

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

impact ractor. 7.07

Smart Temperature Controlled Fan System and Android App

Sakshi Shinde¹, Vedika Salunkhe², Dr. A. O. Mulani³

^{1,2,}UG Students, Department of Electronics and Telecommunication Engineering
 ³Assistant Professer, Department of Electronics and Telecommunication Engineering
 SKN Sinhgad College of Engineering, Pandharpur,India
 sunandashinde15121986@gmail.com, vedikasalunkhe192@gmail.com, altaaf.mulani@sknscoe.ac.in

Abstract: In order to increase energy efficiency and user convenience, this project introduces a Smart Fan System with automatic temperature management and an Android application. The device works by tracking the ambient temperature with a temperature sensor and automatically adjusting the fan speed based on real-time readings from a microcontroller. As a result, less needless power is used and fewer manual adjustments are required. Users may examine real-time temperature data, control the fan remotely, and manually adjust the speed if they'd like using the Android app. Overall comfort and usability are improved when automation and smartphone control are combined. By guaranteeing that power is only used when required, the system also promotes sustainable energy practices.

Its adaptability for contemporary connected living is further enhanced by its modular design, which permits future enhancements like interaction with IoT platforms or smart home systems. Through the integration of mobile access and intelligent control, this study demonstrates how smart technologies may improve daily appliance management. In the end, the Smart Temperature-Controlled Fan System provides a workable and expandable solution that strikes a balance between energy economy, user comfort, and potential future smart home advancements..

Keywords: Smart Temperature-Controlled Fan System, Android Application, Automation, Energy Efficiencny

I. INTRODUCTION

In today's world of rapid technological advancement, automation and intelligent control systems have transitioned from being mere conveniences to crucial elements of contemporary living. Heightened demands for convenience, energy efficiency, and user comfort have transformed traditional household appliances by incorporating smart systems. An example of this innovation is the Smart Temperature-Controlled Fan System that comes with an Android application, providing a practical and eco-friendly solution designed for settings such as homes, offices, classrooms, and work environments..

Traditional fans typically operate at set speeds and necessitate user input for adjustments, which often results in wasted energy and fluctuating comfort. Users are required to either keep the fan running at one consistent speed or adjust it multiple times as the temperature varies, emphasizing the shortcomings of current models. This indicates a strong demand for an automated solution that can effortlessly respond to changing temperatures, promoting both energy efficiency and user comfort.

The suggested system addresses this issue by integrating temperature sensors, a microcontroller, and a specialized Android application into one cohesive platform. Environmental data is consistently gathered by the sensors, while the microcontroller processes this data to automatically adjust the fan speed. This approach minimizes the necessity for human involvement, all while optimizing energy consumption and ensuring a comfortable environment.

An important feature of the system is its Android application, which enables users to manage and monitor the fan through their smartphones. Via the interface, they can remotely turn the fan on or off, manually modify speed settings if

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

desired, and view real-time temperature readings of the room. This combination of automation and mobile functionality makes the system adaptable, accessible, and easy to use for people of all ages and varying levels of technical expertise. The system not only improves convenience but also promotes sustainability by minimizing unnecessary electricity usage through smart speed regulation. Its energy-efficient design is particularly suitable for implementation in larger environments like schools, offices, and communal workspaces, where reducing power expenses and waste is crucial. In summary, the Smart Temperature-Controlled Fan System with an Android App showcases how common household appliances can be reimagined with the integration of smart technologies. It combines automation, energy management, and digital control into a single cohesive platform, offering enhanced comfort, lower energy costs, and flexibility across various settings. As a practical and scalable innovation, the system highlights the ability of smart design to elevate simple household devices into valuable tools.

II. LITERATURE SURVEY

Using the Blynk app, Lakshmi, M., Sameen, C., Maneesha, D., Dharani, G., & Mubeena, K.

[1] developed an Internet of Things-based smart home system. Their design made it possible to use cloud-based communication to remotely control appliances like fans and lighting. Although the system increased monitoring and convenience, it lacked AI-driven automation for better control.

Das, T. [2] created an automatic voice-activated device for smart applications using an Arduino platform. The technology enabled users to utilize basic voice commands to control household appliances, such as fans. Although it allowed for hands-free operation, speech recognition mistakes made it less useful in loud settings.

An Android application was used to control a smart home system created by Khunchai, S., and Thongchaisuratkrul, C. [3]. They worked to make it possible for consumers to utilize mobile devices to remotely control equipment like fans and lighting. However, for real-time control, the system was largely dependent on internet access.

For Bluetooth-based smart home systems, Adiono, T., Anindya, S.F., Fuada, S., Afifah, K., & Purwanda, I.G. [4] demonstrated an effective Android app development technique with MIT App Inventor 2. Their method offered reliable short-range communication and did away with the need for the internet. However, it was not appropriate for large residences due to its limited range.

Funke, T.O., Bem, S., & Folahan, P.I. [5] suggested a mobile phone-based smart home appliance control system. For added convenience, the technology allowed users to control lights and fans wirelpport a variety of IoT devices anessly. It did not, however, sud platforms.

Using an Android app and a Telegram chatbot, Kasote, A., Kolage, P., Sadgir, N., Avhad, G., & Vispute, D. [6] worked on smart home automation. Because of its design, users could utilize chat commands to operate household items. Despite being easy to use, system responsiveness was occasionally impacted by network latency.

Using the Blynk app, Durani, H., Sheth, M., Vaghasia, M.V., & Kotech, S. [7] created an Internet of Things-based automated home system. Fans, lighting, and other devices may be monitored and controlled in real time thanks to their technology. The absence of strong security features and multi-user support was the drawback.

Satheeshkumar, K., Ithkumar, N., Gopinath, P.A., & Chandramohan, J. [8] used an Android application and Arduino to create a smart home automation and security system. Several appliances' control and monitoring functions were combined in their work. Unstable Wi-Fi networks, however, decreased the constancy of overall performance.

Using Android smartphones, Foysal, M.R., Hossain, R.A., Islam, M.M., Sharmin, S., & Moon,

N.N. [9] presented an Internet of Things-based home temperature control system. Using real- time temperature data, the system automatically changed the fan speed. Accuracy had to be maintained through frequent sensor calibration.

Using an Android application for smart computer laboratories, Palodkar, A., Shelke, P., & Patil,

S.R. [10] concentrated on optimizing electricity use. By managing linked devices, their system increased efficiency and tracked energy consumption. It did not, however, have sophisticated learning for energy management prediction.

A fan control system was built by Preethi, M., and Dharmalingam, R. [11] and was controlled over Bluetooth on an Android mobile. Their project offered fan speed settings that could be adjusted and wireless control within a small range. The system was constrained by Bluetooth's restricted communication range, even if it was reasonably priced.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, October 2025

An Android application and voice commands were used to operate a home automation system created by Kawchale, R.S., Deshpande, S., Patil, K., Wajed, A., & Somvanshi, V. [12]. By allowing fans and lighting systems to be operated hands-free, it improved user accessibility. However, the accuracy of voice detection was impacted by noisy environments.

A clever Android app was suggested by Nath, P., & Goswami [13] to regulate the speed of induction motors. The technology showed effective wireless communication-based fan speed management. System accuracy was hampered by the lack of real-time performance feedback. For broiler poultry farms, Gede, A., Dwipradipta, A., Dwija, I.K., Putra, A.A., & Ardana, I.P.

[14] developed a smart closed house system. To maintain the right temperature and ventilation, the system made use of fans and sensors. When used in bigger poultry installations, its scalability was constrained.

UPISmartHome V2.0, a consumer-ready smart home system built on the ESP8266 module, was presented by Fuada, S., & Hendriyana, H. [15]. It allowed fans and lights to be controlled via Android apps. AI-based learning capabilities for adaptive operation were absent from the system.

An Android, Bluetooth, and PIC microcontroller-based real-time smart home automation system was created by Puri, V., and Nayyar, A. [16]. Numerous home appliances could now be controlled wirelessly thanks to the system. Its primary drawback was the limited control range brought on by Bluetooth communication.

Table1: Comparative review of smart temperature controlled fan system..

