

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, October 2025

Brainy Line Following Robot with Obstacle Detection

Fundipalle Bhagyshri Rajshekhar¹, Babar Sakshi Kailash², Koshti Nikita Bibishan³, Shaikh.Heena. T.⁴

^{1,2,3} UG Students, Department Electronics and Telecommunication
⁴Assistant Professor, Department Electronics and Telecommunication
Brahmdevdada Mane Institute of Technology, Solapur, Maharashtra, India
bhgyshrifundipalle@gmail.com

Abstract: Autonomous mobile robots play a vital role in modern automation systems. This paper presents the design and implementation of an autonomous line-following robot integrated with obstacle detection. The robot uses infrared (IR) sensors for line tracking and an ultrasonic sensor for obstacle detection. When an obstacle is detected, the robot halts and re-routes if possible. The system is built using Arduino microcontroller technology and is aimed at applications in industries, logistics, and smart transportation. The integration of both line following and obstacle avoidance enhances the robot's real-time decision-making capabilities in dynamic environments. This project presents the design and implementation of a Greenline-following robot integrated with an obstacle detection system. The robot is programmed to autonomously navigate by following a green-colored path using color sensors, ensuring accurate tracking even along curved or complex routes. To enhance safety and adaptability, the system incorporates ultrasonic sensors that detect and respond to obstacles in the robot's path. When an obstruction is detected, the robot either pauses or reroutes to avoid collisions, depending on the programmed logic. This combination of line-following and real-time obstacle detection makes the robot suitable for various applications, including smart logistics, automated delivery, and educational robotics. The project emphasizes efficiency, reliability, and real-world applicability through a cost-effective and scalable design.

Keywords: Autonomous Robot, Line Following, Obstacle Detection, IR Sensor, Ultrasonic Sensor, Arduino, Mobile Robotics

I. INTRODUCTION

Autonomous mobile robots have become increasingly essential in automation, where they reduce human labor and improve efficiency. Among various types, line-following robots are prominent in tasks such as warehouse item delivery and factory automation. However, conventional line followers lack dynamic environment awareness and may fail when obstacles block their path[1-20].

To address this limitation, this project implements a hybrid approach: a line-following robot equipped with an obstacle detection mechanism. The robot follows a predefined path using IR sensors and monitors for obstacles using an ultrasonic sensor. When an obstacle is detected, the robot stops and waits or re-routes depending on the configuration

Unlike traditional line-following robots that rely on black or white lines, this design uses a green line as its guiding path, offering a unique approach suited for specific operational environments. By integrating color sensors for path detection and ultrasonic sensors for obstacle avoidance, the robot can make real-time decisions to stop, reroute, or continue its path, depending on the surrounding conditions. The primary goal of this project is to build a reliable and intelligent robotic system that demonstrates autonomous movement, environmental awareness, and practical functionality. Through this project, we aim to explore the integration of sensor technologies, basic control systems, and real-world problem-solving using robotics

In the digital veins of a micro-controller, a silent sentry awakens. Its purpose: precision. Its path: a stark, defined line upon the floor. This isn't just any automaton; this is 'Artemis,' our Brainy Line Following Robot with Obstacle Detection, a testament to intelligent, autonomous navigation.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

SO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, October 2025

Impact Factor: 7.67

At its core, Artemis is a master of the monochrome. A keen array of infrared sensors, like a multi-faceted eye, constantly scans the terrain beneath its chassis. They read the stark contrast between the guiding black line and the lighter surface, translating photons into binary commands. Its internal algorithms, a finely tuned dance of proportional-integral-derivative (PID) control, instruct its differential drive motors. A slight drift to the left? The right wheel speeds up, the left slows. A gentle curve ahead? Both wheels adjust, maintaining that seamless, almost balletic flow along the designated path. It's a focused, unwavering pursuit of linearity.

But the world isn't a pristine canvas. It's dynamic, unpredictable. This is where Artemis sheds its simple follower skin and reveals its true 'brainy' nature. Perched prominently, often an ultrasonic sensor or a pair of infrared distance sensors, acts as its forward-looking sentinel. These sensors emit sound waves or infrared light, listening for echoes or reflections, gauging the distance to anything that dares to intrude upon its world.

Imagine Artemis diligently tracing its path, a picture of focused determination. Suddenly, an unforeseen object – a misplaced box, a curious pet, a dropped tool – appears directly in its trajectory. The line sensors still scream 'forward!', but the obstacle detector shouts 'halt!'. This is the moment of intelligent arbitration[21-50].

Its tiny, silicon brain doesn't panic. Instead, pre-programmed algorithms, a complex web of 'if-then-else' statements, kick into high gear. It assesses: Is the obstacle temporary? Can it be circumnavigated with a slight deviation? Or does it demand a complete stop and signal for intervention? If the obstacle is within a critical threshold and the line is blocked, Artemis doesn't just crash. It stops, its motors falling silent, perhaps illuminating a warning LED or even emitting a gentle beep to alert human operators. If the path around the obstacle is clear, even for a moment, its brain calculates a temporary detour, a brief deviation from the sacred line, before gracefully re-acquiring its path beyond the impediment.

This fusion of capabilities is what truly defines its "brainy" moniker. It's not just reactive; it's proactive in its safety. It prioritizes the integrity of its mission while safeguarding its surroundings and itself. Underneath its streamlined shell lies an embedded microcontroller – perhaps an Arduino, an ESP32, or a Raspberry Pi Zero – the central nervous system translating sensor inputs into precise motor commands. It balances speed with safety, efficiency with awareness.

