

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

GrowSmart - An Integrated IoT-AI Edge Device for Farmer Intelligence

Vyas Vinayak Patil¹, Rohit Laxman Rajmane², Rushikesh Nagesh Shahpurkar³, Prof. Jatin Manoj Patil⁴

^{1,2,3} UG Students, Department Electronics and Telecommunication
 ⁴Asst. Professor, Department Electronics and Telecommunication
 Brahmdevdada Mane Institute of Technology, Solapur, Maharashtra, India rohitrajmane567@gmail.com

Abstract: This research paper details the conceptualization, design, and functional analysis of GrowSmart, an integrated Internet of Things (IoT) and Edge Artificial Intelligence (AI) device aimed at enhancing agricultural productivity and sustainability, particularly for smallholder and commercial farms. Termed "A Device for Farmers' Intelligence," GrowSmart is a compact, affordable solution that provides real-time, data-driven insights by integrating soil quality testing, weather monitoring, crop recommendations, and emergency alerting. The system continuously monitors critical soil parameters (moisture, pH, and NPK nutrients) and environmental conditions, processing this data locally using embedded Machine Learning (ML) models to offer immediate, tailored recommendations and proactive risk mitigation alerts (e.g., for drought or frost). This decentralized approach, leveraging edge processing, ensures low latency, data privacy, and reliable on-site operation, supporting optimal resource use, higher yields, and climate resilience. The paper concludes that GrowSmart has significant potential for inclusive and scalable deployment, contributing to enhanced food security and sustainable agricultural practices

Keywords: GrowSmart, IoT-AI Edge Device, Resource Optimization, Precision Agriculture

I. INTRODUCTION

The global agricultural sector faces increasing pressure to maximize yields while minimizing environmental impact, driven by a growing world population and the escalating challenges of climate change. Traditional farming methods often rely on generalized knowledge and reactive decision-making, leading to inefficient resource use, such as over-irrigation or excessive fertilizer application, which negatively affects both farm economics and environmental health. The shift towards Precision Agriculture—an approach where inputs are managed on a site-specific basis to raise profitability, efficiency, and sustainability—is paramount[1-25].

The GrowSmart project proposes a technological solution to democratize precision agriculture, making it accessible to a wide range of farmers, including smallholders, through a compact and affordable IoT-AI box. The device is intended to function as "A Device for Farmers' Intelligence".

The core value proposition of GrowSmart is its ability to provide farmers with real-time, actionable intelligence. It moves beyond simple data logging by using embedded AI to translate complex environmental and soil data directly into clear recommendations and crucial emergency warnings. The research objective centers on developing an integrated system that can continuously monitor soil parameters (moisture, pH, N, P, K), track weather, provide tailored crop recommendations, and trigger emergency alerts, all while operating reliably on-site using edge processing.

This system is designed for simplicity and scalability, ensuring that technological complexity does not become a barrier to adoption for farmers regardless of the size of their operation or their technical literacy. By delivering precision insight, proactive risk mitigation, and low-maintenance operation, GrowSmart aims to support a future of sustainable, data-driven farming[26-52].

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

The modern farmer operates in the most complex, unpredictable business environment on earth. They are economists, meteorologists, biologists, and engineers—all while their profit margins are decided by factors ranging from commodity prices to the microscopic habits of soil pathogens.

For years, the promise of "Smart Farming" relied on collecting vast amounts of data via IoT sensors and streaming it to the distant cloud for analysis. But farming is an exercise in immediate reaction. Waiting minutes for a server hundreds of miles away to confirm a disease outbreak or calculate water stress means lost yield.

The next revolution in agriculture is the emergence of the Integrated IoT-AI Edge Device: a hyper-localized, intelligent brain that doesn't just collect data—it makes decisions, instantaneously, right where the crops are growing. This device transforms farming from a game of informed intuition into one of precise, autonomous science[51-86].

1. The Necessity of the Edge Brain

An integrated Edge AI system is defined by its ability to perform high-level computational processing (the AI inference) on data collected directly by its sensors (the IoT component), without requiring constant internet connectivity. In agriculture, the rationale for this approach is threefold:

A. Latency and Opportunity

When a spectral camera identifies the early stress signature of a vine disease, the response must begin within seconds, not minutes. Edge processing eliminates the network delay (latency) associated with sending terabytes of high-resolution image data to a central cloud server. The device processes the image, determines the necessary pesticide dosage, and relays the command to a nearby drone or smart sprayer—all within the span of a single breath.