Paper / Project	System	Cost	Ease of	Performance	User	Limitations
	Architect ure		Implementation		Experience	
Lakshmi et al. [1]	IoT-	Low (<\$50)	Moderate	Real-time control	User- friendly	No AI or
	based system		(requires Blynk	of	app interface	automatio n
	using Blynk		setup)	devices		features
	app					
Das [2]	Arduin o-	Moder ate	Easy (voice	Accurate	Hands- free	Ineffecti ve
	based voice	(<\$60)	module	command	operation	in
	control		integration	response		noisy areas
)			
Khunchai &	Android-	Moder ate	Moderate (Wi-Fi	Stable real- time	Convenie nt	Requires internet
Thongchaisurat krul [3]	controlle d	(<\$70)	configurati on)	operation	remote control	connectivi ty
	IoT					
	home system					
Adiono et al. [4]	Bluetoot h-	Low (<\$40)	Easy (no	Reliable short-	Simple mobile	Limited range
	based smart		internet needed)	range control	interface	(Bluetooth only)
	home using					
	MIT					
	App Inventor					
Funke et al. [5]	Mobile-	Moder ate	Easy setup	Consistent	Intuitive	Limited cross-
	controlle d	(<\$60)		switching	mobile use	device
	IoT			performanc e		compatibil ity
	system					
Kasote et al. [6]	IoT system		Moderate	Stable	Text- based	Network delay
	with Telegram	(<\$70)	(chatbot linking)	communicat ion	ease of use	during response
Durani et al. [7]	IoT system	Moder ate	Moderate (Wi-Fi	Efficient real-time	Remote access	Lacks strong
	using Blynk	(<\$65)	and app setup)	monitoring	convenie nce	security
	and NodeM					
	CU					
Satheeshkumar et al.	Arduino	Low (<\$50)	Easy to	Effective device	Simple control	Network

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

ISSN: 2581-9429

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

[8]	+ Wi-Fi	moderate	response	via Android	instability issues)
	Android				
	automati on				

III. PROPOSED METHODOLOGY

The development and execution of the Smart Temperature Controlled Fan System adhere to a structured approach that combines embedded hardware, sensor technologies, and communication components to create an affordable and intelligent solution.

Figure 1 shows block diagram of proposed methodology

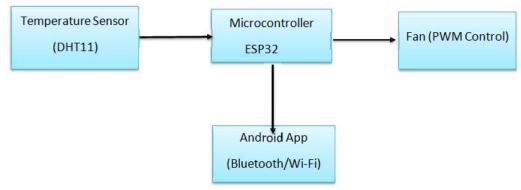


Figure 1: Block Diagram of Smart Temperature controlled Fan System

The illustration depicts a smart fan system that regulates its speed according to temperature readings and enables remote control and monitoring via an Android app. This system incorporates sensors, a microcontroller, and communication technology to deliver effective and convenient cooling.

The process starts with the Temperature Sensor (DHT11), which consistently tracks the surrounding temperature. The DHT11 is an economical digital sensor that can assess both temperature and humidity. It transforms the analog temperature readings from the environment into a digital signal that can be interpreted by a microcontroller. This sensor is vital for supplying real-time information, which serves as the basis for the system's "smart" functionality.

The DHT11 sensor sends temperature information to the ESP32 microcontroller. The ESP32 is a robust and versatile microcontroller equipped with built-in Wi-Fi and Bluetooth, making it well-suited for Internet of Things (IoT) applications. It receives data from the sensor and utilizes this information to control the fan's operation. The microcontroller processes the incoming signals, assesses the temperature against set thresholds, and produces control signals accordingly.

Using the processed information, the ESP32 controls the Fan through Pulse Width Modulation (PWM). PWM enables the fan speed to be adjusted smoothly rather than simply switching it on or off. This method promotes energy efficiency, minimizes noise, and extends the lifespan of the fan. For instance, if the temperature in the room exceeds a specific threshold, the ESP32 increases the PWM signal's duty cycle, which causes the fan to operate at a higher speed for improved cooling. Conversely, if the temperature falls, the fan speed is lowered to conserve energy.

Moreover, the system includes an Android application that connects to the ESP32 using Bluetooth or Wi-Fi. This application allows users to monitor the temperature in real-time, adjust the fan speed remotely, and even receive notifications if the temperature exceeds critical levels. This functionality enhances user convenience and facilitates the remote management of the system.

The Smart Temperature-Controlled Fan System effectively integrates sensor technology, intelligent management, and wireless connectivity. It guarantees the fan functions at its best based on the surrounding conditions, minimizes unwarranted energy usage, and offers users an interactive interface that can be controlled remotely. These systems are commonly used in residential, commercial, and industrial settings where automated climate regulation can enhance comfort and energy efficiency.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Impact Factor: 7.67

Volume 5, Issue 4, October 2025

IV. CONCLUSION

The creation of a Smart Temperature-Controlled Fan System paired with an Android application showcases the successful combination of hardware and software to provide a dependable, efficient, and user-friendly solution tailored to contemporary requirements. By integrating temperature sensors and microcontrollers with a mobile application developed in Android Studio using Java or Kotlin, the system can continuously monitor the ambient temperature and automatically adjust the fan's speed as needed. This automation guarantees optimal comfort while minimizing energy wastage, thus encouraging sustainability. Besides the automatic adjustments, the Android app enables users to remotely turn the fan ON or OFF, manually set speed levels, and receive real-time temperature updates through either Bluetooth or Wi-Fi connectivity. This blend of remote functionality and automation offers considerable convenience and flexibility, enhancing its practicality for homes, offices, and educational settings. Moreover, the system's modular design facilitates future improvements, including scheduling capabilities, integration with IoT platforms, and support for voice assistants, thereby evolving it into a well-rounded smart home solution. Ultimately, this initiative not only enhances comfort and energy efficiency but also demonstrates the capabilities of embedded systems and mobile technology in addressing daily challenges through intelligent and automated control systems.

