F. F. Nandiny, S. M. M. H. Chowdhury and A. A. Biswas, "Gesture-based Smart Wheelchair for Assisting Physically Challenged People," 2021 International Conference on Computer Communication and Informatics, Coimbatore, India, 2021, pp. 1-6, doi: 10.1109/ICCCI50826.2021.9402632.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- A. Bumuller and K. Skerl, "Development of a modular smart wheelchair," 2018 International IEEE Conference and Workshop in Óbuda on Electrical and Power Engineering (CANDO-EPE), Budapest, Hungary, 2018, pp. 000049-000054, doi: 10.1109/CANDO-EPE.2018.8601155.
- S. N. Nijhum and M. A. Haque Chowdhury, "Android-Based Smart Wheelchair with Joystick, Gesture, and Voice Control: A Low-Cost Solution," 2023 International Conference on Next-Generation Computing, IoT and Machine Learnin, Gazipur, Bangladesh, 2023, pp. 1-6, doi: 10.1109/NCIM59001.2023.10212434.
- S. R. K. S. Giri, P. Logesh, S. Barath Sundar and R. Dhivya Praba, "IoT-Based Smart Wheelchair for Disabled People and Patient Monitoring," 2023 2nd International Conference on Advancements in Electrical, Electronics, Communication, Computing and Automation, Coimbatore, India, 2023, pp. 1-6, doi: 10.1109/ICAECA56562.2023.10200628.
- S. S, S. Sheth, A. Kumar and B. Dwivedy, "An IoT Enabled Smart Wheelchair Solution for Physically Challenged People," 2023 2nd International Conference on Vision Towards Emerging Trends inCommunication and Networking Technologies, Vellore, India, 2023, pp. 1-5, doi: 10.1109/ViTECoN58111.2023.10157231.
- R and S. S. Tippannavar, "EEG based Smart Wheelchair using Raspberry Pi for Elderly and Paralysed Patients," 2022 IEEE 2nd Mysore Sub Section International Conference, Mysuru, India, 2022, pp. 1-5, doi: 10.1109/MysuruCon55714.2022.9972433.
- 11. A. G. S, C. A, K. D and S. Gomathi, "Smart Wheel Chair for Paralyzed Patients Using Advanced IoT," 2025 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics, Bangalore, India, 2025, pp. 1-6, doi: 10.1109/IITCEE64140.2025.10915296.
- S. M. Shifa, T. M. Mridul, S. S. Rafat, M. H. Monjur, M. R. Islam and M. K. Hassan, "Design and Implementation of Smart Wheelchair with Advanced Control Interfaces," 2023 3rd InternationalConference on Robotics, Electrical and Signal Processing Techniques, Dhaka, Bangladesh, 2023, pp. 155-159, doi: 10.1109/ICREST57604.2023.10070067.
- 13. C. R. Teeneti et al., "System-Level Approach to Designing a Smart Wireless Charging System for Power Wheelchairs," in IEEE Transactions on Industry Applications, vol. 57, no. 5, pp. 5128-5144, Sept.-Oct. 2021, doi: 10.1109/TIA.2021.3093843.
- S. Naresh, R. Arunkumar, I. Suriya, T. Vinodh and B. Radjaram, "Design of Powered Wheelchair for a Differently Abled Person," 2019 IEEE International Conference on System, Computation, Automation and Networking, Pondicherry, India, 2019, pp. 1-13, doi: 10.1109/ICSCAN.2019.8878729.
- R. A. Ramlee, D. H. Z. Tang and M. M. Ismail, "Smart home system for Disabled People via Wireless Bluetooth," 2012 International Conference on System Engineering and Technology, Bandung, Indonesia, 2012, pp. 1-4, doi: 10.1109/ICSEngT.2012.6339347.
- S. Soma, N. Patil, F. Salva and V. Jadhav, "An Approach to Develop a Smart and Intelligent Wheelchair," 2018
 9th International Conference on Computing, Communication and Networking Technologies, Bengaluru, India, 2018, pp. 1-7, doi: 10.1109/ICCCNT.2018.8494050.
- 17. O. Horn, "Smart wheelchairs: Past and current trends," 2012 1st International Conference on Systems and Computer Science, Lille, France, 2012, pp. 1-6, doi: 10.1109/IConSCS.2012.6502470.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- N. Aziz, N. S. Khusaini, Z. Mohamed, A. Hamid, Y. Yusof and M. R. Aziz, "Smart Wheelchairs: A Review on Control Methods," 2022 IEEE International Conference on Artificial Intelligence in Engineering and Technology, Kota Kinabalu, Malaysia, 2022, pp. 1-6, doi: 10.1109/IICAIET55139.2022.9936836.
- P. G. Pinheiro, E. Cardozo and C. G. Pinheiro, "Anticipative Shared Control for Robotic Wheelchairs Used by People with Disabilities," 2015 IEEE International Conference on Autonomous Robot Systems and Competitions, Vila Real, Portugal, 2015, pp. 91-96, doi: 10.1109/ICARSC.2015.26
- P. V. Baiju, K. Varghese, J. M. Alapatt, S. J. Joju and K. M. Sagayam, "Retracted: Smart Wheelchair for Physically Challenged People," 2020 6th International Conference on Advanced Computing and Communication Systems, Coimbatore, India, 2020, pp. 828-831, doi: 10.1109/ICACCS48705.2020.9074188.
- 21. F. E. Casado and Y. Demiris, "Federated Learning from Demonstration for Active Assistance to Smart Wheelchair Users," 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Kyoto, Japan, 2022, pp. 9326-9331, doi: 10.1109/IROS47612.2022.9981998.
- P. Gawli, T. Desale, T. Deshmukh, S. Dongare, V. Gaikwad and S. Hajare, "Gesture and Voice Controlled Wheelchair," 2025 4th International Conference on Sentiment Analysis and Deep Learning (ICSADL), Bhimdatta, Nepal, 2025, pp. 899-903, doi: 10.1109/ICSADL65848.2025.10933372.
- 23. M. Nirmala, S. Pranesh, T. Kavin and R. V. Kavin, "Gesture Control Integrated Wheelchair," 2022 International Virtual Conference on Power Engineering Computing and Control: Developments in Electric Vehicles and Energy Sector for Sustainable Future, Chennai, India, 2022, pp. 1-6, doi: 10.1109/PECCON55017.2022.9851174
- 24. R. Chauhan, J. Upadhyay and C. Bhatt, "An innovative wheelchair for quadreplegic patient using IoT," 2023 International Conference on Device Intelligence, Computing and Communication Technologies, (DICCT), Dehradun, India, 2023, pp. 483-487, doi: 10.1109/DICCT56244.2023.10110128.
- 25. A. Azad, R. Tavakoli, U. Pratik, B. Varghese, C. Coopmans and Z. Pantic, "A Smart Autonomous WPT System for Electric Wheelchair Applications With Free-Positioning Charging Feature," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 4, pp. 3516-3532, Dec. 2020, doi: 10.1109/JESTPE.2018.2884887.
- 26. M. D. Zbancioc, R. Butnaru and S. M. Feraru, "Recognition of Voice Commands using CNN for Romanian Language," 2022 E-Health and Bioengineering Conference, Iasi, Romania, 2022, pp. 01-04, doi: 10.1109/EHB55594.2022.9991322.
