

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

A Review on Quality Assurance and Quality Control in Pharmaceuticals

Bapu Kondiba Masal, Shashikant Hanmant Masal, Pranav Vilas Thombre

Mandesh Institute Pharmaceutical Science and Research Center, Mhaswad

Abstract: This review highlights global approaches for assessing residual solvents, geotaxic impurities, and various organic and inorganic contaminants in pharmaceutical products. Regulatory bodies worldwide now require full disclosure of both purity and impurity profiles to ensure drug safety and therapeutic quality. These evaluations are vital for maintaining the safety, efficacy, and consistency of medicines. Impurities may arise from multiple sources, making their control essential to prevent substandard drugs that could harm patients. Quality assurance (QA) within the pharmaceutical supply chain guarantees that all medications supplied are safe, effective, and of the desired standard. A comprehensive QA program integrates both technical and administrative measures, while quality control (QC) ensures reproducibility, process validation, and monitoring of product complaints to reduce defective products

Keywords: ISO, ICH, IPQC, FPQC, QbD, Validation, Calibration

I. INTRODUCTION

Quality Assurance (QA) and Quality Control (QC) are integral components of good manufacturing practices (GMP). International guidelines describe QA/QC as practical, cost-effective, and adaptable frameworks that enhance transparency, comparability, and consistency in pharmaceutical processes. These systems build trust in regulatory compliance and strengthen confidence in drug quality worldwide.

In pharmaceutical manufacturing, QA ensures that products meet regulatory and safety requirements, while QC verifies that each stage of production complies with set specifications. Conventional QC systems, though reliable, can be labor-intensive and prone to human error. Recent advances in Artificial Intelligence (AI) and Machine Learning (ML) have modernized QC by increasing efficiency, accuracy, and regulatory compliance.

(Figure 1)

Validation:

Validation confirms that a process, analytical method, or equipment consistently delivers results meeting predetermined specifications. It provides documented assurance that systems function as intended.

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29190

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

Types of Validation:

- 1. Analytical Method Validation: Ensures reliability of selected analytical procedures through parameters such as precision, accuracy, linearity, scope, detection limits, and reproducibility.
- 2. Process Validation: Provides documented evidence that a process consistently produces products of defined quality. Types include:
 - Prospective validation conducted before large-scale production.
 - Concurrent validation performed during routine manufacturing.
 - Retrospective validation based on historical production data.
 - Revalidation carried out when processes or equipment are modified.
- 3. Cleaning Validation: Demonstrates that equipment and facilities are consistently cleaned to prevent crosscontamination from residues, waste, lubricants, or microorganisms.
- 4. Equipment Validation: Confirms that instruments and machines are designed, installed, and operated to deliver reliable outcomes. Key stages include design qualification (DQ), installation qualification (IQ), operational qualification (OQ), and performance qualification (PQ).

Applications of Quality Assurance:

QA and QC ensure the production of safe, effective, and reliable medicines. Their benefits include:

- Enhancing product credibility and consumer trust
- Improving market competitiveness, both domestically and internationally
- Reducing production errors and contamination risks
- Supporting regulatory compliance and certification
- Strong QA systems not only ensure product quality but also increase consumer confidence, thereby boosting demand and market acceptance.

(Figure 2)

Practical Considerations in Developing QA/QC Systems:

Developing an effective QA/QC system requires balancing resources, expertise, and timelines. Key considerations include:

Allocation of resources for different product categories

Adequate time for review and verification processes

Access to reliable data and emission factors

Confidentiality and secure archiving of records

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29190

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

Frequency of QA/QC checks across production stages

Ensuring skilled personnel are available for evaluations

Evaluating whether increased QC efforts enhance product quality and reduce uncertainties

Concept and Background of Quality by Design (QbD): Quality by Design (QbD) emphasizes designing quality into a product from the earliest stages rather than relying solely on end-product testing. As outlined in ICH Q8 guidelines, quality should be predictable and embedded into design and manufacturing processes.

QbD principles were first adopted in the automotive sector by Toyota in the 1970s and later applied in fields such as aerospace and medical devices. In pharmaceuticals, the U.S. FDA promoted QbD in its 2002 initiative cGMP for the 21st Century, encouraging manufacturers to incorporate quality, safety, and efficacy during product development.