REFERENCES

- 1. lakshmi, M., Sameen, C., D.Maneesha, G.Dharani, & Mubeena, K. (2022). Smart Home using Blynk App Based On IOT.
- 2. Das, T. (2025). Arduino Based Automatic Voice Controlled Gadget for Smart Applications. International Journal of Sciences and Innovation Engineering.
- 3. Khunchai, S., & Thongchaisuratkrul, C. (2019). Development of Smart Home System Controlled by Android Application. 2019 6th International Conference on Technical Education (ICTechEd6), 1-4.
- 4. Adiono, T., Anindya, S.F., Fuada, S., Afifah, K., & Purwanda, I.G. (2019). Efficient Android Software Development Using MIT App Inventor 2 for Bluetooth-Based Smart Home. Wireless Personal Communications, 105, 233 256.
- 5. Funke T, O., Bem, S., & Folahan P, I. (2024). Smart home appliances control system using mobile phone. International Journal of Multidisciplinary Research and Growth Evaluation.
- 6. Kasote, A., Kolage, P., Sadgir, N., Avhad, G., P.G.Vispute, D., & Student (2021). Smart Home Automation via Telegram Chatbot and Android Application.
- 7. Durani, H., Sheth, M., Vaghasia, M.V., & Kotech, S. (2018). Smart Automated Home Application using IoT with Blynk App. 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), 393-397.
- 8. K.Satheeshkumar, Ithkumar, N., P.A.Gopinath, Ithkumar, S., & J.Chandramohan (2018). Implementation of Smart Home Automation and Security System Using Arduino and Wi-Fi through Android Application. International journal of engineering research and technology, 5.
- 9. Foysal, M.R., Hossain, R.A., Islam, M.M., Sharmin, S., & Moon, N.N. (2021). IoT Based Temperature Control System of Home by using an Android Device. 2021 1st International Conference on Emerging Smart Technologies and Applications (eSmarTA), 1-8.
- 10. Palodkar, A., Shelke, P., & Patil, S.R. (2018). Optimization of Electricity Consumption using Android App for Smart Computer Lab. International Journal of Advance Research and Innovative Ideas in Education, 4, 1260-1264.
- 11. M.Preethi, & R.Dharmalingam (2017). Controlling Fan Using Smart Android Device Via Wireless Bluetooth Microcontroller.
- 12. Kawchale, R.S., Deshpande, S., Patil, K., Wajed, A., & Somvanshi, V. (2024). Home Automation System By Android Application And Voice Control. 2024 8th International Conference on Computing, Communication, Control and Automation (ICCUBEA), 1-6.
- 13. Nath, P., & Goswami (2017). Speed Control of Induction Motor Using Smart Android Application System.
- 14. Gede, A., Dwipradipta, A., Dwija, I.K., Putra, A.A., Ardana, I.P., Iga, P., & Agung, R. (2024). RANCANG BANGUN SMART CLOSED HOUSE PADA PETERNAKAN AYAM BROILER. Jurnal SPEKTRUM.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 15. Fuada, S., & Hendriyana, H. (2022). UPISmartHome V.2.0 A Consumer Product of Smart Home System with an ESP8266 as the Basis. J. Commun., 17, 541-552.
- 16. Puri, V., & Nayyar, A. (2016). Real time smart home automation based on PIC microcontroller, Bluetooth and Android technology. 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), 1478-1484.
- 17. Alamsyah, D.P., Ramdhani, Y., Rhamadhan, S.R., & Susanti, L. (2021). Application of IoT and Cloud Storage in Android-Based Smart Home Technology. 2021 7th International HCI and UX Conference in Indonesia (CHIuXiD), 1, 33-38.
- 18. Pandit, S.M., Salunke, N., Chettiar, T.S., & Raut, P. (2021). Smart Footsteps Power Generation System. 2021 7th International Conference on Signal Processing and Communication (ICSC), 114-117.
- 19. Zhang, F., Wan, X., Zheng, T., Cui, J., Li, X., & Yang, Y. (2020). Smart Greenhouse Management System based on NB-IoT and Smartphone. 2020 17th International Joint Conference on Computer Science and Software Engineering (JCSSE), 36-41.
- 20. VELUMANI,, R.G., Yogasrinivasan, Y., VIJAYSEKAR,, M., V.Vidhya,, M.,
- 21. Priyatharshini, D., VELUMANI,, R.G., Yogasrinivasan, V.,,, VIJAYSEKAR,, M., & V.Vidhya,, M. (2025). Development of an AI-Powered Virtual Personal Assistant for Smart Homes. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT.
- 22. Godase, M. V., Mulani, A., Ghodak, M. R., Birajadar, M. G., Takale, M. S., & Kolte, M. A MapReduce and Kalman Filter based Secure IIoT Environment in Hadoop. Sanshodhak, Volume 19, June 2024.
- 23. Mulani, A. O., & Mane, P. B. (2017). Watermarking and cryptography based image authentication on reconfigurable platform. Bulletin of Electrical Engineering and Informatics, 6(2), 181-187.
- 24. Gadade, B., Mulani, A. O., & Harale, A. D. IoT Based Smart School Bus and Student Tracking System. Sanshodhak, Volume 19, June 2024.
- 25. Dhanawadel, A., Mulani, A. O., & Pise, A. C. IOT based Smart farming using Agri BOT. Sanshodhak, Volume 20, June 2024.
- 26. Mulani, A., & Mane, P. B. (2016). DWT based robust invisible watermarking. Scholars' Press.
- 27. R. G. Ghodke, G. B. Birajdar, A.O. Mulani, G.N. Shinde, R.B. Pawar, Design and Development of an Efficient and Cost-Effective surveillance Quadcopter using Arduino, Sanshodhak, Volume 20, June 2024.
- 28. R. G. Ghodke, G. B. Birajdar, A.O. Mulani, G.N. Shinde, R.B. Pawar, Design and Development of Wireless Controlled ROBOT using Bluetooth Technology, Sanshodhak, Volume 20, June 2024.
- 29. Swami, S. S., & Mulani, A. O. (2017, August). An efficient FPGA implementation of discrete wavelet transform for image compression. In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS) (pp. 3385-3389). IEEE.
- 30. Mane, P. B., & Mulani, A. O. (2018). High speed area efficient FPGA implementation of AES algorithm. International Journal of Reconfigurable and Embedded Systems, 7(3), 157-165.
- 31. Mulani, A. O., & Mane, P. B. (2016). Area efficient high speed FPGA based invisible watermarking for image authentication. Indian journal of Science and Technology, 9(39), 1-6.
- 32. Kashid, M. M., Karande, K. J., & Mulani, A. O. (2022, November). IoT-based environmental parameter monitoring using machine learning approach. In Proceedings of the International Conference on Cognitive and Intelligent Computing: ICCIC 2021, Volume 1 (pp. 43-51). Singapore: Springer Nature Singapore.
- 33. Nagane, U. P., & Mulani, A. O. (2021). Moving object detection and tracking using Matlab. Journal of Science and *Technology*, 6(1), 2456-5660.
- 34. Kulkarni, P. R., Mulani, A. O., & Mane, P. B. (2016). Robust invisible watermarking for image authentication. In Emerging Trends in Electrical, Communications and Information Technologies: Proceedings of ICECIT-2015 (pp. 193-200). Singapore: Springer Singapore.
- 35. Ghodake, M. R. G., & Mulani, M. A. (2016). Sensor based automatic drip irrigation system. Journal for Research, 2(02).