B. Reliability in the Field

Agricultural environments are often characterized by spotty or non-existent cellular and Wi-Fi coverage. An Edge device stores its complex AI models locally and can operate autonomously for days or weeks. If a severe weather event knocks out connectivity, the device continues monitoring, analyzing, and protecting the high-value assets.

C. Bandwidth and Cost Efficiency

High-resolution imaging and continuous soil monitoring generate massive datasets. Sending all raw data to the cloud is prohibitively expensive. The Edge device acts as a sophisticated data filter, performing "intelligent compression." It transmits only the crucial metadata (e.g., "Pest X detected at 4:05 PM, confidence 98%") rather than the full, raw video feed.

2. Anatomy of the Farmer Intelligence Device

Imagine a rugged, solar-powered unit—let's call it the Agri-Pilot—strategically positioned within a field. It is a fusion of sophisticated sensing and machine learning hardware.

Component Group	Function	AI/IoT Integration at the Edge
IoT Sensor Array	Multispectral and thermal cameras, acoustic sensors, soil pH/N-P-K probes, leaf moisture readers.	High-frequency data collection (e.g., 20 readings per second).
AI Processing Core	Low-power, high-efficiency processor (like a specialized ASIC or dedicated NPU).	Runs real-time inference models for object detection (pests, weeds) and classification (disease type, nutrient deficiency).

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

Jy 9001:2015 9001:2015 Impact Factor: 7.67

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

Component Group	Function	AI/IoT Integration at the Edge
Local Storage & Database	Onboard memory to store model parameters, historical data, and local decision logs.	Enables trend analysis and model refinement without external interference.
Interfacing Module	Low-power radio (LoRaWAN) and local mesh networking capability.	Communicates localized commands to adjacent robots, valve systems, or drone ports.

The key innovation is the AI Core's ability to run complex, pre-trained Convolutional Neural Networks (CNNs) locally. When a camera captures a weed, the image is classified on the device, cross-referenced with hyper-local weather data, and an action plan is generated instantly.

3. Delivering Tangible Farmer Intelligence

The output of an Edge AI system is not raw data; it is actionable intelligence that directly correlates to reduced input costs and increased yield certainty.

1. Predictive Micro-Climate Modeling

Instead of relying on regional forecasts, the Agri-Pilot uses IoT data (humidity, dew point, wind speed) combined with AI models to predict hyper-local disease pressure. For example, the device can accurately predict the probability of fungal growth in a specific 10-meter radius over the next 12 hours, allowing for prophylactic prevention rather than emergency cures.

2. Autonomous Precision Fertilization

Traditional fertilization relies on broad averages or expensive lab tests. The Edge AI system continuously analyzes soil chemistry readings and combines them with spectral data showing crop biomass and chlorophyll levels. The AI calculates the exact, minimum amount of nitrogen required for a specific sector of the field and triggers the localized drip system to deliver that precise micro-dose, minimizing runoff and waste.

3. Pest and Weeds at the Infancy

AI models excel at subtle pattern recognition. An Edge device can identify a specific invasive insect species or a resistant weed variety from an image long before a human scout could physically confirm it—and before significant damage occurs. This allows for immediate, targeted spraying (spot treatment) rather than broad-spectrum chemical application, drastically cutting down chemical reliance and protecting beneficial insects.

4. Water Stress Forecasting

By combining soil moisture data with thermal imaging (identifying transpiration rates), the AI model can predict when a plant will become stressed, not just when it currently is stressed. The system learns the plant's specific hydration habits and preemptively adjusts irrigation hours, ensuring optimal water use during peak daylight hours.

The integrated IoT-AI Edge device is not merely a monitoring tool; it is the nucleus of the autonomous farm. As more Agri-Pilot units are deployed across larger farms, they begin to form intelligent mesh networks, sharing localized data and optimizing resource allocation across the entire property. The devices evolve from simple decision-makers into self-learning entities, refining their local AI models based on the outcomes of their own actions ("Did the reduced irrigation actually maintain yield?").

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

By placing the processing power directly in the soil, the farmer gains an omnipresent, tireless, and hyper-intelligent ally. This shift ensures not only higher yields but a demonstrably more sustainable operation, proving that the smartest farms are those that think locally.