Such a robot isn't a mere toy. Envision it in a warehouse, ferrying components along designated paths, autonomously stopping if a human steps into its zone, preventing collisions. Picture it in a hospital, delivering supplies, gracefully pausing for patients or staff, navigating busy corridors with quiet competence. Think of it in an automated inspection role, meticulously following a pre-defined route in a factory, scanning for anomalies, yet able to avoid unexpected machinery or personnel.

Artemis represents more than just a piece of engineering; it's a glimpse into a future where machines aren't just obedient, but inherently aware. It's a stepping stone towards truly intelligent automation, where the path is followed not just with precision, but with thoughtful, brainy caution, making our automated environments safer, smarter, and infinitely more capable[51-94].

II. PROBLEM STATEMENT

Inefficient navigation: Develop a control algorithm (e.g., a PID controller) that can handle sharp curves and intricate path geometries without significant deviation or oscillation.

Reactive obstacle handling: Implement a decision-making system that moves beyond a simple "stop-and-wait" or single evasive maneuver. The robot should evaluate multiple potential paths and select the most efficient route around an obstacle to return to the line quickly.

Environmental adaptability: The system must be robust enough to operate consistently under varying conditions, such as different ambient lighting, which can affect sensor performance.

Real-time performance: Ensure the integration of line-tracking sensors (e.g., IR) and obstacle detection sensors (e.g., ultrasonic) is efficient enough to enable seamless, real-time decision-making without processing delays

III. WORKING

Line Following: IR sensors detect the difference in reflectivity between the black line and the white background. Based on sensor input, the microcontroller adjusts motor speeds to keep the robot on the line.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, October 2025

Obstacle Detection: The ultrasonic sensor continuously measures distance ahead. If the measured distance is below a set threshold (e.g., 15 cm), the robot stops and waits or reroutes.

The developed robot successfully demonstrated its ability to follow a designated path while intelligently avoiding obstacles. During testing, the line-following system, driven by infrared (IR) sensors, accurately detected and followed both straight and curved black lines on a white surface. The robot maintained consistent alignment with the path, with only minor adjustments needed during sharp turns, which were handled effectively by the programmed logic and motor control.

The robot was tested on a predefined black line track with various turns and obstacles placed at random intervals. The results showed:

Line Tracking Accuracy: ~95% on standard curves

Obstacle Detection Accuracy: >90% within 15 cm range

Reaction Time to Obstacle: ~ 100 ms

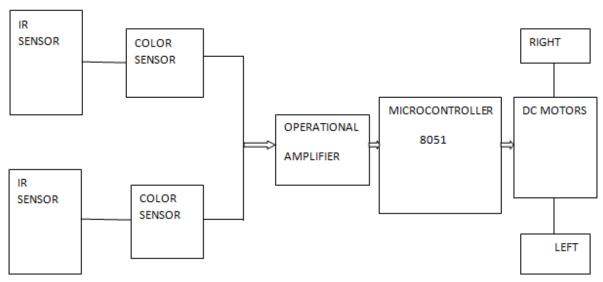


Figure 1: Block Diagram

IV. ADVANTAGE & APPLICATION

4.1 Key Advantages

Assistive Mobility: A Person With Severe Mobility Impairments Could Use Their Thoughts To Control A Line-Following Wheelchair That Also Avoids Unexpected Objects In Its Path.

Improved Human-Robot Collaboration: In Factories, A Worker Could Use Bci To Issue High-Level Commands, Such As "Deliver To Station B."

High-Level Strategic Control: In Fields Like Disaster Management, A Bci-Controlled Robot Can Be Deployed To Hazardous Areas

Enhanced Educational Tool: For Stem Education, The Project Offers A Hands-On Learning Experience That Goes Beyond Basic Robotics

4.2 Diverse Applications

Automated Guided Vehicles (Agvs) In Warehouses Smart Transportation Systems Educational Robotics Line-Based Delivery Robots

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, October 2025

V. CONCLUSION

The proposed autonomous line-following robot with obstacle detection demonstrates reliable navigation along a path while responding effectively to obstacles. Future improvements could include adding path-planning algorithms, more advanced sensor.

The development of a line-following robot with obstacle detection demonstrates the effective integration of basic robotics and sensor technologies to achieve autonomous navigation. By combining line-tracking capabilities with real-time obstacle avoidance, the robot is able to follow a predefined path while safely responding to unexpected objects in its way. This project highlights the practical application of infrared and ultrasonic sensors, as well as microcontroller programming, in creating a responsive and intelligent robotic system. Overall, it serves as a foundational step toward more advanced autonomous robots and provides valuable insights into automation, control systems, and real-world problem-solving in robotics.

The project achieved its main goal of creating a robot that can independently follow a path while also identifying and avoiding obstacles. This shows that basic robotic systems, when equipped with the right sensors and control logic, can perform complex tasks with efficiency. It's a solid example of how automation can be applied in real-world scenarios such as warehouse navigation or delivery robots.

VI. FUTURE SCOPES

Industrial Automation: This Can Reduce The Need For Human Labor In Repetitive And Dangerous Tasks.