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 36. Mandwale, A. J., & Mulani, A. O. (2015, January). Different Approaches For Implementation of Viterbi decoder on reconfigurable platform. In 2015 International Conference on Pervasive Computing (ICPC) (pp. 1-4). IEEE.
- 37. Jadhav, M. M., Chavan, G. H., & Mulani, A. O. (2021). Machine learning based autonomous fire combat turret. *Turkish Journal of Computer and Mathematics Education*, 12(2), 2372-2381.
- 38. Shinde, G., & Mulani, A. (2019). A robust digital image watermarking using DWT-PCA. *International Journal of Innovations in Engineering Research and Technology*, 6(4), 1-7.
- 39. Mane, D. P., & Mulani, A. O. (2019). High throughput and area efficient FPGA implementation of AES algorithm. *International Journal of Engineering and Advanced Technology*, 8(4).
- 40. Mulani, A. O., & Mane, D. P. (2017). An Efficient implementation of DWT for image compression on reconfigurable platform. *International Journal of Control Theory and Applications*, 10(15), 1-7.
- 41. Deshpande, H. S., Karande, K. J., & Mulani, A. O. (2015, April). Area optimized implementation of AES algorithm on FPGA. In 2015 International Conference on Communications and Signal Processing (ICCSP) (pp. 0010-0014). IEEE.
- 42. Deshpande, H. S., Karande, K. J., & Mulani, A. O. (2014, April). Efficient implementation of AES algorithm on FPGA. In 2014 International Conference on Communication and Signal Processing (pp. 1895-1899). IEEE.
- 43. Kulkarni, P., & Mulani, A. O. (2015). Robust invisible digital image mamarking using discrete wavelet transform. *International Journal of Engineering Research & Technology (IJERT)*, 4(01), 139-141.
- 44. Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless Non-invasive blood glucose concentration level estimation using PCA and machine learning. *The CRC Book entitled Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications*.
- 45. Mulani, A. O., & Shinde, G. N. (2021). An approach for robust digital image watermarking using DWT-PCA. *Journal of Science and Technology*, 6(1).
- Mulani, A. O., & Mane, P. B. (2014, October). Area optimization of cryptographic algorithm on less dense reconfigurable platform. In 2014 International Conference on Smart Structures and Systems (ICSSS) (pp. 86-89). IEEE.
- 47. Jadhav, H. M., Mulani, A., & Jadhav, M. M. (2022). Design and development of chatbot based on reinforcement learning. *Machine Learning Algorithms for Signal and Image Processing*, 219-229.
- 48. Mulani, A. O., & Mane, P. (2018). Secure and area efficient implementation of digital image watermarking on reconfigurable platform. *International Journal of Innovative Technology and Exploring Engineering*, 8(2), 56-61.
- 49. Kalyankar, P. A., Mulani, A. O., Thigale, S. P., Chavhan, P. G., & Jadhav, M. M. (2022). Scalable face image retrieval using AESC technique. *Journal Of Algebraic Statistics*, 13(3), 173-176.
- 50. Takale, S., & Mulani, A. (2022). DWT-PCA based video watermarking. *Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN*, 2799-1156.
- 51. Kamble, A., & Mulani, A. O. (2022). Google assistant based device control. *Int. J. of Aquatic Science*, 13(1), 550-555.
- 52. Kondekar, R. P., & Mulani, A. O. (2017). Raspberry Pi based voice operated Robot. *International Journal of Recent Engineering Research and Development*, 2(12), 69-76.
- 53. Ghodake, R. G., & Mulani, A. O. (2018). Microcontroller based automatic drip irrigation system. In *Techno-Societal 2016: Proceedings of the International Conference on Advanced Technologies for Societal Applications* (pp. 109-115). Springer International Publishing.
- 54. Mulani, A. O., Birajadar, G., Ivković, N., Salah, B., & Darlis, A. R. (2023). Deep learning based detection of dermatological diseases using convolutional neural networks and decision trees. *Traitement du Signal*, 40(6), 2819.
- 55. Boxey, A., Jadhav, A., Gade, P., Ghanti, P., & Mulani, A. O. (2022). Face Recognition using Raspberry Pi. *Journal of Image Processing and Intelligent Remote Sensing (JIPIRS) ISSN*, 2815-0953.
- 56. Patale, J. P., Jagadale, A. B., Mulani, A. O., & Pise, A. (2023). A Systematic survey on Estimation of Electrical Vehicle. *Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN*, 2799-1156.
- 57. Gadade, B., & Mulani, A. (2022). Automatic System for Car Health Monitoring. *International Journal of Innovations in Engineering Research and Technology*, 57-62.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 58. Shinde, M. R. S., & Mulani, A. O. (2015). Analysis of Biomedical Image Using Wavelet Transform. *International Journal of Innovations in Engineering Research and Technology*, 2(7), 1-7.
- 59. Mandwale, A., & Mulani, A. O. (2014, December). Implementation of convolutional encoder & different approaches for viterbi decoder. In *IEEE International Conference on Communications, Signal Processing Computing and Information technologies*.
- 60. Mulani, A. O., Jadhav, M. M., & Seth, M. (2022). Painless machine learning approach to estimate blood glucose level with non-invasive devices. In *Artificial intelligence, internet of things (IoT) and smart materials for energy applications* (pp. 83-100). CRC Press.
- 61. Maske, Y., Jagadale, A. B., Mulani, A. O., & Pise, A. C. (2023). Development of BIOBOT system to assist COVID patient and caretakers. *European Journal of Molecular & Clinical Medicine*, 10(01), 2023.
- 62. Utpat, V. B., Karande, D. K., & Mulani, D. A. Grading of Pomegranate Using Quality Analysisl. *International Journal for Research in Applied Science & Engineering Technology (IJRASET)*, 10.
- 63. Takale, S., & Mulani, D. A. (2022). Video Watermarking System. *International Journal for Research in Applied Science & Engineering Technology (IJRASET)*, 10.
- 64. Mandwale, A., & Mulani, A. O. (2015, January). Different approaches for implementation of Viterbi decoder. In *IEEE international conference on pervasive computing (ICPC)*.
- 65. Maske, Y., Jagadale, M. A., Mulani, A. O., & Pise, A. (2021). Implementation of BIOBOT System for COVID Patient and Caretakers Assistant Using IOT. *International Journal of Information Technology and*, 30-43.
- 66. Mulani, A. O., & Mane, D. P. (2016). Fast and Efficient VLSI Implementation of DWT for Image Compression. *International Journal for Research in Applied Science & Engineering Technology*, 5, 1397-1402.
- 67. Kambale, A. (2023). Home automation using google assistant. UGC care approved journal, 32(1), 1071-1077.
- 68. Pathan, A. N., Shejal, S. A., Salgar, S. A., Harale, A. D., & Mulani, A. O. (2022). Hand gesture controlled robotic system. *Int. J. of Aquatic Science*, *13*(1), 487-493.
- 69. Korake, D. M., & Mulani, A. O. (2016). Design of Computer/Laptop Independent Data transfer system from one USB flash drive to another using ARM11 processor. *International Journal of Science, Engineering and Technology Research*.
- 70. Mandwale, A., & Mulani, A. O. (2016). Implementation of High Speed Viterbi Decoder using FPGA. *International Journal of Engineering Research & Technology, IJERT*.
- 71. Kolekar, S. D., Walekar, V. B., Patil, P. S., Mulani, A. O., & Harale, A. D. (2022). Password Based Door Lock System. *Int. J. of Aquatic Science*, *13*(1), 494-501.
- 72. Shinde, R., & Mulani, A. O. (2015). Analysis of Biomedical Imagel. *International Journal on Recent & Innovative trend in technology (IJRITT)*.
- 73. Sawant, R. A., & Mulani, A. O. (2022). Automatic PCB Track Design Machine. *International Journal of Innovative Science and Research Technology*, 7(9).
- ABHANGRAO, M. R., JADHAV, M. S., GHODKE, M. P., & MULANI, A. (2017). Design And Implementation
 Of 8-bit Vedic Multiplier. *International Journal of Research Publications in Engineering and Technology (ISSN No: 2454-7875)*.
- 75. Gadade, B., Mulani, A. O., & Harale, A. D. (2024). Iot based smart school bus and student monitoring system. *Naturalista Campano*, 28(1), 730-737.
- 76. Mulani, D. A. O. (2024). A Comprehensive Survey on Semi-Automatic Solar-Powered Pesticide Sprayers for Farming. *Journal of Energy Engineering and Thermodynamics (JEET) ISSN*, 2815-0945.
- 77. Salunkhe, D. S. S., & Mulani, D. A. O. (2024). Solar Mount Design Using High-Density Polyethylene. *NATURALISTA CAMPANO*, 28(1).
- 78. Seth, M. (2022). Painless Machine learning approach to estimate blood glucose level of Non-Invasive device. *Artificial Intelligence, Internet of Things (IoT) and Smart Materials for Energy Applications*.
- 79. Kolhe, V. A., Pawar, S. Y., Gohery, S., Mulani, A. O., Sundari, M. S., Kiradoo, G., ... & Sunil, J. (2024). Computational and experimental analyses of pressure drop in curved tube structural sections of Coriolis mass flow metre for laminar flow region. *Ships and Offshore Structures*, 19(11), 1974-1983.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 80. Basawaraj Birajadar, G., Osman Mulani, A., Ibrahim Khalaf, O., Farhah, N., G Gawande, P., Kinage, K., & Abdullah Hamad, A. (2024). Epilepsy identification using hybrid CoPrO-DCNN classifier. *International Journal of Computing and Digital Systems*, 16(1), 783-796.
- 81. Kedar, M. S., & Mulani, A. (2021). IoT Based Soil, Water and Air Quality Monitoring System for Pomegranate Farming, *Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN*, 2799-1156.
- 82. Godse, A. P. A.O. Mulani (2009). Embedded Systems (First Edition).
- 83. Pol, R. S., Bhalerao, M. V., & Mulani, A. O. A real time IoT based System Prediction and Monitoring of Landslides. International Journal of Food and Nutritional Sciences, Volume 11, Issue 7, 2022.
- 84. Mulani, A. O., Sardey, M. P., Kinage, K., Salunkhe, S. S., Fegade, T., & Fegade, P. G. (2025). ML-powered Internet of Medical Things (MLIOMT) structure for heart disease prediction. *Journal of Pharmacology and Pharmacotherapeutics*, 16(1), 38-45.
- 85. Aiwale, S., Kolte, M. T., Harpale, V., Bendre, V., Khurge, D., Bhandari, S., ... & Mulani, A. O. (2024). Non-invasive Anemia Detection and Prediagnosis. *Journal of Pharmacology and Pharmacotherapeutics*, 15(4), 408-416
- 86. Mulani, A. O., Bang, A. V., Birajadar, G. B., Deshmukh, A. B., Jadhav, H. M., & Liyakat, K. K. S. (2024). IoT Based Air, Water, and Soil Monitoring System for Pomegranate Farming. *Annals of Agri-Bio Research*, 29(2), 71-86
- 87. Kulkarni, T. M., & Mulani, A. O. (2024). Face Mask Detection on Real Time Images and Videos using Deep Learning. *International Journal of Electrical Machine Analysis and Design (IJEMAD)*, 2(1).
- 88. Thigale, S. P., Jadhav, H. M., Mulani, A. O., Birajadar, G. B., Nagrale, M., & Sardey, M. P. (2024). Internet of things and robotics in transforming healthcare services. *Afr J Biol Sci (S Afr)*, 6(6), 1567-1575.
- 89. Pol, D. R. S. (2021). Cloud Based Memory Efficient Biometric Attendance System Using Face Recognition. *Stochastic Modeling & Applications*, 25(2).
- 90. Nagtilak, M. A. G., Ulegaddi, M. S. N., Adat, M. A. S., & Mulani, A. O. (2021). Breast Cancer Prediction using Machine Learning.
- 91. Rahul, G. G., & Mulani, A. O. (2016). Microcontroller Based Drip Irrigation System.
- 92. Kulkarni, T. M., & Mulani, A. O. Deep Learning Based Face-Mask Detection: An Approach to Reduce Pandemic Spreads in Human Healthcare. African Journal of Biological Sciences, 6(6), 2024.
- 93. Mulani, A., & Mane, P. B. (2016). DWT based robust invisible watermarking. Scholars' Press.
- 94. Dr. Vaishali Satish Jadhav, Dr. Shweta Sadanand Salunkhe, Dr. Geeta Salunkhe, Pranali Rajesh Yawle, Dr. Rahul S. Pol, Dr. Altaf Osman Mulani, Dr. Manish Rana, Iot Based Health Monitoring System for Human, Afr. J. Biomed. Res. Vol. 27 (September 2024).
- 95. Dr. Vaishali Satish Jadhav, Geeta D. Salunke, Kalyani Ramesh Chaudhari, Dr. Altaf Osman Mulani, Dr. Sampada Padmakar Thigale, Dr. Rahul S. Pol, Dr. Manish Rana, Deep Learning-Based Face Mask Recognition in Real-Time Photos and Videos, Afr. J. Biomed. Res. Vol. 27 (September 2024).
- 96. Altaf Osman Mulani, Electric Vehicle Parameters Estimation Using Web Portal, Recent Trends in Electronics & Communication Systems, Volume 10, Issue 3, 2023.
- 97. Aryan Ganesh Nagtilak, Sneha Nitin Ulegaddi, Mahesh Mane, Altaf O. Mulani, Automatic Solar Powered Pesticide Sprayer for Farming, International Journal of Microwave Engineering and Technology, Volume 9 No. 2, 2023.
- 98. Annasaheb S. Dandage, Vitthal R. Rupnar, Tejas A Pise, and A. O. Mulani, Real-Time Language Translation Application Using Tkinter. International Journal of Digital Communication and Analog Signals. 2025; 11(01): -p.
- 99. AnnaSaheb S Dandage, Vitthal R. Rupnar, Tejas A Pise, and A. O. Mulani, IoT-Powered Weather Monitoring and Irrigation Automation: Transforming Modern Farming Practices. . 2025; 11(01): -p.
- 100. Mulani, A.O., Kulkarni, T.M. (2025). Face Mask Detection System Using Deep Learning: A Comprehensive Survey. In: Singh, S., Arya, K.V., Rodriguez, C.R., Mulani, A.O. (eds) Emerging Trends in Artificial Intelligence, Data Science and Signal Processing. AIDSP 2023. Communications in Computer and Information Science, vol 2439. Springer, Cham. https://doi.org/10.1007/978-3-031-88759-8 3.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