II. LITERATURE REVIEW

The concept of smart farming is built upon the convergence of several established technological fields: the Internet of Things (IoT), Artificial Intelligence (AI) and Machine Learning (ML), and Edge Computing.

2.1 IoT in Agriculture

The foundation of precision agriculture is the collection of vast amounts of data using sensors and connectivity. Existing literature extensively documents the use of various sensors for monitoring agricultural conditions. Specifically, the monitoring of **soil parameters**—moisture, pH, and the macronutrients Nitrogen (N), Phosphorus (P), and Potassium (K)—is critical for determining plant health and optimal fertilization schedules. Environmental data, including ambient temperature, humidity, and rainfall, is essential for predicting disease outbreaks and calculating irrigation needs. Current IoT solutions in agriculture typically rely on a central cloud server for data storage and processing, which can lead to latency issues and high connectivity costs in remote farming areas.

2.2 AI/ML for Decision Support

Machine learning models, such as support vector machines, neural networks, and decision trees, have been proven effective in several agricultural decision-making tasks. This includes **crop recommendation** based on soil and climate profiles, **yield prediction**, and the **early detection of pests and diseases** through the analysis of sensor data or imagery. The efficacy of these models is highly dependent on the quality and specificity of the training data.

2.3 The Role of Edge Computing

Edge computing is defined as processing data near the source of generation rather than sending it to a distant centralized cloud. In agriculture, this paradigm offers significant advantages:

- Low Latency: Immediate processing allows for real-time decision-making, which is crucial for timely irrigation or rapid emergency alerting.
- Data Privacy: Local processing minimizes the transfer of raw, sensitive farm data over the internet.
- Connectivity Independence: Core functions can continue even with intermittent or poor network connectivity, a common issue in rural areas.

The existing literature suggests a gap: while separate components (sensors, cloud AI, edge computing) are well-researched, there is a need for a truly **integrated**, **affordable**, **and compact** device designed specifically for on-site, small-scale deployment that leverages edge AI for *instantaneous* intelligence, rather than just data aggregation. GrowSmart aims to fill this gap by merging these technologies into a user-friendly, low-cost "box".

III. METHODOLOGY

The development of the GrowSmart system follows an integrated hardware and software design methodology, focusing on compact construction, robust field operation, and efficient edge processing.

3.1 System Architecture

The system is built around an Integrated IoT + AI Farm System architecture, comprising four main stages: Data Collection, Edge Processing, Communication, and Action/Alerts.

3.2 Components and Hardware Design

The core of the system is the Compact Hardware containing a microcontroller or Single Board Computer (SBC), housed in a small, durable enclosure suitable for harsh environmental conditions.

Sensors: The device incorporates a suite of reliable, low-power sensors:

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

- Soil moisture sensor.
- pH sensor.
- NPK sensor (for Nitrogen, Phosphorus, and Potassium).
- Ambient sensors for temperature, humidity, and rainfall.

Processing & AI: An embedded ML model is hosted on the microcontroller or SBC for local Edge Processing. This model is trained to perform two primary functions: crop recommendation (based on local soil and climate) and anomaly detection (for immediate alerting).

Connectivity: Low-power wireless modules such as LoRaWAN, NB-IoT, or standard LTE are used for efficient transmission of compressed data and alerts to the cloud or the farmer's interface.

Power and Housing: The system is designed for Low Maintenance with potential integration of solar power and a rugged enclosure to ensure long-term field operation.

3.3 Working Mechanism

- Data Collection: Sensors continuously gather real-time environmental and soil data.
- Edge Processing: The embedded device processes the raw data. The AI model runs inference locally to:
- Determine optimal crops or farm inputs based on current soil/weather conditions.
- Detect anomalies or breach of pre-set thresholds (e.g., pH too low, sudden temperature drop indicative of frost risk).
- Communication: Only relevant data and urgent alerts are transmitted using the low-power wireless module to the cloud or directly to the farmer.
- Analytics & Visualization: The cloud layer aggregates the data for long-term trend analysis and provides a simple farmer interface or optional dashboard.
- Action & Alerts: The final step is the push of actionable intelligence:
- Recommendations: Timely suggestions for irrigation, fertilization, or crop type.
- Emergency Notifications: Proactive Risk Mitigation through rapid alerts via SMS, mobile app, or LED indicators when critical thresholds are breached (e.g., drought conditions, frost risk)

IV. DISCUSSION

The analysis of the GrowSmart concept reveals significant advantages and practical applications, alongside a robust outlook for future development.