Smart Delivery System: It Can Navigate Indoor Environments Safely Using Advanced Sensors And Mapping Techniques.

Autonomous Vehicle Development: This Project Serves As A Foundation For Building Self-Driving Vehicles On A Smaller Scale.

VII. ACKNOWLEDGMENT

I wish to seize this opportunity to sincerely thank all of those who have guided, supported, and encouraged me during the completion of this project titled "Brainy Line Following Robot With Obstacle Detection' Most importantly, I would like to thank my project guide, professor: Shaikh. Heena .T for his priceless guidance, continuous encouragement, and constructive feedback during every stage of this project. I would also like to thank again Shaikh Heena T, Assistant Professor of the Department of Electronics and Telecommunication Engineering, for providing the required facilities, resources and inspiration in completing this work. Life is a journey; I would also like to thank all the faculty members & staff of the department for their valuable suggestions and technical assistance. Their guidance has been a crucial factor in developing the understanding of the subject and the quality work produced in this project.

REFERENCES

- [1]. Altaf O. Mulani, Arti Vasant Bang, Ganesh B. Birajadar, Amar B. Deshmukh, and Hemlata Makarand Jadhav, (2024). IoT Based Air, Water, and Soil Monitoring System for Pomegranate Farming, *Annals of Agri-Bio Research*. 29 (2): 71-86, 2024.
- [2]. Bhawana Parihar, Ajmeera Kiran, Sabitha Valaboju, Syed Zahidur Rashid, and Anita Sofia Liz D R. (2025). Enhancing Data Security in Distributed Systems Using Homomorphic Encryption and Secure Computation Techniques, *ITM Web Conf.*, 76 (2025) 02010. DOI: https://doi.org/10.1051/itmconf/20257602010
- [3]. C. Veena, M. Sridevi, K. K. S. Liyakat, B. Saha, S. R. Reddy and N. Shirisha, (2023). HEECCNB: An Efficient IoT-Cloud Architecture for Secure Patient Data Transmission and Accurate Disease Prediction in Healthcare Systems, 2023 Seventh International Conference on Image Information Processing (ICIIP), Solan, India, 2023, pp. 407-410, doi: 10.1109/ICIIP61524.2023.10537627. Available at: https://ieeexplore.ieee.org/document/10537627
- [4]. D. A. Tamboli, V. A. Sawant, M. H. M. and S. Sathe, (2024). AI-Driven-IoT(AIIoT) Based Decision-Making-KSK Approach in Drones for Climate Change Study, 2024 4th International Conference on Ubiquitous

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, October 2025

Impact Factor: 7.67

- Computing and Intelligent Information Systems (ICUIS), Gobichettipalayam, India, 2024, pp. 1735-1744, doi: 10.1109/ICUIS64676.2024.10866450.
- [5]. H. T. Shaikh, (2025). Empowering the IoT: The Study on Role of Wireless Charging Technologies, *Journal of Control and Instrumentation Engineering*, vol. 11, no. 2, pp. 29-39, Jul. 2025.
- [6]. H. T. Shaikh, (2025b). Pre-Detection Systems Transfiguring Intoxication and Smoking Using Sensor and AI, *Journal of Instrumentation and Innovation Sciences*, vol. 10, no. 2, pp. 19-31, Jul. 2025.
- [7]. K. Rajendra Prasad, Santoshachandra Rao Karanam et al. (2024). AI in public-private partnership for IT infrastructure development, *Journal of High Technology Management Research*, Volume 35, Issue 1, May 2024, 100496. https://doi.org/10.1016/j.hitech.2024.100496
- [8]. KKS Liyakat. (2023).Detecting Malicious Nodes in IoT Networks Using Machine Learning and Artificial Neural Networks, 2023 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 2023, pp. 1-5, doi:10.1109/ESCI56872.2023.10099544. Available at: https://ieeexplore.ieee.org/document/10099544/
- [9]. KKS Liyakat, (2024). Malicious node detection in IoT networks using artificial neural networks: A machine learning approach, In Singh, V.K., Kumar Sagar, A., Nand, P., Astya, R., & Kaiwartya, O. (Eds.). Intelligent Networks: Techniques, and Applications (1st ed.). CRC Press. https://doi.org/10.1201/9781003541363
- [10]. K. Kasat, N. Shaikh, V. K. Rayabharapu, and M. Nayak. (2023). Implementation and Recognition of Waste Management System with Mobility Solution in Smart Cities using Internet of Things, 2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS), Trichy, India, 2023, pp. 1661-1665, doi: 10.1109/ICAISS58487.2023.10250690 . Available at: https://ieeexplore.ieee.org/document/10250690/
- [11]. K S K, (2024c). Vehicle Health Monitoring System (VHMS) by Employing IoT and Sensors, *Grenze International Journal of Engineering and Technology*, Vol 10, Issue 2, pp- 5367-5374. Available at: https://thegrenze.com/index.php?display=page&view=journalabstract&absid=3371&id=8
- [12]. K S K, (2024e). A Novel Approach on ML based Palmistry, Grenze International Journal of Engineering and Technology, Vol 10, Issue 2, pp- 5186-5193. Available at: https://thegrenze.com/index.php?display=page&view=journalabstract&absid=3344&id=8
- [13]. K S K, (2024f).IoT based Boiler Health Monitoring for Sugar Industries, Grenze International Journal of Engineering and Technology, Vol 10, Issue 2, pp. 5178 -5185. Available at: https://thegrenze.com/index.php?display=page&view=journalabstract&absid=3343&id=8
- [14]. Keerthana, R., K, V., Bhagyalakshmi, K., Papinaidu, M., V, V., & Liyakat, K. K. S. (2025). Machine learning based risk assessment for financial management in big data IoT credit. *SSRN Electronic Journal*. https://doi.org/10.2139/ssrn.5086671
- [15]. KKS Liyakat, (2024a). Explainable AI in Healthcare. In: Explainable Artificial Intelligence in healthcare System, editors: *A. Anitha Kamaraj, Debi Prasanna Acharjya*. ISBN: 979-8-89113-598-7. **DOI**: https://doi.org/10.52305/GOMR8163
- [16]. KKS Liyakat, (2024b). Machine Learning (ML)-Based Braille Lippi Characters and Numbers Detection and Announcement System for Blind Children in Learning, In Gamze Sart (Eds.), Social Reflections of Human-Computer Interaction in Education, Management, and Economics, IGI Global. https://doi.org/10.4018/979-8-3693-3033-3.ch002
- [17]. Kulkarni S G, (2025). Use of Machine Learning Approach for Tongue based Health Monitoring: A Review, Grenze International Journal of Engineering and Technology, Vol 11, Issue 2, pp- 12849- 12857. Grenze ID: 01.GIJET.11.2.311_22 Available at: https://thegrenze.com/index.php?display=page&view=journalabstract&absid=6136&id=8
- [18]. Kutubuddin, KSK Approach in LOVE Health: AI-Driven- IoT(AIIoT) based Decision Making System in LOVE Health for Loved One, *GRENZE International Journal of Engineering and Technology*, 2025, 11(1), pp. 4628-4635. Grenze ID: 01.GIJET.11.1.371_1