150 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 101. Karve, S., Gangonda, S., Birajadar, G., Godase, V., Ghodake, R., Mulani, A.O. (2025). Optimized Neural Network for Prediction of Neurological Disorders. In: Singh, S., Arya, K.V., Rodriguez, C.R., Mulani, A.O. (eds) Emerging Trends in Artificial Intelligence, Data Science and Signal Processing. AIDSP 2023. Communications in Computer and Information Science, vol 2440. Springer, Cham. https://doi.org/10.1007/978-3-031-88762-8_18.
- 102. Saurabh Singh, Karm Veer Arya, Ciro Rodriguez Rodriguez, and Altaf Osman Mulani, Emerging Trends in Artificial Intelligence, Data Science and Signal Processing, Communications in Computer and Information Science (CCIS), volume 2440.
- 103. Saurabh Singh, Karm Veer Arya, Ciro Rodriguez Rodriguez, and Altaf Osman Mulani, Emerging Trends in Artificial Intelligence, Data Science and Signal Processing, Communications in Computer and Information Science (CCIS), volume 2439.
- 104. Godase, V., Mulani, A., Pawar, A., & Sahani, K. (2025). A Comprehensive Review on PIR Sensor-Based Light Automation Systems. International Journal of Image Processing and Smart Sensors, 1(1), 22-29.
- 105. Godase, V., Mulani, A., Takale, S., & Ghodake, R. (2025). Comprehensive Review on Automated Field Irrigation using Soil Image Analysis and IoT. Journal of Advance Electrical Engineering and Devices, 3(1), 46-55.
- 106. Altaf Osman Mulani, Deshmukh M., Jadhav V., Chaudhari K., Mathew A.A., Shweta Salunkhe. Transforming Drug Therapy with Deep Learning: The Future of Personalized Medicine. Drug Research. 2025 Aug 29.
- 107. Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), Image Authentication Using Cryptography and Watermarking, International Journal of Image Processing and Smart Sensors, Vol. 1, Issue 2, pp 27-34.
- 108. Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), Advancements in Artificial Intelligence: Transforming Industries and Society, International Journal of Artificial Intelligence of Things (AIoT) in Communication Industry, Vol. 1, Issue 2, pp 1-5.
- 109. Altaf O. Mulani, Vaibhav V. Godase, Swapnil R. Takale, Rahul G. Ghodake (2025), AI-Powered Predictive Analytics in Healthcare: Revolutionizing Disease Diagnosis and Treatment, Journal of Advance Electrical Engineering and Devices, Vol. 3, Issue 2, pp 27-34.
- 110. Godase, V., Mulani, A., Takale, S., & Ghodake, R. (2025). A Holistic Review of Automatic Drip Irrigation Systems: Foundations and Emerging Trends. *Available at SSRN 5247778*.
- 111.V. Godase, R. Ghodake, S. Takale, and A. Mulani, —Design and Optimization of Reconfigurable Microwave Filters Using AI Techniques, International Journal of RF and Microwave Communication Technologies, vol. 2, no. 2, pp.26–41, Aug. 2025.
- 112.V. Godase, A. Mulani, R. Ghodake, S. Takale, "Automated Water Distribution Management and Leakage Mitigation Using PLC Systems," Journal of Control and Instrumentation Engineering, vol.11, no. 3, pp. 1-8, Aug. 2025.
- 113. V. Godase, A. Mulani, R. Ghodake, S. Takale, "PLC-Assisted Smart Water Distribution with Rapid Leakage Detection and Isolation," Journal of Control Systems and Converters, vol. 1, no. 3, pp. 1-13, Aug. 2025.
- 114. V. V. Godase, S. R. Takale, R. G. Ghodake, and A. Mulani, "Attention Mechanisms in Semantic Segmentation of Remote Sensing Images," Journal of Advancement in Electronics Signal Processing, vol. 2, no. 2, pp. 45–58, Aug. 2025.
- 115.D. Waghmare, A. Mulani, S. R. Takale, V. Godase, and A. Mulani, "A Comprehensive Review on Automatic Fruit Sorting and Grading Techniques with Emphasis on Weight-based Classification," Research & Review: Electronics and Communication Engineering, vol. 2, no. 3, pp. 1-10, Oct. 2025.
- 116. Karande, K. J., & Talbar, S. N. (2014). Independent component analysis of edge information for face recognition. Springer India.
- 117. Karande, K. J., & Talbar, S. N. (2008). Face recognition under variation of pose and illumination using independent component analysis. ICGST-GVIP, ISSN.
- 118. Gaikwad, D. S., & Karande, K. J. (2016). Image processing approach for grading and identification of diseases on pomegranate fruit: An overview. International Journal of Computer Science and Information Technologies, 7, 519-522.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 119.Kawathekar, P. P., & Karande, K. J. (2014, July). Severity analysis of Osteoarthritis of knee joint from X-ray images: A Literature review. In 2014 International Conference on Signal propagation and computer technology (ICSPCT 2014) (pp. 648-652). IEEE.
- 120. Daithankar, M. V., Karande, K. J., & Harale, A. D. (2014, April). Analysis of skin color models for face detection. In 2014 International Conference on Communication and Signal Processing (pp. 533-537). IEEE.
- 121. Karande, J. K., Talbar, N. S., & Inamdar, S. S. (2012, May). Face recognition using oriented Laplacian of Gaussian (OLOG) and independent component analysis (ICA). In 2012 Second International Conference on Digital Information and Communication Technology and it's Applications (DICTAP) (pp. 99-103). IEEE.
- 122. Shubham Salunkhe, Pruthviraj Zambare, Sakshi Shinde, S. K. Godase. (2024). API Development for Cloud Parameter Curation International. *Journal of Electrical and Communication Engineering Technology*, 2(1). https://doi.org/10.37591/ijecet
- 123. Badave, A., Pawale, A., Andhale, T., Godase, S. K., & STM JOURNALS. (2024). Smart home safety using fire and gas detection system. *Recent Trends in Fluid Mechanics*, 1, 35–43. https://journals.stmjournals.com/rtfm
- 124. Asabe, H., Asabe, R., Lengare, O., & Godase, S. (2025). IOT- BASED STORAGE SYSTEM FOR MANAGING VOLATILE MEDICAL RESOURCES IN HEALTHCARE FACILITIES. *INTERNATIONAL JOURNAL OF PROGRESSIVE RESEARCH IN ENGINEERING MANAGEMENT AND SCIENCE (IJPREMS)*, 05(03), 2427–2433. https://www.ijprems.com
- 125. Karche, S. N., Mulani, A. O., Department of Electronics, SKN Sinhgad College of Engineering, Korti, & University of Solapur, Maharashtra, India. (2018). AESC Technique for Scalable Face Image Retrieval. *International Journal of Innovative Research in Computer and Communication Engineering*, 6(4), 3404–3405.