- 27. J. C. Luna, S. Bougherara, E. Monacelli and Y. Hirata, "Enhancing Wheelchair Mobility: Virtual Training System Integrating Lateral Trunk Motion," 2024 33rd IEEE International Conference on Robot and Human Interactive Communication, Pasadena, CA, USA, 2024, pp. 674-679, doi: 10.1109/RO-MAN60168.2024.10731208
- F. Harrou, A. Dorbane and Y. Sun, "Automatic Sitting Posture Recognition in Wheelchair Users: An AI-driven Pilot Study," 2024 9th International Conference on Frontiers of Signal Processing, Paris, France, 2024, pp. 10-15, doi: 10.1109/ICFSP62546.2024.10785494
- 29. R. Khande and S. Rajapurkar, "Smart Voice and Gesture Controlled Wheel Chair," 2022 6th International Conference on Trends in Electronics and Informatics, Tirunelveli, India, 2022, pp. 413-417, doi: 10.1109/ICOEI53556.2022.9777223

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

logy 9001:201

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- 30. sA. K. Kumar, R. Sankar, R. T. Charulatha, P. K. Sheela Shantha Kumari and N. V. Krishnamoorthy, "Intelligent Fabrication of IoT Assisted Smart Voice based Wheelchair Controlling System for Physically Challenged People," 2024 International Conference on Advances in Computing, Communication and Applied Informatics, Chennai, India, 2024, pp. 1-7, doi: 10.1109/ACCAI61061.2024.10601877
- 31. A. C. Pise, K. J. Karande, "Cluster Head Selection Based on ACO In Vehicular Ad-hoc Networks", Machine Learning for Environmental Monitoring in Wireless Sensor Networks, Accepted for publication in Book Chapter.
- 32. A.C. Pise, K. J. Karande, "Energy-Efficient Optimal Routing Protocols in VANETs", 66th Annual IETE Convention, AIC -2023 September16-17, 2023, under the Theme: The Role of 5G In Enabling Digital Transformation for Rural Upliftment.
- 33. A. C. Pise, et. al. "Automatic Bottle Filling Machine using Raspberry Pi", National Conference on computer ;Communication& information Technology (NCCIT-2018) dated 30th & 31st March 2018.
- 34. A. C. Pise, et. al. "Design & Implementation of ALU using VHDL", National Conference on computer ;Communication& information Technology (NCCIT-2018) dated 30th & 31st March 2018.
- 35. A. C. Pise, et. al. "Mechanism and Control of Autonomus four rotor Quad copter", National Conference on Computer, Electrical and Electronics Engineering, 23- 24 Apr. 2016.
- 36. A. C. Pise, K. J. Karande, "Architecture, Characteristics, Applications and Challenges in Vehicular Ad Hoc Networks" Presented in 27th IEEE International Symposium on Wireless Personal Multimedia Communications (WPMC 2024) "Secure 6G AI Nexus: Where Technology Meets Humanity" Accepted for book chapter to be published in international Scopus index book by River publisher
- 37. A. C. Pise, Dr. K. J. Karande, "K-mean Energy Efficient Optimal Cluster Based Routing Protocol in Vehicular Ad Hoc Networks", International Conference on Innovations in Artificial Intelligence and Machine Learning (ICAIML-2022), August 20th and 21st 2022 Springer database Conference.
- 38. A. C. Pise, K. J. Karande, "Investigating Energy-Efficient Optimal Routing Protocols for VANETs: A Comprehensive Study", ICT for Intelligent Systems, Lecture Notes in Networks and Systems 1109, Proceedings of ICTIS 2024 Volume 3, Lecture Notes in Networks and Systems, Springer, Singapore, ISSN 2367-3370, PP 407-417, 29 October 2024 https://doi.org/10.1007/978-981-97-6675-8 33.
- 39. Godase, M. V., Mulani, A., Ghodak, M. R., Birajadar, M. G., Takale, M. S., & Kolte, M. A MapReduce and Kalman Filter based Secure IIoT Environment in Hadoop. Sanshodhak, Volume 19, June 2024.
- 40. Mulani, A. O., & Mane, P. B. (2017). Watermarking and cryptography based image authentication on reconfigurable platform. Bulletin of Electrical Engineering and Informatics, 6(2), 181-187.
- 41. Gadade, B., Mulani, A. O., &Harale, A. D. IoT Based Smart School Bus and Student Tracking System. Sanshodhak, Volume 19, June 2024.
- 42. Dhanawadel, A., Mulani, A. O., &Pise, A. C. IOT based Smart farming using Agri BOT. Sanshodhak, Volume 20, June 2024.
- 43. Mulani, A., & Mane, P. B. (2016). DWT based robust invisible watermarking. Scholars' Press.
- 44. R. G. Ghodke, G. B. Birajdar, A.O. Mulani, G.N. Shinde, R.B. Pawar, Design and Development of an Efficient and Cost-Effective surveillance Quadcopter using Arduino, Sanshodhak, Volume 20, June 2024.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

logy 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 45. R. G. Ghodke, G. B. Birajdar, A.O. Mulani, G.N. Shinde, R.B. Pawar, Design and Development of Wireless Controlled ROBOT using Bluetooth Technology, Sanshodhak, Volume 20, June 2024.
- Swami, S. S., & Mulani, A. O. (2017, August). An efficient FPGA implementation of discrete wavelet transform for image compression. In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS) (pp. 3385-3389). IEEE.
- 47. Mane, P. B., & Mulani, A. O. (2018). High speed area efficient FPGA implementation of AES algorithm. International Journal of Reconfigurable and Embedded Systems, 7(3), 157-165.
- 48. Mulani, A. O., & Mane, P. B. (2016). Area efficient high speed FPGA based invisible watermarking for image authentication. Indian journal of Science and Technology, 9(39), 1-6.
- 49. Kashid, M. M., Karande, K. J., & Mulani, A. O. (2022, November). IoT-based environmental parameter monitoring using machine learning approach. In Proceedings of the International Conference on Cognitive and Intelligent Computing: ICCIC 2021, Volume 1 (pp. 43-51). Singapore: Springer Nature Singapore.
- 50. Nagane, U. P., & Mulani, A. O. (2021). Moving object detection and tracking using Matlab. Journal of Science and Technology, 6(1), 2456-5660.
- 51. Kulkarni, P. R., Mulani, A. O., & Mane, P. B. (2016). Robust invisible watermarking for image authentication. In Emerging Trends in Electrical, Communications and Information Technologies: Proceedings of ICECIT-2015 (pp. 193-200). Singapore: Springer Singapore.
- 52. Ghodake, M. R. G., & Mulani, M. A. (2016). Sensor based automatic drip irrigation system. Journal for Research, 2(02).
- 53. Mandwale, A. J., & Mulani, A. O. (2015, January). Different Approaches For Implementation of Viterbi decoder on reconfigurable platform. In 2015 International Conference on Pervasive Computing (ICPC) (pp. 1-4). IEEE.
- 54. Jadhav, M. M., Chavan, G. H., & Mulani, A. O. (2021). Machine learning based autonomous fire combat turret. Turkish Journal of Computer and Mathematics Education, 12(2), 2372-2381.
- 55. Shinde, G., & Mulani, A. (2019). A robust digital image watermarking using DWT-PCA. International Journal of Innovations in Engineering Research and Technology, 6(4), 1-7.
- 56. Mane, D. P., & Mulani, A. O. (2019). High throughput and area efficient FPGA implementation of AES algorithm. International Journal of Engineering and Advanced Technology, 8(4).