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, October 2025

Impact Factor: 7.67

- [19]. Liyakat, K.K.S. (2023a). Machine Learning Approach Using Artificial Neural Networks to Detect Malicious Nodes in IoT Networks. *In: Shukla, P.K., Mittal, H., Engelbrecht, A. (eds) Computer Vision and Robotics. CVR 2023. Algorithms for Intelligent Systems. Springer, Singapore*. https://doi.org/10.1007/978-981-99-4577-1
- [20]. Liyakat K. S. (2024). ChatGPT: An Automated Teacher's Guide to Learning. In R. Bansal, A. Chakir, A. Hafaz Ngah, F. Rabby, & A. Jain (Eds.), AI Algorithms and ChatGPT for Student Engagement in Online Learning (pp. 1-20). IGI Global. https://doi.org/10.4018/979-8-3693-4268-8.ch001
- [21]. Liyakat. (2024a). Machine Learning Approach Using Artificial Neural Networks to Detect Malicious Nodes in IoT Networks. *In: Udgata, S.K., Sethi, S., Gao, XZ. (eds) Intelligent Systems. ICMIB 2023. Lecture Notes in Networks and Systems, vol 728. Springer, Singapore.* https://doi.org/10.1007/978-981-99-3932-9_12 available at: https://link.springer.com/chapter/10.1007/978-981-99-3932-9_12
- [22]. Liyakat, K. K. (2025a). Heart Health Monitoring Using IoT and Machine Learning Methods. In A. Shaik (Ed.), *AI-Powered Advances in Pharmacology* (pp. 257-282). IGI Global. https://doi.org/10.4018/979-8-3693-3212-2.ch010
- [23]. Liyakat. (2025c). IoT Technologies for the Intelligent Dairy Industry: A New Challenge. In S. Thandekkattu& N. Vajjhala (Eds.), *Designing Sustainable Internet of Things Solutions for Smart Industries* (pp. 321-350). IGI Global. https://doi.org/10.4018/979-8-3693-5498-8.ch012
- [24]. Liyakat. (2025d). AI-Driven-IoT(AIIoT)-Based Decision Making in Kidney Diseases Patient Healthcare Monitoring: KSK Approach for Kidney Monitoring. In L. Özgür Polat & O. Polat (Eds.), AI-Driven Innovation in Healthcare Data Analytics (pp. 277-306). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-7277-7.ch009
- [25]. Liyakat. (2026). Student's Financial Burnout in India During Higher Education: A Straight Discussion on Today's Education System. In S. Hai-Jew (Ed.), *Financial Survival in Higher Education* (pp. 359-394). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3373-0407-6.ch013
- [26]. M Pradeepa, et al. (2022). Student Health Detection using a Machine Learning Approach and IoT, 2022 IEEE 2nd Mysore sub section International Conference (MysuruCon), 2022. Available at: https://ieeexplore.ieee.org/document/9972445
- [27]. Mahant, M. A. (2025). Machine Learning-Driven Internet of Things (MLIoT)-Based Healthcare Monitoring System. In N. Wickramasinghe (Ed.), *Digitalization and the Transformation of the Healthcare Sector* (pp. 205-236). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9641-4.ch007
- [28]. Mulani AO, Liyakat KKS, Warade NS, et al. (2025). ML-powered Internet of Medical Things Structure for Heart Disease Prediction. *Journal of Pharmacology and Pharmacotherapeutics*. 2025; 0(0). doi:10.1177/0976500X241306184
- [29]. N. R. Mulla, (2025). Pipeline Pressure and Flow Rate Monitoring Using IoT Sensors and ML Algorithms to Detect Leakages, *Int. J. Artif. Intell. Mech. Eng.*, vol. 1, no. 1, pp. 20–30, Jun. 2025.
- [30]. N. R. Mulla, (2025a). Nuclear Energy: Powering the Future or a Risky Relic, *International Journal of Sustainable Energy and Thermoelectric Generator*, vol. 1, no. 1, pp. 52–63, Jun. 2025.
- [31]. Nikat Rajak Mulla, (2025b). Sensor-based Aircraft Wings Design Using Airflow Analysis, *International Journal of Image Processing and Smart Sensors*, vol. 1, no. 1, pp. 55-65, Jun. 2025.
- [32]. N. R. Mulla, (2025c). A Study on Machine Learning for Metal Processing: A New Future, *International Journal of Machine Design and Technology*, vol. 1, no. 1, pp. 56–69, Jun. 2025.
- [33]. Nikat Rajak Mulla, (2025d). Sensor-based Aircraft Wings Design Using Airflow Analysis, *International Journal of Image Processing and Smart Sensors*, vol. 1, no. 1, pp. 55-65, Jun. 2025.
- [34]. N. R. Mulla, (2025e). Node MCU and IoT Centered Smart Logistics, *International Journal of Emerging IoT Technologies in Smart Electronics and Communication*, vol. 1, no. 1, pp. 20-36, Jun-2025.
- [35]. Nikat Rajak Mulla,(2025f). Air Flow Analysis in Sensor-Based Aircraft Wings Design. *Recent Trends in Fluid Mechanics*. 2025; 12(2): 29–39p.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, October 2025