https://doi.org/10.15680/IJIRCCE.2018.0604036

- 126.Bankar, A. S., Harale, A. D., & Karande, K. J. (2021). Gestures Controlled Home Automation using Deep Learning: A Review. *International Journal of Current Engineering and Technology*, 11(06), 617–621. https://doi.org/10.14741/ijcet/v.11.6.4
- 127. Mali, A. S., Ghadge, S. K., Adat, A. S., & Karande, S. V. (2024). Intelligent Medication Management System. IJSRD - International Journal for Scientific Research & Development, Vol. 12(Issue 3).
- 128. Water Level Control, Monitoring and Altering System by using GSM in Irrigation Based on Season. (2019). In *International Research Journal of Engineering and Technology (IRJET)* (Vol. 06, Issue 04, p. 1035) [Journal-article]. https://www.irjet.net
- 129. Modi, S., Misal, V., Kulkarni, S., & Mali A.S. (2025). Hydroponic Farming Monitoring System Automated system to monitor and control nutrient and pH levels. In *Journal of Microcontroller Engineering and Applications* (Vol. 12, Issue 3, pp. 11–16). https://doi.org/10.37591/JoMEA
- 130. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "VGHN: variations aware geometric moments and histogram features normalization for robust uncontrolled face recognition", *International Journal of Information Technology*, https://doi.org/10.1007/s41870-021-00703-0.
- 131. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition using MFCC & DTW Features", *International Journal of Engineering Research And Applications (IJERA) pp. 118-122, ISSN:* 2248-9622.
- 132. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Recognition of Marathi Numerals Using MFCC and DTW Features", *Book Title: Recent Trends on Image Processing and Pattern Recognition, RTIP2R 2018, CCIS 1037, pp. 1–11,* © *Springer Nature Singapore Pte Ltd. 2019* https://doi.org/10.1007/978-981-13-9187-3 17.
- 133. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Analysis of Face Recognition Algorithms for Uncontrolled Environments", *Book Title: Computing, Communication and Signal Processing, pp. 919–926, © Springer Nature Singapore Pte Ltd. 2018.*
- 134. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Recognition of Marathi Numerals using MFCC and DTW Features", 2nd International Conference on Recent Trends in Image Processing and Pattern

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- Recognition (RTIP2R 2018), 21th -22th Dec., 2018, organized by Solapur University, Solapur in collaboration with University of South Dakota (USA) and Universidade de Evora (Portugal), India.
- 135. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "A Comprehensive Survey of Face Databases for Constrained and Unconstrained Environments", 2nd IEEE Global Conference on Wireless Computing & Networking (GCWCN-2018), 23th-24th Nov., 2018, organized by STES's Sinhgad Institute of Technology, Lonavala, India.
- 136. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "An Extensive Survey of Prominent Researches in Face Recognition under different Conditions", 4th International Conference on Computing, Communication, Control And Automation (ICCUBEA-2018), 16th to 18th Aug. 2018 organized by Pimpri Chinchwad College of Engineering (PCCOE), Pune, India.
- 137. Siddheshwar S. Gangonda, Prashant P. Patavardhan, Kailash J. Karande, "Analysis of Face Recognition Algorithms for Uncontrolled Environments", 3rd International Conference on Computing, Communication and Signal Processing (ICCASP 2018), 26th-27th Jan.2018, organized by Dr. BATU, Lonere, India.
- 138. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", International Conference on Recent Trends, Feb 2012, IOK COE, Pune.
- 139.S. S. Gangonda, "Bidirectional Visitor Counter with automatic Door Lock System", National Conference on Computer, Communication and Information Technology (NCCCIT-2018), 30th and 31st March 2018 organized by Department of Electronics and Telecommunication Engineering, SKN SCOE, Korti, Pandharpur.
- 140. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition using MFCC & DTW Features", ePGCON 2012, 23rd and 24th April 2012 organized by Commins COE for Woman, Pune.
- 141.Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", National Conference on Emerging Trends in Engineering and Technology (VNCET'12), 30th March 2012 organized by Vidyavardhini's College of Engineering and Technology, Vasai Road, Thane.
- 142. Siddheshwar Gangonda and Prachi Mukherji, "Speech Processing for Marathi Numeral Recognition", ePGCON 2011, 26th April 2011 organized by MAEER's MIT, Kothrud, Pune-38.
- 143. Siddheshwar Gangonda, "Medical Image Processing", Aavishkar-2K7, 17th and 18th March 2007 organized by Department of Electronics and Telecommunication Engineering, SVERI's COE, Pandharpur.
- 144. Siddheshwar Gangonda, "Image enhancement & Denoising", VISION 2k7, 28th Feb-2nd March 2007 organized by M.T.E. Society's Walchand College of Engineering, Sangli.
- 145. Siddheshwar Gangonda, "Electromagnetic interference & compatibility" KSHITIJ 2k6, 23rd and 24th Sept. 2006 organized by Department of Mechanical Engineering, SVERI's COE, Pandharpur.
- 146.A. Pise and K. Karande, "A genetic Algorithm-Driven Energy-Efficient routing strategy for optimizing performance in VANETs," Engineering Technology and Applied Science Research, vol. 15, no. 5, 2025, [Online]. Available: https://etasr.com/index.php/ETASR/article/view/12744
- 147.A. C. Pise, K. J. Karande, "Investigating Energy-Efficient Optimal Routing Protocols for VANETs: A Comprehensive Study", ICT for Intelligent Systems, Lecture Notes in Networks and Systems 1109, Proceedings of ICTIS 2024 Volume 3, Lecture Notes in Networks and Systems, Springer, Singapore, ISSN 2367-3370, PP 407-417, 29 October 2024 https://doi.org/10.1007/978-981-97-6675-8 33.
- 148.A. C. Pise, et. al., "Smart Vehicle: A Systematic Review", International Journal The Ciência & Engenharia Science & Engineering Journal ISSN: 0103-944XVolume 11 Issue 1, 2023pp: 992–998, 2023.
- 149.A. C. Pise, et. al., "Smart Vehicle: A Systematic Review", International Journal of Research Publication and Reviews, ISSN 2582-7421, Vol 4, no 10, pp 2728-2731 October 2023.
- 150.A. C. Pise, et. al., "Development of BIOBOT System to Assist COVID Patient and Caretakers", European Journal of Molecular and Clinical Medicine; 10(1):3472-3480, 2023.
- 151.A. C. Pise, et. al., "IoT Based Landmine Detection Robot", International Journal of Research in Science & EngineeringISSN: 2394-8299Vol: 03, No. 04, June-July 2023.