- 57. Mulani, A. O., & Mane, D. P. (2017). An Efficient implementation of DWT for image compression on reconfigurable platform. International Journal of Control Theory and Applications, 10(15), 1-7.
- 58. Deshpande, H. S., Karande, K. J., & Mulani, A. O. (2015, April). Area optimized implementation of AES algorithm on FPGA. In 2015 International Conference on Communications and Signal Processing (ICCSP) (pp. 0010-0014). IEEE.
- 59. Deshpande, H. S., Karande, K. J., & Mulani, A. O. (2014, April). Efficient implementation of AES algorithm on FPGA. In 2014 International Conference on Communication and Signal Processing (pp. 1895-1899). IEEE.
- 60. Kulkarni, P., & Mulani, A. O. (2015). Robust invisible digital image mamarking using discrete wavelet transform. International Journal of Engineering Research & Technology (IJERT), 4(01), 139-141.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 61. Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless Non□invasive blood glucose concentration level estimation using PCA and machine learning. The CRC Book entitled Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications.
- 62. Mulani, A. O., & Shinde, G. N. (2021). An approach for robust digital image watermarking using DWT□PCA. Journal of Science and Technology, 6(1).
- 63. Mulani, A. O., & Mane, P. B. (2014, October). Area optimization of cryptographic algorithm on less dense reconfigurable platform. In 2014 International Conference on Smart Structures and Systems (ICSSS) (pp. 86-89). IEEE.
- 64. Jadhav, H. M., Mulani, A., & Jadhav, M. M. (2022). Design and development of chatbot based on reinforcement learning. Machine Learning Algorithms for Signal and Image Processing, 219-229.
- 65. Mulani, A. O., & Mane, P. (2018). Secure and area efficient implementation of digital image watermarking on reconfigurable platform. International Journal of Innovative Technology and Exploring Engineering, 8(2), 56-61.
- 66. Kalyankar, P. A., Mulani, A. O., Thigale, S. P., Chavhan, P. G., & Jadhav, M. M. (2022). Scalable face image retrieval using AESC technique. Journal Of Algebraic Statistics, 13(3), 173-176.
- 67. Takale, S., & Mulani, A. (2022). DWT-PCA based video watermarking. Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN, 2799-1156.
- 68. Kamble, A., & Mulani, A. O. (2022). Google assistant based device control. Int. J. of Aquatic Science, 13(1), 550-555.
- 69. Kondekar, R. P., & Mulani, A. O. (2017). Raspberry Pi based voice operated Robot. International Journal of Recent Engineering Research and Development, 2(12), 69-76.
- Ghodake, R. G., & Mulani, A. O. (2018). Microcontroller based automatic drip irrigation system. In Techno-Societal 2016: Proceedings of the International Conference on Advanced Technologies for Societal Applications (pp. 109-115). Springer International Publishing.
- Mulani, A. O., Birajadar, G., Ivković, N., Salah, B., & Darlis, A. R. (2023). Deep learning based detection of dermatological diseases using convolutional neural networks and decision trees. Traitement du Signal, 40(6), 2819.
- Boxey, A., Jadhav, A., Gade, P., Ghanti, P., & Mulani, A. O. (2022). Face Recognition using Raspberry Pi. Journal of Image Processing and Intelligent Remote Sensing (JIPIRS) ISSN, 2815-0953.
- 73. Patale, J. P., Jagadale, A. B., Mulani, A. O., &Pise, A. (2023). A Systematic survey on Estimation of Electrical Vehicle. Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN, 2799-1156.
- 74. Gadade, B., & Mulani, A. (2022). Automatic System for Car Health Monitoring. International Journal of Innovations in Engineering Research and Technology, 57-62.
- 75. Shinde, M. R. S., & Mulani, A. O. (2015). Analysis of Biomedical Image Using Wavelet Transform. International Journal of Innovations in Engineering Research and Technology, 2(7), 1-7.
- 76. Mandwale, A., & Mulani, A. O. (2014, December). Implementation of convolutional encoder & different approaches for viterbi decoder. In IEEE International Conference on Communications, Signal Processing Computing and Information technologies.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 77. Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless machine learning approach to estimate blood glucose level with non-invasive devices. In Artificial intelligence, internet of things (IoT) and smart materials for energy applications (pp. 83-100). CRC Press.
- 78. Maske, Y., Jagadale, A. B., Mulani, A. O., &Pise, A. C. (2023). Development of BIOBOT system to assist COVID patient and caretakers. European Journal of Molecular & Clinical Medicine, 10(01), 2023.
- 79. Utpat, V. B., Karande, D. K., & Mulani, D. A. Grading of Pomegranate Using Quality Analysisl. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 10.
- 80. Takale, S., & Mulani, D. A. (2022). Video Watermarking System. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 10.
- 81. Mandwale, A., & Mulani, A. O. (2015, January). Different approaches for implementation of Viterbi decoder. In IEEE international conference on pervasive computing (ICPC).
- 82. Maske, Y., Jagadale, M. A., Mulani, A. O., &Pise, A. (2021). Implementation of BIOBOT System for COVID Patient and Caretakers Assistant Using IOT. International Journal of Information Technology and, 30-43.
- 83. Mulani, A. O., & Mane, D. P. (2016). Fast and Efficient VLSI Implementation of DWT for Image Compression. International Journal for Research in Applied Science & Engineering Technology, 5, 1397-1402.
- 84. Kambale, A. (2023). Home automation using google assistant. UGC care approved journal, 32(1), 1071-1077.
- 85. Pathan, A. N., Shejal, S. A., Salgar, S. A., Harale, A. D., & Mulani, A. O. (2022). Hand gesture controlled robotic system. Int. J. of Aquatic Science, 13(1), 487-493.
- 86. Korake, D. M., & Mulani, A. O. (2016). Design of Computer/Laptop Independent Data transfer system from one USB flash drive to another using ARM11 processor. International Journal of Science, Engineering and Technology Research.
- 87. Mandwale, A., & Mulani, A. O. (2016). Implementation of High Speed Viterbi Decoder using FPGA. International Journal of Engineering Research & Technology, IJERT.
- 88. Kolekar, S. D., Walekar, V. B., Patil, P. S., Mulani, A. O., &Harale, A. D. (2022). Password Based Door Lock System. Int. J. of Aquatic Science, 13(1), 494-501.
- 89. Shinde, R., & Mulani, A. O. (2015). Analysis of Biomedical Imagel. International Journal on Recent & Innovative trend in technology (IJRITT).
- 90. Sawant, R. A., & Mulani, A. O. (2022). Automatic PCB Track Design Machine. International Journal of Innovative Science and Research Technology, 7(9).
- 91. ABHANGRAO, M. R., JADHAV, M. S., GHODKE, M. P., & MULANI, A. (2017). Design And Implementation Of 8-bit Vedic Multiplier. International Journal of Research Publications in Engineering and Technology (ISSN No: 2454-7875).
- 92. Gadade, B., Mulani, A. O., & Harale, A. D. (2024). Iot based smart school bus and student monitoring system. Naturalista Campano, 28(1), 730-737.
- 93. Mulani, D. A. O. (2024). A Comprehensive Survey on Semi-Automatic Solar-Powered Pesticide Sprayers for Farming. Journal of Energy Engineering and Thermodynamics (JEET) ISSN, 2815-0945.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, October 2025

- 94. Salunkhe, D. S. S., & Mulani, D. A. O. (2024). Solar Mount Design Using High-Density Polyethylene. NATURALISTA CAMPANO, 28(1).