4.1 Advantages of Edge AI over Cloud AI

The strategic decision to utilize **Edge Processing** is the key differentiator of GrowSmart. This methodology provides substantial benefits:

- **Reliability:** The core decision-making logic remains on-site, ensuring uninterrupted functionality even in areas with poor internet service.
- **Speed:** Running the AI inference locally drastically reduces the latency, making the **Action & Alerts** virtually instantaneous. This is critical for time-sensitive threats like frost or rapid pest spread.
- Cost-Efficiency: By processing data locally, the device only transmits compressed, relevant data points and alerts, saving on cellular data costs, which is crucial for maintaining the system's Affordability.

4.2 Precision Insight and Sustainability

GrowSmart delivers **Precision Insight** by transforming raw environmental measurements into data-driven recommendations.

Optimized Resource Use: By continuously monitoring soil moisture, the system can prevent wasteful overirrigation. Similarly, NPK sensing allows for targeted, automated fertilization scheduling, leading to optimal
resource use and sustainability.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

- Crop and Rotation Planning: The AI can analyze the historical and real-time soil/climate profile to provide
 the best-fit Crop selection and rotation planning, maximizing the potential yield for the specific micro-climate
 of the farm.
- Supports Sustainability and Climate Resilience: By minimizing waste, reducing costs, and enabling early response to climatic threats, the device inherently supports long-term farm sustainability and aids in building Climate Resilience against unpredictable weather patterns.

4.3 Scalability and Accessibility

The design goals of being **Compact & Affordable** make the system highly **Scalable**. Its simplicity and the direct nature of its alerts (SMS, simple indicators) lower the barrier to adoption, enabling inclusive deployment across farms regardless of size or the farmer's technical literacy.

4.4 Applications in Modern Farming

The versatility of the data collected and processed allows for a wide range of practical applications:

- Automated Scheduling: Automated irrigation and fertilization scheduling based on real-time data.
- **Pest and Disease Detection:** Detecting anomalies or pests via the AI based on sensor patterns or integrated image analysis (future scope).
- Soil Health Mapping: Monitoring long-term pH and nutrient depletion trends to create maps for targeted amendments.
- Educational Platform: The system can serve as a real-world, data-driven educational platform for farmers and agricultural extension agents.

V. CONCLUSION

The GrowSmart device represents a crucial step in delivering intelligent, data-driven farming to the agricultural community. As an integrated, compact, and affordable IoT-AI box, it successfully addresses the dual challenges of optimizing resource use and providing proactive risk mitigation against climate threats. The core methodology, centered on **Edge Processing** and continuous monitoring of soil and environmental parameters, enables the system to provide instantaneous, precise recommendations for crop selection, irrigation, and fertilization.

The device's architecture supports **higher productivity**, **lower costs**, and robust **sustainability**, positioning it as a tool that enhances climate resilience and contributes directly to food security. With its potential for inclusive and scalable deployment, GrowSmart offers a powerful, accessible path toward modernizing agriculture globally. Further research and development focused on enhanced edge intelligence and sustainable components will solidify its role as a leading solution for the future of smart farming.

REFERENCES

- [1]. Altaf O. Mulani, Arti Vasant Bang, Ganesh B. Birajadar, Amar B. Deshmukh, and Hemlata Makarand Jadhav, (2024). IoT Based Air, Water, and Soil Monitoring System for Pomegranate Farming, *Annals of Agri-Bio Research*. 29 (2): 71-86, 2024.
- [2]. Bhawana Parihar, Ajmeera Kiran, Sabitha Valaboju, Syed Zahidur Rashid, and Anita Sofia Liz D R. (2025). Enhancing Data Security in Distributed Systems Using Homomorphic Encryption and Secure Computation Techniques, *ITM Web Conf.*, 76 (2025) 02010. DOI: https://doi.org/10.1051/itmconf/20257602010
- [3]. C. Veena, M. Sridevi, K. K. S. Liyakat, B. Saha, S. R. Reddy and N. Shirisha,(2023). HEECCNB: An Efficient IoT-Cloud Architecture for Secure Patient Data Transmission and Accurate Disease Prediction in Healthcare Systems, 2023 Seventh International Conference on Image Information Processing (ICIIP), Solan, India, 2023, pp. 407-410, doi: 10.1109/ICIIP61524.2023.10537627. Available at: https://ieeexplore.ieee.org/document/10537627