Impact Factor: 7.67

- [36]. Nikat Rajak Mulla,(2025g). IoT Sensors To Monitor Pipeline Pressure and Flow Rate Combined with Ml-Algorithms to Detect Leakages. *Recent Trends in Fluid Mechanics*. 2025; 12(2): 40–48p.
- [37]. Nikat Rajak Mulla, (2025h). Nano-Materials in Vaccine Formation and Chemical Formulae's for Vaccination. Journal of Nanoscience, NanoEngineering & Applications. 2025; 15(03).
- [38]. Odnala, S., Shanthy, R., Bharathi, B., Pandey, C., Rachapalli, A., & Liyakat, K. K. S. (2025). Artificial Intelligence and Cloud-Enabled E-Vehicle Design with Wireless Sensor Integration. *SSRN Electronic Journal*. https://doi.org/10.2139/ssrn.5107242
- [39]. P. Neeraja, R. G. Kumar, M. S. Kumar, K. K. S. Liyakat and M. S. Vani. (2024), DL-Based Somnolence Detection for Improved Driver Safety and Alertness Monitoring. 2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT), Greater Noida, India, 2024, pp. 589-594, doi: 10.1109/IC2PCT60090.2024.10486714. Available at: https://ieeexplore.ieee.org/document/10486714
- [40]. Prashant K Magadum (2024). Machine Learning for Predicting Wind Turbine Output Power in Wind Energy Conversion Systems, *Grenze International Journal of Engineering and Technology*, Jan Issue, Vol 10, Issue 1, pp. 2074-2080. Grenze ID: 01.GIJET.10.1.4_1 Available at: https://thegrenze.com/index.php?display=page&view=journalabstract&absid=2514&id=8
- [41]. Priya Mangesh Nerkar, Bhagyarekha Ujjwalganesh Dhaware. (2023). Predictive Data Analytics Framework Based on Heart Healthcare System (HHS) Using Machine Learning, *Journal of Advanced Zoology*, 2023, Volume 44, Special Issue -2, Page 3673:3686. Available at: https://jazindia.com/index.php/jaz/article/view/1695
- [42]. Priya Nerkar and Sultanabanu, (2024). IoT-Based Skin Health Monitoring System, International Journal of Biology, Pharmacy and Allied Sciences (IJBPAS). 2024, 13(11): 5937-5950. https://doi.org/10.31032/IJBPAS/2024/13.11.8488
- [43]. S. B. Khadake, A. B. Chounde, A. A. Suryagan, M. H. M. and M. R. Khadatare, (2024). AI-Driven-IoT(AIIoT) Based Decision Making System for High-Blood Pressure Patient Healthcare Monitoring, 2024 International Conference on Sustainable Communication Networks and Application (ICSCNA), Theni, India, 2024, pp. 96-102, doi: 10.1109/ICSCNA63714.2024.10863954.
- [44]. S. B. Khadake, P. S. More, R. J. Shinde, K. P. Kondubhairi and S. S. Kamble, (2025). AI-Driven IoT based Decision Making for Hepatitis Diseases Patient's Healthcare Monitoring: KSK Approach for Hepatitis Patient Monitoring, 2025 7th International Conference on Intelligent Sustainable Systems (ICISS), India, 2025, pp. 256-263, doi: 10.1109/ICISS63372.2025.11076213.
- [45]. S. B. Khadake, K. Galani, K. B. Patil, A. Dhavale and S. D. Sarik, (2025a). AI-Powered-IoT (AIIoT) based Bridge Health Monitoring using Sensor Data for Smart City Management- A KSK Approach, 2025 7th International Conference on Intelligent Sustainable Systems (ICISS), India, 2025, pp. 296-305, doi: 10.1109/ICISS63372.2025.11076329.
- [46]. S. B. Khadake, B. R. Ingale, D. D. D., S. S. Sudake and M. M. Awatade, (2025b). Kidney Diseases Patient Healthcare Monitoring using AI-Driven-IoT(AIIoT) An KSK1 Approach, 2025 7th International Conference on Intelligent Sustainable Systems (ICISS), India, 2025, pp. 264-272, doi: 10.1109/ICISS63372.2025.11076397.
- [47]. Sayyad. (2025a). AI-Powered-IoT (AIIoT)-Based Decision-Making System for BP Patient's Healthcare Monitoring: KSK Approach for BP Patient Healthcare Monitoring. In S. Aouadni & I. Aouadni (Eds.), Recent Theories and Applications for Multi-Criteria Decision-Making (pp. 205-238). IGI Global. https://doi.org/10.4018/979-8-3693-6502-1.ch008
- [48]. Sayyad (2025b). AI-Powered IoT (AI IoT) for Decision-Making in Smart Agriculture: KSK Approach for Smart Agriculture. In S. Hai-Jew (Ed.), *Enhancing Automated Decision-Making Through AI* (pp. 67-96). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6230-3.ch003
- [49]. Sayyad (2025c). KK Approach to Increase Resilience in Internet of Things: A T-Cell Security Concept. In D. Darwish & K. Charan (Eds.), Analyzing Privacy and Security Difficulties in Social Media: New Challenges