- 95. Seth, M. (2022). Painless Machine learning approach to estimate blood glucose level of Non-Invasive device. Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications.
- Kolhe, V. A., Pawar, S. Y., Gohery, S., Mulani, A. O., Sundari, M. S., Kiradoo, G., ... & Sunil, J. (2024).
 Computational and experimental analyses of pressure drop in curved tube structural sections of Coriolis mass flow metre for laminar flow region. Ships and Offshore Structures, 19(11), 1974-1983.
- 97. Basawaraj Birajadar, G., Osman Mulani, A., Ibrahim Khalaf, O., Farhah, N., G Gawande, P., Kinage, K., & Abdullah Hamad, A. (2024). Epilepsy identification using hybrid CoPrO-DCNN classifier. International Journal of Computing and Digital Systems, 16(1), 783-796.
- 98. Kedar, M. S., & Mulani, A. (2021). IoT Based Soil, Water and Air Quality Monitoring System for Pomegranate Farming. Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN, 2799-1156.
- 99. Godse, A. P. A.O. Mulani (2009). Embedded Systems (First Edition).
- 100.Pol, R. S., Bhalerao, M. V., & Mulani, A. O. A real time IoT based System Prediction and Monitoring of Landslides. International Journal of Food and Nutritional Sciences, Volume 11, Issue 7, 2022.
- 101.Mulani, A. O., Sardey, M. P., Kinage, K., Salunkhe, S. S., Fegade, T., &Fegade, P. G. (2025). ML-powered Internet of Medical Things (MLIOMT) structure for heart disease prediction. Journal of Pharmacology and Pharmacotherapeutics, 16(1), 38-45.
- 102. Aiwale, S., Kolte, M. T., Harpale, V., Bendre, V., Khurge, D., Bhandari, S., ... & Mulani, A. O. (2024). Non-invasive Anemia Detection and Prediagnosis. Journal of Pharmacology and Pharmacotherapeutics, 15(4), 408-416.
- 103. Mulani, A. O., Bang, A. V., Birajadar, G. B., Deshmukh, A. B., Jadhav, H. M., & Liyakat, K. K. S. (2024). IoT Based Air, Water, and Soil Monitoring System for Pomegranate Farming. Annals of Agri-Bio Research, 29(2), 71-86.
- 104. Kulkarni, T. M., & Mulani, A. O. (2024). Face Mask Detection on Real Time Images and Videos using Deep Learning. International Journal of Electrical Machine Analysis and Design (IJEMAD), 2(1).
- 105. Thigale, S. P., Jadhav, H. M., Mulani, A. O., Birajadar, G. B., Nagrale, M., &Sardey, M. P. (2024). Internet of things and robotics in transforming healthcare services. Afr J Biol Sci (S Afr), 6(6), 1567-1575.
- 106.Pol, D. R. S. (2021). Cloud Based Memory Efficient Biometric Attendance System Using Face Recognition. Stochastic Modeling& Applications, 25(2).
- 107. Nagtilak, M. A. G., Ulegaddi, M. S. N., Adat, M. A. S., & Mulani, A. O. (2021). Breast Cancer Prediction using Machine Learning.
- 108. Rahul, G. G., & Mulani, A. O. (2016). Microcontroller Based Drip Irrigation System.
- 109. Kulkarni, T. M., & Mulani, A. O. Deep Learning Based Face-Mask Detection: An Approach to Reduce Pandemic Spreads in Human Healthcare. African Journal of Biological Sciences, 6(6), 2024.
- 110. Mulani, A., & Mane, P. B. (2016). DWT based robust invisible watermarking. Scholars' Press.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- 111. Dr. Vaishali Satish Jadhav, Dr. Shweta Sadanand Salunkhe, Dr. Geeta Salunkhe, Pranali Rajesh Yawle, Dr. Rahul S. Pol, Dr. Altaf Osman Mulani, Dr. Manish Rana, Iot Based Health Monitoring System for Human, Afr. J. Biomed. Res. Vol. 27 (September 2024).
- 112. Dr. Vaishali Satish Jadhav, Geeta D. Salunke, Kalyani Ramesh Chaudhari, Dr. Altaf Osman Mulani, Dr. Sampada Padmakar Thigale, Dr. Rahul S. Pol, Dr. Manish Rana, Deep Learning-Based Face Mask Recognition in Real-Time Photos and Videos, Afr. J. Biomed. Res. Vol. 27 (September 2024).
- 113. Altaf Osman Mulani, Electric Vehicle Parameters Estimation Using Web Portal, Recent Trends in Electronics & Communication Systems, Volume 10, Issue 3, 2023.
- 114. Aryan Ganesh Nagtilak, Sneha Nitin Ulegaddi, Mahesh Mane, Altaf O. Mulani, Automatic Solar Powered Pesticide Sprayer for Farming, International Journal of Microwave Engineering and Technology, Volume 9 No. 2, 2023.
- 115. Annasaheb S. Dandage, Vitthal R. Rupnar, Tejas A Pise, and A. O. Mulani, Real-Time Language Translation Application Using Tkinter. International Journal of Digital Communication and Analog Signals. 2025; 11(01): -p.
- 116. AnnaSaheb S Dandage, Vitthal R. Rupnar, Tejas A Pise, and A. O. Mulani, IoT-Powered Weather Monitoring and Irrigation Automation: Transforming Modern Farming Practices. . 2025; 11(01): -p.
- 117. Mulani, A.O., Kulkarni, T.M. (2025). Face Mask Detection System Using Deep Learning: A Comprehensive Survey. In: Singh, S., Arya, K.V., Rodriguez, C.R., Mulani, A.O. (eds) Emerging Trends in Artificial Intelligence, Data Science and Signal Processing. AIDSP 2023. Communications in Computer and Information Science, vol 2439. Springer, Cham. https://doi.org/10.1007/978-3-031-88759-8 3.
- 118. Karve, S., Gangonda, S., Birajadar, G., Godase, V., Ghodake, R., Mulani, A.O. (2025). Optimized Neural Network for Prediction of Neurological Disorders. In: Singh, S., Arya, K.V., Rodriguez, C.R., Mulani, A.O. (eds) Emerging Trends in Artificial Intelligence, Data Science and Signal Processing. AIDSP 2023. Communications in Computer and Information Science, vol 2440. Springer, Cham. https://doi.org/10.1007/978-3-031-88762-8 18.
- 119. Saurabh Singh, Karm Veer Arya, Ciro Rodriguez Rodriguez, and Altaf Osman Mulani, Emerging Trends in Artificial Intelligence, Data Science and Signal Processing, Communications in Computer and Information Science (CCIS), volume 2440.
- 120. Saurabh Singh, Karm Veer Arya, Ciro Rodriguez Rodriguez, and Altaf Osman Mulani, Emerging Trends in Artificial Intelligence, Data Science and Signal Processing, Communications in Computer and Information Science (CCIS), volume 2439.
- 121. Godase, V., Mulani, A., Pawar, A., & Sahani, K. (2025). A Comprehensive Review on PIR Sensor-Based Light Automation Systems. International Journal of Image Processing and Smart Sensors, 1(1), 22-29.
- 122. Godase, V., Mulani, A., Takale, S., &Ghodake, R. (2025). Comprehensive Review on Automated Field Irrigation using Soil Image Analysis and IoT. Journal of Advance Electrical Engineering and Devices, 3(1), 46-55.