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 152.A. C. Pise, et. al., "A Systematic survey on Estimation of Electrical Vehicle", Journal of Electronics, Computer Networking and Applied Mathematics (JECNAM) ISSN: 2799-1156, Volume 3, Issue 01, Pages 1-6, December 2023.
- 153.A. C. Pise, et. al., "Python Algorithm to Estimate Range of Electrical Vehicle", Web of Science, Vol 21, No 1 (2022) December 2022
- 154.A. C. Pise, et. al., "Implementation of BIOBOT System for COVID Patient and Caretakers Assistant using IOT", International Journal of Information technology and Computer Engineering. 30-43. 10.55529/ijitc.21.30.43, (2022).
- 155.A. C. Pise, et. al., "An IoT Based Real Time Monitoring of Agricultural and Micro irrigation system", International journal of scientific research in Engineering and management (IJSREM), VOLUME: 06 ISSUE: 04 | APRIL 2022, ISSN:2582-3930.
- 156.A. C. Pise, Dr. K. J. Karande, "An Exploratory study of Cluster Based Routing Protocol in VANET: A Review", International Journal of Advanced Research in Engineering and Technology(IJARET), 12,10, 2021, 17-30, Manuscript ID :00000-94375 Source ID : 00000006, Journal_uploads/IJARET/VOLUME 12 ISSUE 10/IJARET 12 10 002.pdf
- 157.A. C. Pise, et. al., "Android based Portable Health Support System," A Peer Referred & Indexed International Journal of Research, Vol.8, issue.4, April 2019.
- 158.A. C. Pise, et. al., "Facial Expression Recognition Using Image Processing," International Journal of VLSI Design, Microelectronics and Embedded System, Vol. 3, issue . 2, July 2018.
- 159.A. C. Pise, et. al., "Detection of Cast Iron Composition by Cooling Curve Analysis using Thermocouple Temperature Sensor," UGC Approved International Journal of Academic Science (IJRECE), Vol.6, Issue.3, July-September 2018.
- 160. A. C. Pise, et. al., "Android Based Portable Health Support", System International Journal of Engineering Sciences & Research Technology (IJESRT 2017) Vol.6, Issue 8, pp 85-88 5th Aug 2017
- 161.A. C. Pise, et. al., "Adaptive Noise Cancellation in Speech Signal", International Journal of Innovative Engg and Technology, 2017
- 162.A. C. Pise, et. al., "Lung Cancer Detection System by using Baysian Classifier", ISSN 2454-7875, IJRPET, published online in conference special issue VESCOMM-2016, February 2016
- 163.A. C. Pise, et. al., "Review on Agricultural Plant Diseases Detection by Image Processing", ISSN 2278-62IX, IJLTET, Vol 7, Issue 1 May 2016
- 164.A. C. Pise, et. al. "Segmentation of Retinal Images for Glaucoma Detection", International Journal of Engineering Research and Technology (06, June-2015).
- 165.A. C. Pise, et. al. "Color Local Texture Features Based Face Recognition", International Journal of Innovations in Engineering and Technology(IJIET), Dec. 2014
- 166.A. C. Pise, et. al. "Single Chip Solution For Multimode Robotic Control", International Journal of Engineering Research and Technology (IJERT-2014), Vol. 3, Issue 12, Dec. 2014.
- 167. Anjali C. Pise et. al., "Remote monitoring of Greenhouse parameters using zigbee Wireless Sensor Network", International Journal of Engineering Research & Technology ISSN 2278-0181 (online) Vol. 3, Issue 2, and pp: (2412-2414), Feb. 2014.
- 168.A. C. Pise, K. J. Karande, "Cluster Head Selection Based on ACO In Vehicular Ad-hoc Networks", Machine Learning for Environmental Monitoring in Wireless Sensor Networks
- 169.A. C. Pise, K. J. Karande, "Architecture, Characteristics, Applications and Challenges in Vehicular Ad Hoc Networks" Presented in 27th IEEE International Symposium on Wireless Personal Multimedia Communications (WPMC 2024) "Secure 6G AI Nexus: Where Technology Meets Humanity" Accepted for book chapter to be published in international Scopus index book by River publisher.
- 170.A. C. Pise, Dr. K. J. Karande, "K-mean Energy Efficient Optimal Cluster Based Routing Protocol in Vehicular Ad Hoc Networks", International Conference on Innovations in Artificial Intelligence and Machine Learning (ICAIML-2022), August 20th and 21st 2022 Springer database Conference.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 171.A. C. Pise, Mr. D. Nale, "Web-Based Application for Result Analysis", ", International Conference on Innovations in Artificial Intelligence and Machine Learning (ICAIML-2022), August 20th and 21st 2022 Springer database Conference.
- 172.A. C. Pise, et. al., "Detection of Cast Iron Composition by Cooling Curve Analysis using Thermocouple Temperature Sensor," 2nd International Conference on Engineering Technology, Science and Management Innovation (ICETSMI 2018), 2nd September 2018.
- 173.A. C. Pise, et. al., "Facial Expression Recognition Using Facial Features," IEEE International Conference on Communication and Electronics Systems (ICCES 2018), October 2018.
- 174.A. C. Pise, et. al., "Estimating Parameters of Cast Iron Composition using Cooling Curve Analysis," IEEE International Conference on Communication and Electronics Systems (ICCES 2018), Coimbatore, October 2018.
- 175.A. C. Pise, et. al., "Android based portable Health Support System," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 176.A. C. Pise, et. al., "Baysian Classifier & FCM Segmentation for Lung Cancer Detection in early stage," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 177.A. C. Pise, et. al., "Cast Iron Composition Measurement by Coding Curve Analysis," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 178.A. C. Pise, et. al., "War field Intelligence Defence Flaging Vehicle," International Conference on Innovations in Engineering and Technology (CIET 2016), SKN Sinhgad College of Engineering, 30-31 Dec 2016.
- 179.A. C. Pise, et. al. "Disease Detection of Pomegranate Plant", IEEE sponsored International Conference on Computation of Power, Energy, Information and Communication, 22-23 Apr. 2015.
- 180.A. C. Pise, P. Bankar. "Face Recognition by using GABOR and LBP", IEEE International Conference on Communication and Signal Processing, ICCSP, 2-4 Apr. 2015
- 181.A. C. Pise, et. al. "Single Chip Solution For Multimode Robotic Control", Ist IEEE International Conference on Computing Communication and Automation, 26-27 Feb2015.
- 182. Anjali C. Pise, Vaishali S. Katti, "Efficient Design for Monitoring of Greenhouse Parameters using Zigbee Wireless Sensor Network", fifth SARC international conference IRF, IEEE forum ISBN 978-93-84209-21-6,pp 24-26, 25th May 2014
- 183.A. C. Pise, P. Bankar, "Face Recognition using Color Local Texture Features", International Conference on Electronics and Telecommunication, Electrical and Computer Engineering, Apr.2014.
- 184.A. C. Pise, et.al. "Monitoring parameters of Greenhouse using Zigbee Wireless Sensor Network", 1st International Conference on Electronics and Telecommunication, Electrical and Computer Engineering, 5-6 Apr.2014.
- 185.A. C. Pise, et. al. "Compensation schemes and performance Analysis of IQ Imbalances in Direct Conversion Receivers", International Conference at GHPCOE, Gujarat, (Online Proceeding is Available), 2009.
- 186.A. C. Pise, K. J. Karande, "Energy-Efficient Optimal Routing Protocols in VANETs", 66th Annual IETE Convention, AIC -2023 September16-17, 2023, under the Theme: The Role of 5G In Enabling Digital Transformation for Rural Upliftment.
- 187.A. C. Pise, et. al. "Automatic Bottle Filling Machine using Raspberry Pi", National Conference on computer ;Communication & information Technology (NCCIT-2018) dated 30th & 31st March 2018.
- 188.A. C. Pise, et. al. "Design & Implementation of ALU using VHDL", National Conference on computer ;Communication & information Technology (NCCIT-2018) dated 30th & 31st March 2018.
- 189.A. C. Pise, et. al. "Mechanism and Control of Autonomus four rotor Quad copter", National Conference on Computer, Electrical and Electronics Engineering, 23- 24 Apr. 2016.
- 190.A. C. Pise, et. al. "Segmentation of Optic Disk and Optic Cup from retinal Images", ICEECMPE Chennai, June 2015
- 191.A. C. Pise, et. al. "Diseases Detection of Pomegranate Plant", IEEE Sponsored International conference on Computation of Power, Energy, April 2015.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