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, October 2025

Impact Factor: 7.67

- and Solutions (pp. 87-120). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9491-5.ch005
- [50]. Sayyad, (2025). KK Approach for IoT Security: T-Cell Concept. In Rajeev Kumar, Sheng-Lung Peng, & Ahmed Elngar (Eds.), *Deep Learning Innovations for Securing Critical Infrastructures*. IGI Global Scientific Publishing. DOI: 10.4018/979-8-3373-0563-9.ch022
- [51]. Sayyad (2025d). Healthcare Monitoring System Driven by Machine Learning and Internet of Medical Things (MLIoMT). In V. Kumar, P. Katina, & J. Zhao (Eds.), Convergence of Internet of Medical Things (IoMT) and Generative AI (pp. 385-416). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6180-1.ch016
- [52]. Shinde, S. S., Nerkar, P. M., SLiyakat, S. S., & SLiyakat, V. S. (2025). Machine Learning for Brand Protection: A Review of a Proactive Defense Mechanism. *In M. Khan & M. Amin Ul Haq (Eds.), Avoiding Ad Fraud and Supporting Brand Safety: Programmatic Advertising Solutions* (pp. 175-220). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-7041-4.ch007
- [53]. SilpaRaj M, Senthil Kumar R, Jayakumar K, Gopila M, Senthil kumar S. (2025). Scalable Internet of Things Enabled Intelligent Solutions for Proactive Energy Engagement in Smart Grids Predictive Load Balancing and Sustainable Power Distribution, In S. Kannadhasan et al. (eds.), Proceedings of the International Conference on Sustainability Innovation in Computing and Engineering (ICSICE 24), Advances in Computer Science Research 120, https://doi.org/10.2991/978-94-6463-718-2_85
- [54]. SLiyakat, K. (2024a). AI-Driven IoT (AIIoT) in Healthcare Monitoring. In T. Nguyen & N. Vo (Eds.), *Using Traditional Design Methods to Enhance AI-Driven Decision Making* (pp. 77-101). IGI Global. https://doi.org/10.4018/979-8-3693-0639-0.ch003 available at: https://www.igi-global.com/chapter/ai-driven-iot-aiiot-in-healthcare-monitoring/336693
- [55]. SLiyakat, K. (2024b). Modelling and Simulation of Electric Vehicle for Performance Analysis: BEV and HEV Electrical Vehicle Implementation Using Simulink for E-Mobility Ecosystems. *In L. D., N. Nagpal, N. Kassarwani, V. Varthanan G., & P. Siano (Eds.), E-Mobility in Electrical Energy Systems for Sustainability (pp. 295-320). IGI Global.* https://doi.org/10.4018/979-8-3693-2611-4.ch014 Available at: https://www.igi-global.com/gateway/chapter/full-text-pdf/341172
- [56]. SLiyakat, S. (2024c). Machine Learning-Based Pomegranate Disease Detection and Treatment. *In M. Zia Ul Haq & I. Ali (Eds.), Revolutionizing Pest Management for Sustainable Agriculture* (pp. 469-498). IGI Global. https://doi.org/10.4018/979-8-3693-3061-6.ch019
- [57]. SLiyakat, S. (2024d). Computer-Aided Diagnosis in Ophthalmology: A Technical Review of Deep Learning Applications. In M. Garcia & R. de Almeida (Eds.), *Transformative Approaches to Patient Literacy and Healthcare Innovation* (pp. 112-135). IGI Global. https://doi.org/10.4018/979-8-3693-3661-8.ch006 Available at: https://www.igi-global.com/chapter/computer-aided-diagnosis-in-ophthalmology/342823
- [58]. SLiyakat, S. (2024e). IoT Driven by Machine Learning (MLIoT) for the Retail Apparel Sector. In T. Tarnanidis, E. Papachristou, M. Karypidis, & V. Ismyrlis (Eds.), Driving Green Marketing in Fashion and Retail (pp. 63-81). IGI Global. https://doi.org/10.4018/979-8-3693-3049-4.ch004
- [59]. SLiyakat, S. (2024f). Artificial Intelligence (AI)-Driven IoT (AIIoT)-Based Agriculture Automation. In S. Satapathy & K. Muduli (Eds.), *Advanced Computational Methods for Agri-Business Sustainability* (pp. 72-94). IGI Global. https://doi.org/10.4018/979-8-3693-3583-3.ch005
- [60]. SLiyakat, K. (2025). Machine Learning-Powered IoT (MLIoT) for Retail Apparel Industry. In T. Tarnanidis, E. Papachristou, M. Karypidis, & V. Manda (Eds.), Sustainable Practices in the Fashion and Retail Industry (pp. 345-372). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9959-0.ch015
- [61]. SLiyakat, K. S. (2025a). Braille-Lippi Numbers and Characters Detection and Announcement System for Blind Children Using KSK Approach: AI-Driven Decision-Making Approach. In T. Murugan, K. P., & A. Abirami (Eds.), Driving Quality Education Through AI and Data Science (pp. 531-556). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8292-9.ch023