Importance of Quality Assurance and Quality Control in Pharmaceuticals:

Pharmaceutical quality is a collective responsibility, not limited to the QA department. QA plays a critical role across the drug lifecycle, from research and development to large-scale manufacturing. QC provides assurance of product safety, efficacy, and compliance with regulatory standards.

Quality Assurance (QA): Acts as the backbone of pharmaceutical operations, ensuring customer satisfaction and adherence to regulatory guidelines.

Quality Control (QC): Confirms purity, authenticity, and effectiveness of medicines, which is vital for consumer trust and market approval.

Without robust QA/QC systems, pharmaceutical companies risk producing unsafe products, leading to loss of credibility and consumer confidence. Vantongelen K, Rotmensz N, van der Schueren E. Quality control of validity of data collected in clinical trials. EORTC Study Group on Data Management (SGDM). Eur J Cancer Clin Oncol 1989;25:1241-7.

II. CONCLUSION

Quality Assurance is central to pharmaceutical manufacturing, impacting every department and ensuring products meet the highest standards of safety and efficacy. Historical incidents, such as the thalidomide tragedy, highlight the devastating consequences of inadequate quality checks and emphasize the need for strong QA frameworks.QA ensures customer satisfaction, regulatory compliance, and sustainable industry growth. When integrated with QC, it prevents errors, reduces risks, and ensures product reliability. Beyond pharmaceuticals, QA principles extend to all industries where consumer safety and product quality are critical.

Ultimately, Quality Assurance remains the backbone of the pharmaceutical industry, safeguarding patients protecting public health, and ensuring long-term trust in medicines.

REFERENCES

- [1]. Freedland KE, Carney RM. Data management and accountability in behavioral and biomedical research. Am Psychol 1992;47:640-5.
- [2]. Prud'homme GJ, Canner PL, Cutler JA. Quality assurance and monitoring in the Hypertension Prevention Trial. Hypertension Prevention Trial Research Group. Control Clin Trials 1989;10(3 Suppl):84S-94S.
- [3]. Prud'homme GJ, Canner PL, Cutler JA. Quality assurance and monitoring in the Hypertension Prevention Trial. Hypertension Prevention Trial Research Group. Control Clin Trials 1989;10(3 Suppl):84S-94S.
- [4]. Marinez YN, McMahan CA, Barnwell GM, et al. Ensuring data quality in medical research through an integrated data management system. Stat Med 1984;3:101-ll.
- [5]. Bagniewska A, Black D, Molvig K, et al. Data quality in a distributed data processing system: the SHEP Pilot Study. Control Clin Trials 1986;7:27-37
- [6]. Severe JB, Schooler NR, Lee JH, et al. Ensuring data quality in a multicenter clinical trial: remote site data entry, central coordination and feedback. Psychopharmacol Bull 1989;25: 488-90
- [7]. Keltner JL, Johnson CA, Beck RW, et al. Quality control functions of the Visual Field Reading Center (VFRC) for the Optic Neuritis Treatment Trial (ONTT). Control Clin Trials 1993; 14:143-59.

Copyright to IJARSCT www.ijarsct.co.in

DOI: 10.48175/IJARSCT-29190

IJARSCT

International Journal of Advanced Research in Science, Communication and Technology

ISO POUTED COUNTY

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

Impact Factor: 7.67

- [8]. Atherosclerosis Risk in Communities (ARIC) manual 1-12. Chapel Hill, NC: National Heart, Lung, and Blood Institute of the National Institutes of Health, Collaborative Studies Coordinating Center, Department of Biostatistics, University of North Carolina, 1987.
- [9]. Arndt S, Tyrrell G, Woolson RF, et al. Effects of errors in a multicenter medical study: preventing misinterpreted data. J Psychiatr Res 1994;28:447-59.
- [10]. Vantongelen K, Rotmensz N, van der Schueren E. Quality control of validity of data collected in clinical trials. EORTC Study Group on Data Management (SGDM). Eur J Cancer Clin Oncol 1989;25:1241-7.