- 123.Altaf Osman Mulani, Deshmukh M., Jadhav V., Chaudhari K., Mathew A.A., Shweta Salunkhe. Transforming Drug Therapy with Deep Learning: The Future of Personalized Medicine. Drug Research. 2025 Aug 29.

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 124. Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), Image Authentication Using Cryptography and Watermarking, International Journal of Image Processing and Smart Sensors, Vol. 1, Issue 2, pp 27-34.
- 125. Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), Advancements in Artificial Intelligence: Transforming Industries and Society, International Journal of Artificial Intelligence of Things (AIoT) in Communication Industry, Vol. 1, Issue 2, pp 1-5.
- 126.Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), AI-Powered Predictive Analytics in Healthcare: Revolutionizing Disease Diagnosis and Treatment, Journal of Advance Electrical Engineering and Devices, Vol. 3, Issue 2, pp 27-34.
- 127. Godase, V., Mulani, A., Takale, S., &Ghodake, R. (2025). A Holistic Review of Automatic Drip Irrigation Systems: Foundations and Emerging Trends. Available at SSRN 5247778.
- 128.V. Godase, R. Ghodake, S. Takale, and A. Mulani, —Design and Optimization of Reconfigurable Microwave Filters Using AI Techniques, International Journal of RF and Microwave Communication Technologies, vol. 2, no. 2, pp.26–41, Aug. 2025.
- 129.V. Godase, A. Mulani, R. Ghodake, S. Takale, "Automated Water Distribution Management and Leakage Mitigation Using PLC Systems," Journal of Control and Instrumentation Engineering, vol.11, no. 3, pp. 1-8, Aug. 2025.
- 130.V. Godase, A. Mulani, R. Ghodake, S. Takale, "PLC-Assisted Smart Water Distribution with Rapid Leakage Detection and Isolation," Journal of Control Systems and Converters, vol. 1, no. 3, pp. 1-13, Aug. 2025.
- 131. V. V. Godase, S. R. Takale, R. G. Ghodake, and A. Mulani, "Attention Mechanisms in Semantic Segmentation of Remote Sensing Images," Journal of Advancement in Electronics Signal Processing, vol. 2, no. 2, pp. 45–58, Aug. 2025.
- 132.D. Waghmare, A. Mulani, S. R. Takale, V. Godase, and A. Mulani, "A Comprehensive Review on Automatic Fruit Sorting and Grading Techniques with Emphasis on Weight-based Classification," Research & Review: Electronics and Communication Engineering, vol. 2, no. 3, pp. 1-10, Oct. 2025.
- 133. Shubham Salunkhe, PruthvirajZambare, Sakshi Shinde, S. K. Godase. (2024). API Development for Cloud Parameter Curation International. Journal of Electrical and Communication Engineering Technology, 2(1). https://doi.org/10.37591/ijecet
- 134.Badave, A., Pawale, A., Andhale, T., Godase, S. K., & STM JOURNALS. (2024). Smart home safety using fire and gas detection system. Recent Trends in Fluid Mechanics, 1, 35–43. https://journals.stmjournals.com/rtfm
- 135. Asabe, H., Asabe, R., Lengare, O., &Godase, S. (2025). IOT- BASED STORAGE SYSTEM FOR MANAGING VOLATILE MEDICAL RESOURCES IN HEALTHCARE FACILITIES. INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN ENGINEERING MANAGEMENT AND SCIENCE (IJPREMS), 05(03), 2427–2433. https://www.ijprems.com
- 136. Karche, S. N., Mulani, A. O., Department of Electronics, SKN Sinhgad College of Engineering, Korti, & University of Solapur, Maharashtra, India. (2018). AESC Technique for Scalable Face Image Retrieval. International Journal of Innovative Research in Computer and Communication Engineering, 6(4), 3404–3405.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

and Technology

Impact Factor: 7.67

 $International\ Open-Access,\ Double-Blind,\ Peer-Reviewed,\ Refereed,\ Multidisciplinary\ Online\ Journal$

Volume 5, Issue 4, October 2025

137.https://doi.org/10.15680/IJIRCCE.2018.0604036

- 138.Bankar, A. S., Harale, A. D., &Karande, K. J. (2021). Gestures Controlled Home Automation using Deep Learning: A Review. International Journal of Current Engineering and Technology, 11(06), 617–621. https://doi.org/10.14741/ijcet/v.11.6.4
- 139.Mali, A. S., Ghadge, S. K., Adat, A. S., &Karande, S. V. (2024). Intelligent Medication Management System. IJSRD International Journal for Scientific Research & Development, Vol. 12(Issue 3).
- 140. Water Level Control, Monitoring and Altering System by using GSM in Irrigation Based on Season. (2019). In International Research Journal of Engineering and Technology (IRJET) (Vol. 06, Issue 04, p. 1035) [Journal-article]. https://www.irjet.net
- 141.Modi, S., Misal, V., Kulkarni, S., & Mali A.S. (2025). Hydroponic Farming Monitoring System Automated system to monitor and control nutrient and pH levels. In Journal of Microcontroller Engineering and Applications (Vol. 12, Issue 3, pp. 11–16). https://doi.org/10.37591/JoMEA
- 142. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "VGHN: variations aware geometric moments and histogram features normalization for robust uncontrolled face recognition", International Journal of Information Technology, https://doi.org/10.1007/s41870-021-00703-0.
- 143. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition using MFCC & DTW Features", International Journal of Engineering Research And Applications (IJERA) pp. 118-122, ISSN: 2248-9622.
- 144. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Recognition of Marathi Numerals Using MFCC and DTW Features", Book Title: Recent Trends on Image Processing and Pattern Recognition, RTIP2R 2018, CCIS 1037, pp. 1–11, © Springer Nature Singapore Pte Ltd. 2019 https://doi.org/10.1007/978-981-13-9187-3 17.
- 145. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Analysis of Face Recognition Algorithms for Uncontrolled Environments", Book Title: Computing, Communication and Signal Processing, pp. 919–926, © Springer Nature Singapore Pte Ltd. 2018.
- 146. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Recognition of Marathi Numerals using MFCC and DTW Features", 2nd International Conference on Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2018), 21th -22th Dec., 2018, organized by Solapur University, Solapur in collaboration with University of South Dakota (USA) and Universidade de Evora (Portugal), India.
- 147. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "A Comprehensive Survey of Face Databases for Constrained and Unconstrained Environments", 2nd IEEE Global Conference on Wireless Computing & Networking (GCWCN-2018), 23th-24th Nov., 2018, organized by STES's Sinhgad Institute of Technology, Lonavala, India.
- 148. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "An Extensive Survey of Prominent Researches in Face Recognition under different Conditions", 4th International Conference on Computing, Communication, Control And Automation (ICCUBEA-2018), 16th to 18th Aug. 2018 organized by Pimpri Chinchwad College of Engineering (PCCOE), Pune, India.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- 149. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Analysis of Face Recognition Algorithms for Uncontrolled Environments", 3rd International Conference on Computing, Communication and Signal Processing (ICCASP 2018), 26th-27th Jan. 2018, organized by Dr. BATU, Lonere, India.
- 150. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", International Conference on Recent Trends, Feb 2012, IOK COE, Pune.
- 151.S. S. Gangonda, "Bidirectional Visitor Counter with automatic Door Lock System", National Conference on Computer, Communication and Information Technology (NCCCIT-2018), 30th and 31st March 2018 organized by Department of Electronics and Telecommunication Engineering, SKN SCOE, Korti, Pandharpur.