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, October 2025

Impact Factor: 7.67

- [62]. SLiyakat, K. S. (2025b). AI-Driven IoT (AIIoT)-Based Decision-Making System for High BP Patient Healthcare Monitoring: KSK1 Approach for BP Patient Healthcare Monitoring. In T. Mzili, A. Arya, D. Pamucar, & M. Shaheen (Eds.), Optimization, Machine Learning, and Fuzzy Logic: Theory, Algorithms, and Applications (pp. 71-102). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-7352-1.ch003
- [63]. SLiyakat, K. S. (2025c). Advancing Towards Sustainable Energy With Hydrogen Solutions: Adaptation and Challenges. In F. Özsungur, M. Chaychi Semsari, & H. Küçük Bayraktar (Eds.), Geopolitical Landscapes of Renewable Energy and Urban Growth (pp. 357-394). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8814-3.ch013
- [64]. SLiyakat, K. S. (2025d). AI-Driven-IoT (AIIoT) Decision-Making System for Hepatitis Disease Patient Healthcare Monitoring: KSK1 Approach for Hepatitis Patient Monitoring. In S. Agarwal, D. Lakshmi, & L. Singh (Eds.), *Navigating Innovations and Challenges in Travel Medicine and Digital Health* (pp. 431-450). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8774-0.ch022
- [65]. SLiyakat, K. S. (2025e). AI-Driven-IoT (AIIoT)-Based Jawar Leaf Disease Detection: KSK Approach for Jawar Disease Detection. In U. Bhatti, M. Aamir, Y. Gulzar, & S. Ullah Bazai (Eds.), Modern Intelligent Techniques for Image Processing (pp. 439-472). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9045-0.ch019
- [66]. SLiyakat, K. S. (2025f). AI-Powered-IoT (AIIoT)-Based Decision-Making System for BP-Patient Healthcare Monitoring: BP-Patient Health Monitoring Using KSK Approach. *In M. Lytras & S. Alajlan (Eds.), Transforming Pharmaceutical Research With Artificial Intelligence* (pp. 189-218). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6270-9.ch007
- [67]. SLiyakat, K. S. (2025g). A Study on AI-Driven Internet of Battlefield Things (IoBT)-Based Decision Making: KSK Approach in IoBT. In M. Tariq (Ed.), *Merging Artificial Intelligence With the Internet of Things* (pp. 203-238). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8547-0.ch007
- [68]. SLiyakat, K. S. (2025h). KK Approach to Increase Resilience in Internet of Things: A T-Cell Security Concept. In M. Almaiah & S. Salloum (Eds.), Cryptography, Biometrics, and Anonymity in Cybersecurity Management (pp. 199-228). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8014-7.ch010
- [69]. SLiyakat, K. S. (2025i). KK Approach for IoT Security: T-Cell Concept. In R. Kumar, S. Peng, P. Jain, & A. Elngar (Eds.), *Deep Learning Innovations for Securing Critical Infrastructures* (pp. 369-390). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3373-0563-9.ch022
- [70]. SLiyakat, K. S. (2025j). Hydrogen Energy: Adaptation and Challenges. In J. Mabrouki (Ed.), *Obstacles Facing Hydrogen Green Systems and Green Energy* (pp. 205-236). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8980-5.ch013
- [71]. SLiyakat, K. S. (2025k). Roll of Carbon-Based Supercapacitors in Regenerative Breaking for Electrical Vehicles. In M. Mhadhbi (Ed.), *Innovations in Next-Generation Energy Storage Solutions* (pp. 523-572). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9316-1.ch017
- [72]. SLiyakat, S. (2025). AI-Driven-IoT (AIIoT)-Based Decision Making in Drones for Climate Change: KSK Approach. In S. Aouadni & I. Aouadni (Eds.), Recent Theories and Applications for Multi-Criteria Decision-Making (pp. 311-340). IGI Global. https://doi.org/10.4018/979-8-3693-6502-1.ch011
- [73]. SLiyakat, S. (2025m). Machine Learning-Driven Internet of Medical Things (ML-IoMT)-Based Healthcare Monitoring System. In B. Soufiene & C. Chakraborty (Eds.), Responsible AI for Digital Health and Medical Analytics (pp. 49-86). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6294-5.ch003
- [74]. SLiyakat, S. (2025n). Transformation of Agriculture Effectuated by Artificial Intelligence-Driven Internet of Things (AIIoT). In J. Garwi, M. Dzingirai, & R. Masengu (Eds.), *Integrating Agriculture, Green Marketing Strategies, and Artificial Intelligence* (pp. 449-484). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6468-0.ch015