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

SO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

Impact Factor: 7.67

- [4]. D. A. Tamboli, V. A. Sawant, M. H. M. and S. Sathe, (2024). AI-Driven-IoT(AIIoT) Based Decision-Making-KSK Approach in Drones for Climate Change Study, 2024 4th International Conference on Ubiquitous Computing and Intelligent Information Systems (ICUIS), Gobichettipalayam, India, 2024, pp. 1735-1744, doi: 10.1109/ICUIS64676.2024.10866450.
- [5]. H. T. Shaikh, (2025). Empowering the IoT: The Study on Role of Wireless Charging Technologies, *Journal of Control and Instrumentation Engineering*, vol. 11, no. 2, pp. 29-39, Jul. 2025.
- [6]. H. T. Shaikh, (2025b). Pre-Detection Systems Transfiguring Intoxication and Smoking Using Sensor and AI, *Journal of Instrumentation and Innovation Sciences*, vol. 10, no. 2, pp. 19-31, Jul. 2025.
- [7]. K. Rajendra Prasad, Santoshachandra Rao Karanam et al. (2024). AI in public-private partnership for IT infrastructure development, *Journal of High Technology Management Research*, Volume 35, Issue 1, May 2024, 100496. https://doi.org/10.1016/j.hitech.2024.100496
- [8]. KKS Liyakat. (2023). Detecting Malicious Nodes in IoT Networks Using Machine Learning and Artificial Neural Networks, 2023 International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 2023, pp. 1-5, doi:10.1109/ESCI56872.2023.10099544. Available at: https://ieeexplore.ieee.org/document/10099544/
- [9]. KKS Liyakat, (2024). Malicious node detection in IoT networks using artificial neural networks: A machine learning approach, In Singh, V.K., Kumar Sagar, A., Nand, P., Astya, R., & Kaiwartya, O. (Eds.). Intelligent Networks: Techniques, and Applications (1st ed.). CRC Press. https://doi.org/10.1201/978100354136
- [10]. K. Kasat, N. Shaikh, V. K. Rayabharapu, and M. Nayak. (2023). Implementation and Recognition of Waste Management System with Mobility Solution in Smart Cities using Internet of Things, 2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS), Trichy, India, 2023, pp. 1661-1665, doi: 10.1109/ICAISS58487.2023.10250690 . Available at: https://ieeexplore.ieee.org/document/10250690/
- [11]. K S K, (2024c). Vehicle Health Monitoring System (VHMS) by Employing IoT and Sensors, *Grenze International Journal of Engineering and Technology*, Vol 10, Issue 2, pp- 5367-5374. Available at: https://thegrenze.com/index.php?display=page&view=journalabstract&absid=3371&id=8
- [12]. K S K, (2024e). A Novel Approach on ML based Palmistry, *Grenze International Journal of Engineering and Technology*, Vol 10, Issue 2, pp- 5186-5193. Available at: https://thegrenze.com/index.php?display=page&view=journalabstract&absid=3344&id=8
- [13]. K S K, (2024f).IoT based Boiler Health Monitoring for Sugar Industries, *Grenze International Journal of Engineering and Technology*, Vol 10, Issue 2, pp. 5178 -5185. Available at: https://thegrenze.com/index.php?display=page&view=journalabstract&absid=3343&id=8
- [14]. Keerthana, R., K, V., Bhagyalakshmi, K., Papinaidu, M., V, V., & Liyakat, K. K. S. (2025). Machine learning based risk assessment for financial management in big data IoT credit. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.5086671
- [15]. KKS Liyakat, (2024a). Explainable AI in Healthcare. In: Explainable Artificial Intelligence in healthcare System, editors: *A. Anitha Kamaraj, Debi Prasanna Acharjya*. ISBN: 979-8-89113-598-7. DOI: https://doi.org/10.52305/GOMR8163
- [16]. KKS Liyakat, (2024b). Machine Learning (ML)-Based Braille Lippi Characters and Numbers Detection and Announcement System for Blind Children in Learning, In Gamze Sart (Eds.), Social Reflections of Human-Computer Interaction in Education, Management, and Economics, IGI Global. https://doi.org/10.4018/979-8-3693-3033-3.ch002
- [17]. Kulkarni S G, (2025). Use of Machine Learning Approach for Tongue based Health Monitoring: A Review, Grenze International Journal of Engineering and Technology, Vol 11, Issue 2, pp- 12849- 12857. Grenze ID: 01.GIJET.11.2.311_22 Available at: https://thegrenze.com/index.php?display=page&view=journalabstract&absid=6136&id=8