- 152. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition using MFCC & DTW Features", ePGCON 2012, 23rd and 24th April 2012 organized by Commins COE for Woman, Pune.
- 153. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", National Conference on Emerging Trends in Engineering and Technology (VNCET'12), 30th March 2012 organized by Vidyavardhini's College of Engineering and Technology, Vasai Road, Thane.
- 154. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", ePGCON 2011, 26th April 2011 organized by MAEER's MIT, Kothrud, Pune-38.
- 155. Siddheshwar Gangonda, "Medical Image Processing", Aavishkar-2K7, 17th and 18th March 2007 organized by Department of Electronics and Telecommunication Engineering, SVERI's COE, Pandharpur.
- 156. Siddheshwar Gangonda, "Image enhancement & Denoising", VISION 2k7, 28th Feb-2nd March 2007 organized by M.T.E. Society's Walchand College of Engineering, Sangli.
- 157. Siddheshwar Gangonda, "Electromagnetic interference & compatibility" KSHITIJ 2k6, 23rd and 24th Sept. 2006 organized by Department of Mechanical Engineering, SVERI's COE, Pandharpur.
- 158.A. Pise and K. Karande, "A genetic Algorithm-Driven Energy-Efficient routing strategy for optimizing performance in VANETs," Engineering Technology and Applied Science Research, vol. 15, no. 5, 2025, [Online]. Available: https://etasr.com/index.php/ETASR/article/view/12744
- 159.A. C. Pise, K. J. Karande, "Investigating Energy-Efficient Optimal Routing Protocols for VANETs: A Comprehensive Study", ICT for Intelligent Systems, Lecture Notes in Networks and Systems 1109, Proceedings of ICTIS 2024 Volume 3, Lecture Notes in Networks and Systems, Springer, Singapore, ISSN 2367-3370, PP 407-417, 29 October 2024 https://doi.org/10.1007/978-981-97-6675-8 33.
- 160.A. C. Pise, et. al., "Smart Vehicle: A Systematic Review", International Journal The Ciência&Engenharia Science & Engineering Journal ISSN: 0103-944XVolume 11 Issue 1, 2023pp: 992–998, 2023.
- 161.A. C. Pise, et. al., "Smart Vehicle: A Systematic Review", International Journal of Research Publication and Reviews, ISSN 2582-7421, Vol 4, no 10, pp 2728-2731 October 2023.
- 162.A. C. Pise, et. al., "Development of BIOBOT System to Assist COVID Patient and Caretakers", European Journal of Molecular and Clinical Medicine; 10(1):3472-3480, 2023.
- 163.A. C. Pise, et. al., "IoT Based Landmine Detection Robot", International Journal of Research in Science &EngineeringISSN: 2394-8299Vol: 03, No. 04, June-July 2023.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ogy 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 164.A. C. Pise, et. al., "A Systematic survey on Estimation of Electrical Vehicle", Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN: 2799-1156, Volume 3, Issue 01, Pages 1-6, December 2023.
- 165.A. C. Pise, et. al., "Python Algorithm to Estimate Range of Electrical Vehicle", Web of Science, Vol 21, No 1 (2022) December 2022
- 166.A. C. Pise, et. al., "Implementation of BIOBOT System for COVID Patient and Caretakers Assistant using IOT", International Journal of Information technology and Computer Engineering. 30-43. 10.55529/ijitc.21.30.43, (2022).
- 167.A. C. Pise, et. al., "An IoT Based Real Time Monitoring of Agricultural and Micro irrigation system", International journal of scientific research in Engineering and management (IJSREM), VOLUME: 06 ISSUE: 04 | APRIL 2022, ISSN:2582-3930.
- 168.A. C. Pise, Dr. K. J. Karande, "An Exploratory study of Cluster Based Routing Protocol in VANET: A Review",
 International Journal of Advanced Research in Engineering and Technology(IJARET), 12,10, 2021, 17-30,
 Manuscript ID :00000-94375 Source ID : 00000006, Journal_uploads/
 IJARET/VOLUME 12 ISSUE 10/IJARET 12 10 002.pdf
- 169.A. C. Pise, et. al., "Android based Portable Health Support System," A Peer Referred & Indexed International Journal ofResearch, Vol. 8, issue. 4, April 2019.
- 170.A. C. Pise, et. al., "Facial Expression Recognition Using Image Processing," International Journal of VLSI Design, Microelectronics and Embedded System, Vol. 3, issue . 2, July 2018.
- 171.A. C. Pise, et. al., "Detection of Cast Iron Composition by Cooling Curve Analysis using Thermocouple Temperature Sensor," UGC Approved International Journal of Academic Science (IJRECE), Vol.6, Issue.3, July-September 2018.
- 172.A. C. Pise, et. al., "Android Based Portable Health Support", System International Journal of Engineering Sciences & Research Technology (IJESRT 2017) Vol.6, Issue 8, pp 85-88 5th Aug 2017
- 173.A. C. Pise, et. al., "Adaptive Noise Cancellation in Speech Signal", International Journal of Innovative Engg and Technology, 2017
- 174.A. C. Pise, et. al., "Lung Cancer Detection System by using Baysian Classifier", ISSN 2454-7875, IJRPET, published online in conference special issue VESCOMM-2016, February 2016
- 175.A. C. Pise, et. al., "Review on Agricultural Plant Diseases Detection by Image Processing", ISSN 2278-62IX, IJLTET, Vol 7, Issue 1 May 2016
- 176.A. C. Pise, et. al. "Segmentation of Retinal Images for Glaucoma Detection", International Journal of Engineering Research and Technology (06, June-2015).
- 177.A. C. Pise, et. al. "Color Local Texture Features Based Face Recognition", International Journal of Innovations in Engineering and Technology(IJIET), Dec. 2014
- 178.A. C. Pise, et. al. "Single Chip Solution For Multimode Robotic Control", International Journal of Engineering Research and Technology (IJERT-2014), Vol. 3, Issue 12, Dec. 2014.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- 179. Anjali C. Pise et. al., "Remote monitoring of Greenhouse parameters using zigbee Wireless Sensor Network", International Journal of Engineering Research & Technology ISSN 2278-0181 (online) Vol. 3, Issue 2, and pp: (2412-2414), Feb. 2014.
- 180.A. C. Pise, K. J. Karande, "Cluster Head Selection Based on ACO In Vehicular Ad-hoc Networks", Machine Learning for Environmental Monitoring in Wireless Sensor Networks
- 181.A. C. Pise, K. J. Karande, "Architecture, Characteristics, Applications and Challenges in Vehicular Ad Hoc Networks" Presented in 27th IEEE International Symposium on Wireless Personal Multimedia Communications (WPMC 2024) "Secure 6G AI Nexus: Where Technology Meets Humanity" Accepted for book chapter to be published in international Scopus index book by River publisher.
- 182.A. C. Pise, Dr. K. J. Karande, "K-mean Energy Efficient Optimal Cluster Based Routing Protocol in Vehicular Ad Hoc Networks", International Conference on Innovations in Artificial Intelligence and Machine Learning (ICAIML-2022), August 20th and 21st 2022 Springer database Conference.
- 183.A. C. Pise, Mr. D. Nale, "Web-Based Application for Result Analysis", ", International Conference on Innovations in Artificial Intelligence and Machine Learning (ICAIML-2022), August 20th and 21st 2022 Springer database Conference.
- 184.A. C. Pise, et. al., "Detection of Cast Iron Composition by Cooling Curve Analysis using Thermocouple Temperature Sensor," 2nd International Conference on Engineering Technology, Science and Management Innovation (ICETSMI – 2018), 2nd September 2018.