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

SO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 2, October 2025

Impact Factor: 7.67

- [75]. Upadhyaya, A. N., Surekha, C., Malathi, P., Suresh, G., Suriyan, K., & Liyakat, K. K. S. (2025). Pioneering cognitive computing for transformative healthcare innovations. *SSRN Electronic Journal*. https://doi.org/10.2139/ssrn.5086894.
- [76]. Vaishnavi Ashok Desai, (2025). AI and Sensor Systems Revolutionizing Intoxication and Smoking Pre-Detection. *Journal of Control & Instrumentation*. 2025; 16(3): 15–26p.
- [77]. H. T. Shaikh, and K. K. S. Liyakatn, "Pre-Detection Systems Transfiguring Intoxication and Smoking Using Sensor and AI," *Journal of Instrumentation and Innovation Sciences*, vol. 10, no. 2, pp. 19-31, Jul. 2025.
- [78]. H. T. Shaikh and K. K. S. Liyakat, "Millimetre Wave: A Study on the Backbone of Future IoT Connectivity", *Advance Research in Analog and Digital Communications*, Vol. 2, no. 2, pp. 20-31, Aug. 2025.
- [79]. Ayesha Khalil Mulani. Microwave Signals: A New Frontier in Non-Invasive Medical Diagnostics: A Study. Journal of Microwave Engineering & Technologies. 2025; 12(3): 27–41p.
- [80]. Ayesha Khalil Mulani. Revolutionizing Optical Fibre Field Distribution with Linear Finite Element Method. Trends in Opto-electro & Optical Communication. 2025; 15(3): 31-41p.
- [81]. H. T. Shaikh and K. K. S. Liyakat, "Robust Access Control Mechanisms in IoT Security using VHDL Programming", Journal of VLSI Design and Signal Processing, vol. 11, no. 2, pp. 31-40, Aug. 2025.
- [82]. Radhika Maruti Pawar, Kulkarni Amarja Bhaskar, Patu Shradha Gangadhar, Sensors and Artificial Intelligence based Intelligent Thermos. Recent Trends in Sensor Research & Technology. 2025; 12(3): 37–45p.
- [83]. Ayesha Khalil Mulani. Optical Fibre Pressure Sensor in Medicine: A Study. Recent Trends in Sensor Research & Technology. 2025; 12(3): 18–27p.
- [84]. Vaishnavi Ashok Desai, Heena Tajoddin Shaikh, Sensor and AI Based Pre- Detection Systems Transfiguring Intoxication & Smoking. Journal of Telecommunication, Switching Systems and Networks. 2025; 12(3): 37–50p.
- [85]. C. M. Abhangrao and K. K. S. Liyakat, "A study on hybrid intelligence in COBOT," Journal of Mechanical Robotics, vol. 10, no. 2, pp. 15–29, Sep. 2025.
- [86]. Heena Tajoddin Shaikh, (2025). The Future of Cancer Management: A Guide to Nanosensor Applications. *Recent Trends in Semiconductor and Sensor Technology*, 1–10.
- [87]. Heena T Shaikh. A Study on Automatic Feedback Control by Image Processing for Mixing Solutions in a Microfluidic Device. International Journal of Advanced Control and System Engineering. 2025; 3(2): 32–41p.
- [88]. Heena T Shaikh. A Study on Unmanned Air Vehicles (UAV). Journal of Aerospace Engineering & Technology. 2025; 15(3): 14–27p.
- [89]. Nikat Rajak Mulla. Nanomaterials in Vaccine Formation and Chemical Formulae for Vaccination. Journal of Nanoscience, Nanoengineering & Applications. 2025; 15(3): 1–12p.
- [90]. K. K. S. Liyakat, "Waste-to-Energy (WtE) Plants: A Study," Journal of Alternative and Renewable Energy Sources, vol. 11, no. 3, pp. 1-15, Oct. 2025.
- [91]. Sultanabanu Sayyad Liyakat. Advancing IoT Connectivity through Very Large-Scale Integration of Semiconductor Technology. Journal of Semiconductor Devices and Circuits. 2024; 11(03):54-63.
- [92]. Dr. Kazi Kutubuddin Sayyad Liyakat. Sensor and IoT centered Smart Agriculture by NodeMCU. Recent Trends in Sensor Research & Technology. 2024; 11(03): 24-32. Available from: https://journals.stmjournals.com/rtsrt/article=2024/view=0
- [93]. Dr. Kazi Kutubuddin Sayyad Liyakat. KSK Approach to Smart Agriculture: Utilizing AI-Driven Internet of Things (AI IoT). Journal of Microcontroller Engineering and Applications. 2024; 11(03): 41-50. Available from: https://journals.stmjournals.com/jomea/article=2024/view=0
- [94]. Pathan Muskan Ibrahim.(2025). Photochemical Materials for Light-Responsive Optical Switching: Al-Optimized Design of Dynamic Visual Effects. International Journal of Photochemistry and Photochemical Research, Volume 3, Issue 2. 2025; 3(2): 13–27p