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

Impact Factor: 7.67

- [18]. Kutubuddin, KSK Approach in LOVE Health: AI-Driven- IoT(AIIoT) based Decision Making System in LOVE Health for Loved One, *GRENZE International Journal of Engineering and Technology*, 2025, 11(1), pp. 4628-4635. Grenze ID: 01.GIJET.11.1.371_1
- [19]. Liyakat, K.K.S. (2023a). Machine Learning Approach Using Artificial Neural Networks to Detect Malicious Nodes in IoT Networks. In: Shukla, P.K., Mittal, H., Engelbrecht, A. (eds) Computer Vision and Robotics. CVR 2023. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-99-4577-1
- [20]. Liyakat K. S. (2024). ChatGPT: An Automated Teacher's Guide to Learning. In R. Bansal, A. Chakir, A. Hafaz Ngah, F. Rabby, & A. Jain (Eds.), AI Algorithms and ChatGPT for Student Engagement in Online Learning (pp. 1-20). IGI Global. https://doi.org/10.4018/979-8-3693-4268-8.ch001
- [21]. Liyakat. (2024a). Machine Learning Approach Using Artificial Neural Networks to Detect Malicious Nodes in IoT Networks. *In: Udgata, S.K., Sethi, S., Gao, XZ. (eds) Intelligent Systems. ICMIB 2023. Lecture Notes in Networks and Systems, vol 728. Springer, Singapore.* https://doi.org/10.1007/978-981-99-3932-9 12 available at: https://link.springer.com/chapter/10.1007/978-981-99-3932-9 12
- [22]. Liyakat, K. K. (2025a). Heart Health Monitoring Using IoT and Machine Learning Methods. In A. Shaik (Ed.), *AI-Powered Advances in Pharmacology* (pp. 257-282). IGI Global. https://doi.org/10.4018/979-8-3693-3212-2.ch010
- [23]. Liyakat. (2025c). IoT Technologies for the Intelligent Dairy Industry: A New Challenge. In S. Thandekkattu& N. Vajjhala (Eds.), *Designing Sustainable Internet of Things Solutions for Smart Industries* (pp. 321-350). IGI Global. https://doi.org/10.4018/979-8-3693-5498-8.ch012
- [24]. Liyakat. (2025d). AI-Driven-IoT(AIIoT)-Based Decision Making in Kidney Diseases Patient Healthcare Monitoring: KSK Approach for Kidney Monitoring. In L. Özgür Polat & O. Polat (Eds.), AI-Driven Innovation in Healthcare Data Analytics (pp. 277-306). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-7277-7.ch009
- [25]. Liyakat. (2026). Student's Financial Burnout in India During Higher Education: A Straight Discussion on Today's Education System. In S. Hai-Jew (Ed.), *Financial Survival in Higher Education* (pp. 359-394). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3373-0407-6.ch013
- [26]. M Pradeepa, et al. (2022). Student Health Detection using a Machine Learning Approach and IoT, 2022 IEEE 2nd Mysore sub section International Conference (MysuruCon), 2022. Available at: https://ieeexplore.ieee.org/document/9972445
- [27]. Mahant, M. A. (2025). Machine Learning-Driven Internet of Things (MLIoT)-Based Healthcare Monitoring System. In N. Wickramasinghe (Ed.), *Digitalization and the Transformation of the Healthcare Sector* (pp. 205-236). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9641-4.ch007
- [28]. Mulani AO, Liyakat KKS, Warade NS, et al. (2025). ML-powered Internet of Medical Things Structure for Heart Disease Prediction. *Journal of Pharmacology and Pharmacotherapeutics*. 2025; 0(0). doi:10.1177/0976500X241306184
- [29]. N. R. Mulla, (2025). Pipeline Pressure and Flow Rate Monitoring Using IoT Sensors and ML Algorithms to Detect Leakages, *Int. J. Artif. Intell. Mech. Eng.*, vol. 1, no. 1, pp. 20–30, Jun. 2025.
- [30]. N. R. Mulla, (2025a). Nuclear Energy: Powering the Future or a Risky Relic, *International Journal of Sustainable Energy and Thermoelectric Generator*, vol. 1, no. 1, pp. 52–63, Jun. 2025.
- [31]. Nikat Rajak Mulla, (2025b). Sensor-based Aircraft Wings Design Using Airflow Analysis, *International Journal of Image Processing and Smart Sensors*, vol. 1, no. 1, pp. 55-65, Jun. 2025.
- [32]. N. R. Mulla, (2025c). A Study on Machine Learning for Metal Processing: A New Future, *International Journal of Machine Design and Technology*, vol. 1, no. 1, pp. 56–69, Jun. 2025.
- [33]. Nikat Rajak Mulla, (2025d). Sensor-based Aircraft Wings Design Using Airflow Analysis, *International Journal of Image Processing and Smart Sensors*, vol. 1, no. 1, pp. 55-65, Jun. 2025.
- [34]. N. R. Mulla, (2025e). Node MCU and IoT Centered Smart Logistics, *International Journal of Emerging IoT Technologies in Smart Electronics and Communication*, vol. 1, no. 1, pp. 20-36, Jun-2025.