- 185.A. C. Pise, et. al., "Facial Expression Recognition Using Facial Features," IEEE International Conference on Communication and Electronics Systems (ICCES 2018), October 2018.
- 186.A. C. Pise, et. al., "Estimating Parameters of Cast Iron Composition using Cooling Curve Analysis," IEEE International Conference on Communication and Electronics Systems (ICCES 2018), Coimbatore, October 2018.
- 187.A. C. Pise, et. al., "Android based portable Health Support System," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 188.A. C. Pise, et. al., "Baysian Classifier & FCM Segmentation for Lung Cancer Detection in early stage," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 189.A. C. Pise, et. al., "Cast Iron Composition Measurement by Coding Curve Analysis," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 190.A. C. Pise, et. al., "War field Intelligence Defence Flaging Vehicle," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 191.A. C. Pise, et. al. "Disease Detection of Pomegranate Plant", IEEE sponsored International Conference on Computation of Power, Energy, Information and Communication, 22-23 Apr. 2015.
- 192.A. C. Pise, P. Bankar. "Face Recognition by using GABOR and LBP", IEEE International Conference on Communication and Signal Processing, ICCSP, 2-4 Apr. 2015
- 193.A. C. Pise, et. al. "Single Chip Solution For Multimode Robotic Control", Ist IEEE International Conference on Computing Communication and Automation, 26-27 Feb2015.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 194.Anjali C. Pise, Vaishali S. Katti, "Efficient Design for Monitoring of Greenhouse Parameters using Zigbee Wireless Sensor Network", fifth SARC international conference IRF, IEEE forum ISBN 978-93-84209-21-6,pp 24-26, 25th May 2014
- 195.A. C. Pise, P. Bankar, "Face Recognition using Color Local Texture Features", International Conference on Electronics and Telecommunication, Electrical and Computer Engineering, Apr.2014.
- 196.A. C. Pise, et.al. "Monitoring parameters of Greenhouse using Zigbee Wireless Sensor Network", 1st International Conference on Electronics and Telecommunication, Electrical and Computer Engineering, 5-6 Apr.2014.
- 197.A. C. Pise, et. al. "Compensation schemes and performance Analysis of IQ Imbalances in Direct Conversion Receivers", International Conference at GHPCOE, Gujarat, (Online Proceeding is Available), 2009.
- 198.A. C. Pise, K. J. Karande, "Energy-Efficient Optimal Routing Protocols in VANETs", 66th Annual IETE Convention, AIC -2023 September16-17, 2023, under the Theme: The Role of 5G In Enabling Digital Transformation for Rural Upliftment.
- 199.A. C. Pise, et. al. "Automatic Bottle Filling Machine using Raspberry Pi", National Conference on computer ;Communication& information Technology (NCCIT-2018) dated 30th & 31st March 2018.
- 200.A. C. Pise, et. al. "Design & Implementation of ALU using VHDL", National Conference on computer ;Communication& information Technology (NCCIT-2018) dated 30th & 31st March 2018.
- 201.A. C. Pise, et. al. "Mechanism and Control of Autonomus four rotor Quad copter", National Conference on Computer, Electrical and Electronics Engineering, 23- 24 Apr. 2016.
- 202.A. C. Pise, et. al. "Segmentation of Optic Disk and Optic Cup from retinal Images", ICEECMPE Chennai, June 2015
- 203.A. C. Pise, et. al. "Diseases Detection of Pomegranate Plant", IEEE Sponsored International conference on Computation of Power, Energy, April 2015.
- 204.A. C. Pise, et. al. "Compensation Techniques for I/Q Imbalance in Direct-Conversion Receivers", Conference at SCOE, Pune 2010.
- 205.A. C. Pise, et. al. "I/Q Imbalance compensation Techniques in Direct Conversion Receiver", Advancing Trends in Engineering and Management Technologies, ATEMT-2009, Conference at Shri Ramdeobaba Kamla Nehru Engineering College, Nagpur, 20-21 November 2009
- 206.A. C. Pise, et. al. "Compensation Techniques for I/Q Imbalance in Direct Conversion Receiver", Conference at PICT, Pune 2008.
- 207.A. C. Pise, et. al. "I/Q Imbalance compensation Techniques in Direct Conversion Receiver", Conference at DYCOE, Pune 2008.
- 208.A. C. Pise, et. al. "DUCHA: A New Dual channel MAC protocol for Multihop Ad-Hoc Networks", Conference at SVCP, Pune 2007.
- 209. Godase, V., Pawar, P., Nagane, S., & Kumbhar, S. (2024). Automatic railway horn system using node MCU. Journal of Control & Instrumentation, 15(1).

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- 210.Godase, V., &Godase, J. (2024). Diet prediction and feature importance of gut microbiome using machine learning. Evolution in Electrical and Electronic Engineering, 5(2), 214-219.
- 211. Jamadade, V. K., Ghodke, M. G., Katakdhond, S. S., &Godase, V. A Comprehensive Review on Scalable Arduino Radar Platform for Real-time Object Detection and Mapping.
- 212.Godase, V. (2025). A comprehensive study of revolutionizing EV charging with solar-powered wireless solutions. Advance Research in Power Electronics and Devices e-ISSN, 3048-7145.
- 213. Godase, V. (2025, April). Advanced Neural Network Models for Optimal Energy Management in Microgrids with Integrated Electric Vehicles. In Proceedings of the International Conference on Trends in Material Science and Inventive Materials (ICTMIM-2025) DVD Part Number: CFP250J1-DVD.
- 214. Dange, R., Attar, E., Ghodake, P., &Godase, V. (2023). Smart agriculture automation using ESP8266 NodeMCU. J. Electron. Comput. Netw. Appl. Math, (35), 1-9.
- 215.Godase, V. (2025). Optimized Algorithm for Face Recognition using Deepface and Multi-task Cascaded Convolutional Network (MTCNN). Optimum Science Journal.
- 216. Mane, V. G. A. L. K., & Gangonda, K. D. S. Pipeline Survey Robot.
- 217. Godase, V. (2025). Navigating the digital battlefield: An in-depth analysis of cyber-attacks and cybercrime. International Journal of Data Science, Bioinformatics and Cyber Security, 1(1), 16-27.
- 218. Godase, V., & Jagadale, A. (2019). Three element control using PLC, PID & SCADA interface. International Journal for Scientific Research & Development, 7(2), 1105-1109.
- 219.Godase, V. (2025). Edge AI for Smart Surveillance: Real-time Human Activity Recognition on Low-power Devices. International Journal of AI and Machine Learning Innovations in Electronics and Communication Technology, 1(1), 29-46.
- 220. Godase, V., Modi, S., Misal, V., & Kulkarni, S. (2025). LoRaEdge-ESP32 synergy: Revolutionizing farm weather data collection with low-power, long-range IoT. Advance Research in Analog and Digital Communications, 2(2), 1-11.
- 221. Godase, V. (2025). Comparative study of ladder logic and structured text programming for PLC. Available at SSRN 5383802.
- 222. Godase, V., Modi, S., Misal, V., & Kulkarni, S. Real-time object detection for autonomous drone navigation using YOLOv8, I. Advance Research in Communication Engineering and its Innovations, 2(2), 17-27.
- 223. Godase, V. (2025). Smart energy management in manufacturing plants using PLC and SCADA. Advance Research in Power Electronics and Devices, 2(2), 14-24.