- 2 A. C. Diese et al. "Communities Techniques for I/O Instalance in Direct Community
- 192.A. C. Pise, et. al. "Compensation Techniques for I/Q Imbalance in Direct-Conversion Receivers", Conference at SCOE, Pune 2010.
- 193.A. C. Pise, et. al. "I/Q Imbalance compensation Techniques in Direct Conversion Receiver", Advancing Trends in Engineering and Management Technologies, ATEMT-2009, Conference at Shri Ramdeobaba Kamla Nehru Engineering College, Nagpur, 20-21 November 2009
- 194.A. C. Pise, et. al. "Compensation Techniques for I/Q Imbalance in Direct Conversion Receiver", Conference at PICT, Pune 2008.
- 195.A. C. Pise, et. al. "I/Q Imbalance compensation Techniques in Direct Conversion Receiver", Conference at DYCOE. Pune 2008.
- 196.A. C. Pise, et. al. "DUCHA: A New Dual channel MAC protocol for Multihop Ad-Hoc Networks", Conference at SVCP, Pune 2007.
- 197. Godase, V., Pawar, P., Nagane, S., & Kumbhar, S. (2024). Automatic railway horn system using node MCU. Journal of Control & Instrumentation, 15(1).
- 198. Godase, V., & Godase, J. (2024). Diet prediction and feature importance of gut microbiome using machine learning. Evolution in Electrical and Electronic Engineering, 5(2), 214-219.
- 199. Jamadade, V. K., Ghodke, M. G., Katakdhond, S. S., & Godase, V. A Comprehensive Review on Scalable Arduino Radar Platform for Real-time Object Detection and Mapping.
- 200.Godase, V. (2025). A comprehensive study of revolutionizing EV charging with solar-powered wireless solutions. Advance Research in Power Electronics and Devices e-ISSN, 3048-7145.
- 201. Godase, V. (2025, April). Advanced Neural Network Models for Optimal Energy Management in Microgrids with Integrated Electric Vehicles. In Proceedings of the International Conference on Trends in Material Science and Inventive Materials (ICTMIM-2025) DVD Part Number: CFP250J1-DVD.
- 202. Dange, R., Attar, E., Ghodake, P., & Godase, V. (2023). Smart agriculture automation using ESP8266 NodeMCU. J. Electron. Comput. Netw. Appl. Math, (35), 1-9.
- 203.Godase, V. (2025). Optimized Algorithm for Face Recognition using Deepface and Multi-task Cascaded Convolutional Network (MTCNN). Optimum Science Journal.
- 204. Mane, V. G. A. L. K., & Gangonda, K. D. S. Pipeline Survey Robot.
- 205. Godase, V. (2025). Navigating the digital battlefield: An in-depth analysis of cyber-attacks and cybercrime. International Journal of Data Science, Bioinformatics and Cyber Security, 1(1), 16-27.
- 206. Godase, V., & Jagadale, A. (2019). Three element control using PLC, PID & SCADA interface. International Journal for Scientific Research & Development, 7(2), 1105-1109.
- 207. Godase, V. (2025). Edge AI for Smart Surveillance: Real-time Human Activity Recognition on Low-power Devices. International Journal of AI and Machine Learning Innovations in Electronics and Communication Technology, 1(1), 29-46.
- 208. Godase, V., Modi, S., Misal, V., & Kulkarni, S. (2025). LoRaEdge-ESP32 synergy: Revolutionizing farm weather data collection with low-power, long-range IoT. Advance Research in Analog and Digital Communications, 2(2), 1-11
- 209. Godase, V. (2025). Comparative study of ladder logic and structured text programming for PLC. Available at SSRN 5383802.
- 210. Godase, V., Modi, S., Misal, V., & Kulkarni, S. Real-time object detection for autonomous drone navigation using YOLOv8, I. Advance Research in Communication Engineering and its Innovations, 2(2), 17-27.
- 211. Godase, V. (2025). Smart energy management in manufacturing plants using PLC and SCADA. Advance Research in Power Electronics and Devices, 2(2), 14-24.
- 212. Godase, V. (2025). IoT-MCU Integrated Framework for Field Pond Surveillance and Water Resource Optimization. International Journal of Emerging IoT Technologies in Smart Electronics and Communication, 1(1), 9-19.
- 213. Godase, V. (2025). Graphene-Based Nano-Antennas for Terahertz Communication. International Journal of Digital Electronics and Microprocessor Technology, 1(2), 1-14.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 214. Godase, V., Khiste, R., & Palimkar, V. (2025). AI-Optimized Reconfigurable Antennas for 6G Communication Systems. Journal of RF and Microwave Communication Technologies, 2(3), 1-12.
- 215.Bhaganagare, S., Chavan, S., Gavali, S., & Godase, V. V. (2025). Voice-Controlled Home Automation with ESP32: A Systematic Review of IoT-Based Solutions. Journal of Microprocessor and Microcontroller Research, 2(3), 1-13.
- 216. Jamadade, V. K., Ghodke, M. G., Katakdhond, S. S., & Godase, V. A Comprehensive Review on Scalable Arduino Radar Platform for Real-time Object Detection and Mapping.
- 217. Godase, V. (2025). Cross-Domain Comparative Analysis of Microwave Imaging Systems for Medical Diagnostics and Industrial Testing. Journal of Microwave Engineering & Technologies, 12(2), 39-48p.
- 218.V. K. Jamadade, M. G. Ghodke, S. S. Katakdhond, and V. Godase, —A Review on Real-time Substation Feeder Power Line Monitoring and Auditing Systems," International Journal of Emerging IoT Technologies in Smart Electronics and Communication, vol. 1, no. 2, pp. 1-16, Sep. 2025.
- 219. V. V. Godase, "VLSI-Integrated Energy Harvesting Architectures for Battery-Free IoT Edge Systems," Journal of Electronics Design and Technology, vol. 2, no. 3, pp. 1-12, Sep. 2025.
- 220.A. Salunkhe et al., "A Review on Real-Time RFID-Based Smart Attendance Systems for Efficient Record Management," Advance Research in Analog and Digital Communications, vol. 2, no. 2, pp.32-46, Aug. 2025.
- 221. Vaibhav, V. G. (2025). A Neuromorphic-Inspired, Low-Power VLSI Architecture for Edge AI in IoT Sensor Nodes. *Journal of Microelectronics and Solid State Devices*, 12(2), 41-47p.
- 222. Nagane, M.S., Pawar, M.P., & Godase, P.V. (2022). Cinematica Sentiment Analysis. *Journal of Image Processing and Intelligent Remote Sensing*.
- 223. Godase, V.V. (2025). Tools of Research. SSRN Electronic Journal.
- 224.Godase, V. (n.d.). EDUCATION AS EMPOWERMENT: THE KEY TO WOMEN'S SOCIO ECONOMIC DEVELOPMENT. Women Empowerment and Development, 174–179.
- 225. Godase, V. (n.d.). COMPREHENSIVE REVIEW ON EXPLAINABLE AI TO ADDRESSES THE BLACK BOX CHALLENGE AND ITS ROLE IN TRUSTWORTHY SYSTEMS. In Sinhgad College of Engineering, Artificial Intelligence Education and Innovation (pp. 127–132).
- 226. Godase, V. (n.d.-b). REVOLUTIONIZING HEALTHCARE DELIVERY WITH AI-POWERED DIAGNOSTICS: A COMPREHENSIVE REVIEW. In SKN Sinhgad College of Engineering, SKN Sinhgad College of Engineering (pp. 58–61).
- 227.Dhope, V. (2024). SMART PLANT MONITORING SYSTEM. In International Journal of Creative Research Thoughts (IJCRT). https://www.ijcrt.org
- 228.M. M. Zade, Sushant D. Kambale, Shweta A. Mane, Prathamesh M. Jadhav. (2025) "IOT Based early fire detection in Jungles". RIGJA&AR Volume 2 Issue 1, ISSN:2998-4459. DOI:https://doi.org/10.5281/zendo.15056435
- 229.M. M. Zade, Bramhadev B. Rupanar, Vrushal S. Shilawant, Akansha R. Pawar(2025) "IOT Flood Monitoring & Alerting System using Rasberry Pi-Pico "International Journal of Research Publication & Reviews, Volume 6, Jssue 3, JSSN:2582-7421.DOI:https://ijrpr.com/uploads/V6ISSUE3/IJRPR40251.pdf
- 230.M.M.Zade(2022) "Touchless Fingerprint Recognition System"(Paper-ID 907)(2022) International Conference on "Advanced Technologies for Societal Applications: Techno-Societal 2022 https://link.springer.com/book/10.1007/978-3-031-34644-6?page=6
- 231.Mr.M.M.Zade published the paper on "Automation of Color Object Sorting Conveyor Belt", in International Journal of Scientific Research in Engineering & Management (IJSREM),ISSN:2582-3930 Volume 06, Issue 11th November 2022.
- 232.Mr.M.M.Zade published the paper on "Cloud Based Patient Health Record Tracking web Development",in International Journal of Advanced Research in Science, Communication & Technology(IJARSCT),ISSN NO:2581-9429 Volume 02, Issue 03,DOI 1048175/IJARSCT-3705,IF 6.252, May 2022.
- 233.Mr. Mahesh M Zade, "Performance analysis of PSNR Vs. Impulse Noise for the enhancement of Image using SMF", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

STOP SOUTH OF THE PROPERTY OF

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 4, October 2025

Impact Factor: 7.67

- 234.Mr. Mahesh M Zade, "Classification of Power Quality Disturbances Using SVM & their Efficiency Comparison", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- 235.Mr. Mahesh M Zade, "Dynamic Clustering of Wireless Sensor Network Using Modified AODV", Journal of Applied Science & Computations (JASC UGC Approved), Volume VI, Issue II, Feb.2019
- 236.Mr. Mahesh M Zade, "Performance analysis of PSNR Vs. Impulse Noise for the enhancement of Image using SMF", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur, Feb.2019
- 237.Mr. Mahesh M Zade, "Classification of Power Quality Disturbances Using SVM & their Efficiency Comparison", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur Feb.2019
- 238.Mr. Mahesh M Zade, "Dynamic Clustering of Wireless Sensor Network Using Modified AODV", National Conference on Mathematical Modeling and Computational Intelligence 2K19 (MMCI-2k19), in association with JASC, at S. B. Patil College of Engineering, Indapur Feb.2019
- 239.Mr. Mahesh M Zade & Mr.S.M.Karve,"Performance Analysis of Median Filter for Enhancement of Highly Corrupted Images", National Conference on Advanced Trends in Engineering, Association with IRJMS, Karmyogi Engineering College, Shelave, Pandharpur, March 2016.
- 240.Mr. Mahesh M Zade & Mr.S.M.Karve,"Implementation of Reed Solomen Encoder & Decoder Using FPGA", National Conference on Advanced Trends in Engineering, Association with IRJMS, Karmyogi Engineering College, Shelave, Pandharpur, March 2016.
- 241.Mr. Mahesh M Zade & Dr.S.M.Mukane,"Performance of Switching Median Filter for Enhancement of Image", National Conference on Mechatronics at Sinhgad Institute of Technology and Science, Narhe, Pune, Feb. 2016.
- 242.Mr. Mahesh M Zade & Dr.S.M.Mukane,"Enhancement of Image with the help of Switching Median Filter", National Conference on Emerging Trends in Electronics & Telecommunication Engineering, SVERI's College of Engineering Pandharpur, NCET 2013.
- 243.Mr.Mahesh M Zade & Dr.S.M.Mukane,"Enhancement of Image with the help of Switching Median Filter", International Journal of Computer Application (IJCA) SVERI's College of Engineering, Pandharpur, Dec.2013