- 224. Godase, V. (2025). IoT-MCU Integrated Framework for Field Pond Surveillance and Water Resource Optimization. International Journal of Emerging IoT Technologies in Smart Electronics and Communication, 1(1), 9-19.
- 225. Godase, V. (2025). Graphene-Based Nano-Antennas for Terahertz Communication. International Journal of Digital Electronics and Microprocessor Technology, 1(2), 1-14.
- 226.Godase, V., Khiste, R., &Palimkar, V. (2025). AI-Optimized Reconfigurable Antennas for 6G Communication Systems. Journal of RF and Microwave Communication Technologies, 2(3), 1-12.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- 227.Bhaganagare, S., Chavan, S., Gavali, S., &Godase, V. V. (2025). Voice-Controlled Home Automation with ESP32: A Systematic Review of IoT-Based Solutions. Journal of Microprocessor and Microcontroller Research, 2(3), 1-13.
- 228. Jamadade, V. K., Ghodke, M. G., Katakdhond, S. S., &Godase, V. A Comprehensive Review on Scalable Arduino Radar Platform for Real-time Object Detection and Mapping.
- 229. Godase, V. (2025). Cross-Domain Comparative Analysis of Microwave Imaging Systems for Medical Diagnostics and Industrial Testing. Journal of Microwave Engineering & Technologies, 12(2), 39-48p.
- 230. V. K. Jamadade, M. G. Ghodke, S. S. Katakdhond, and V. Godase, —A Review on Real-time Substation Feeder Power Line Monitoring and Auditing Systems," International Journal of Emerging IoT Technologies in Smart Electronics and Communication, vol. 1, no. 2, pp. 1-16, Sep. 2025.
- 231. V. V. Godase, "VLSI-Integrated Energy Harvesting Architectures for Battery-Free IoT Edge Systems," Journal of Electronics Design and Technology, vol. 2, no. 3, pp. 1-12, Sep. 2025.
- 232.A. Salunkhe et al., "A Review on Real-Time RFID-Based Smart Attendance Systems for Efficient Record Management," Advance Research in Analog and Digital Communications, vol. 2, no. 2, pp.32-46, Aug. 2025.
- 233. Vaibhav, V. G. (2025). A Neuromorphic-Inspired, Low-Power VLSI Architecture for Edge AI in IoT Sensor Nodes. Journal of Microelectronics and Solid State Devices, 12(2), 41-47p.
- 234. Nagane, M.S., Pawar, M.P., &Godase, P.V. (2022). Cinematica Sentiment Analysis. *Journal of Image Processing and Intelligent Remote Sensing*.
- 235. Godase, V.V. (2025). Tools of Research. SSRN Electronic Journal.
- 236.Godase, V. (n.d.). EDUCATION AS EMPOWERMENT: THE KEY TO WOMEN'S SOCIO ECONOMIC DEVELOPMENT. Women Empowerment and Development, 174–179.
- 237. Godase, V. (n.d.). COMPREHENSIVE REVIEW ON EXPLAINABLE AI TO ADDRESSES THE BLACK BOX CHALLENGE AND ITS ROLE IN TRUSTWORTHY SYSTEMS. In Sinhgad College of Engineering, Artificial Intelligence Education and Innovation (pp. 127–132).
- 238.Godase, V. (n.d.-b). REVOLUTIONIZING HEALTHCARE DELIVERY WITH AI-POWERED DIAGNOSTICS: A COMPREHENSIVE REVIEW. In SKN Sinhgad College of Engineering, SKN Sinhgad College of Engineering (pp. 58–61).
- 239.Dhope, V. (2024). SMART PLANT MONITORING SYSTEM. In International Journal of Creative Research Thoughts (IJCRT). https://www.ijcrt.org
- 240.M. M. Zade, Sushant D. Kambale, Shweta A. Mane, Prathamesh M. Jadhav. (2025) "IOT Based early fire detection in Jungles". RIGJA&AR Volume 2 Issue 1, ISSN:2998-4459. DOI:https://doi.org/10.5281/zendo.15056435
- 241.M. M. Zade, Bramhadev B. Rupanar, Vrushal S. Shilawant, Akansha R. Pawar(2025) "IOT Flood Monitoring & Alerting System using Rasberry Pi-Pico "International Journal of Research Publication & Reviews, Volume 6, Jssue3, ISSN: 2582-7421. DOI: https://ijrpr.com/uploads/V6ISSUE3/IJRPR40251.pdf
- 242.M.M.Zade(2022) "Touchless Fingerprint Recognition System" (Paper-ID 907)(2022) International Conference on "Advanced Technologies for Societal Applications: Techno-Societal 2022 https://link.springer.com/book/10.1007/978-3-031-34644-6?page=6

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 243.Mr.M.M.Zade published the paper on "Automation of Color Object Sorting Conveyor Belt", in International Journal of Scientific Research in Engineering & Management (IJSREM),ISSN:2582-3930 Volume 06, Issue 11th November 2022.
- 244.Mr.M.M.Zade published the paper on "Cloud Based Patient Health Record Tracking web Development",in International Journal of Advanced Research in Science, Communication & Technology(IJARSCT),ISSN NO:2581-9429 Volume 02, Issue03,DOI 1048175/IJARSCT-3705,IF 6.252, May 2022.
- 245.Mr. Mahesh M Zade, "Performance analysis of PSNR Vs. Impulse Noise for the enhancement of Image using SMF", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- 246.Mr. Mahesh M Zade, "Classification of Power Quality Disturbances Using SVM & their Efficiency Comparison", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- 247.Mr. Mahesh M Zade, "Dynamic Clustering of Wireless Sensor Network Using Modified AODV", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- 248.Mr. Mahesh M Zade, "Performance analysis of PSNR Vs. Impulse Noise for the enhancement of Image using SMF", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur, Feb.2019
- 249.Mr. Mahesh M Zade, "Classification of Power Quality Disturbances Using SVM & their Efficiency Comparison", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur Feb.2019
- 250.Mr. Mahesh M Zade, "Dynamic Clustering of Wireless Sensor Network Using Modified AODV", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur Feb.2019
- 251.Mr. Mahesh M Zade &Mr.S.M.Karve,"Performance Analysis of Median Filter for Enhancement of Highly Corrupted Images", National Conference on Advanced Trends in Engineering, Association with IRJMS, Karmyogi Engineering College, Shelave, Pandharpur, March 2016.
- 252.Mr. Mahesh M Zade & Mr.S.M.Karve,"Implementation of Reed Solomen Encoder & Decoder Using FPGA", National Conference on Advanced Trends in Engineering, Association with IRJMS, Karmyogi Engineering College, Shelave, Pandharpur, March 2016.
- 253.Mr. Mahesh M Zade & Dr.S.M.Mukane,"Performance of Switching Median Filter for Enhancement of Image", National Conference on Mechatronics at Sinhgad Institute of Technology and Science, Narhe, Pune, Feb. 2016.
- 254.Mr. Mahesh M Zade &Dr.S.M.Mukane,"Enhancement of Image with the help of Switching Median Filter", National Conference on Emerging Trends in Electronics & Telecommunication Engineering, SVERI's College of Engineering Pandharpur, NCET 2013.
- 255.Mr.Mahesh M Zade & Dr.S.M.Mukane, "Enhancement of Image with the help of Switching Median Filter", International Journal of Computer Application (IJCA) SVERI's College of Engineering, Pandharpur, Dec. 2013