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

ISO POUT 2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

Impact Factor: 7.67

- [35]. Nikat Rajak Mulla,(2025f). Air Flow Analysis in Sensor-Based Aircraft Wings Design. *Recent Trends in Fluid Mechanics*. 2025; 12(2): 29–39p.
- [36]. Nikat Rajak Mulla,(2025g). IoT Sensors To Monitor Pipeline Pressure and Flow Rate Combined with Ml-Algorithms to Detect Leakages. *Recent Trends in Fluid Mechanics*. 2025; 12(2): 40–48p.
- [37]. Nikat Rajak Mulla, (2025h). Nano-Materials in Vaccine Formation and Chemical Formulae's for Vaccination. *Journal of Nanoscience, NanoEngineering & Applications*. 2025; 15(03).
- [38]. Odnala, S., Shanthy, R., Bharathi, B., Pandey, C., Rachapalli, A., & Liyakat, K. K. S. (2025). Artificial Intelligence and Cloud-Enabled E-Vehicle Design with Wireless Sensor Integration. *SSRN Electronic Journal*. https://doi.org/10.2139/ssrn.5107242
- [39]. P. Neeraja, R. G. Kumar, M. S. Kumar, K. K. S. Liyakat and M. S. Vani. (2024), DL-Based Somnolence Detection for Improved Driver Safety and Alertness Monitoring. 2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT), Greater Noida, India, 2024, pp. 589-594, doi: 10.1109/IC2PCT60090.2024.10486714. Available at: https://ieeexplore.ieee.org/document/10486714
- [40]. Prashant K Magadum (2024). Machine Learning for Predicting Wind Turbine Output Power in Wind Energy Conversion Systems, *Grenze International Journal of Engineering and Technology,* Jan Issue, Vol 10, Issue 1, pp. 2074-2080. Grenze ID: 01.GIJET.10.1.4_1 Available at: https://thegrenze.com/index.php?display=page&view=journalabstract&absid=2514&id=8
- [41]. Priya Mangesh Nerkar, Bhagyarekha Ujjwalganesh Dhaware. (2023). Predictive Data Analytics Framework Based on Heart Healthcare System (HHS) Using Machine Learning, *Journal of Advanced Zoology*, 2023, Volume 44, Special Issue -2, Page 3673:3686. Available at: https://jazindia.com/index.php/jaz/article/view/1695
- [42]. Priya Nerkar and Sultanabanu, (2024). IoT-Based Skin Health Monitoring System, International Journal of Biology, Pharmacy and Allied Sciences (IJBPAS). 2024, 13(11): 5937-5950. https://doi.org/10.31032/IJBPAS/2024/13.11.8488
- [43]. S. B. Khadake, A. B. Chounde, A. A. Suryagan, M. H. M. and M. R. Khadatare, (2024). AI-Driven-IoT(AIIoT) Based Decision Making System for High-Blood Pressure Patient Healthcare Monitoring, 2024 International Conference on Sustainable Communication Networks and Application (ICSCNA), Theni, India, 2024, pp. 96-102, doi: 10.1109/ICSCNA63714.2024.10863954.
- [44]. S. B. Khadake, P. S. More, R. J. Shinde, K. P. Kondubhairi and S. S. Kamble, (2025). AI-Driven IoT based Decision Making for Hepatitis Diseases Patient's Healthcare Monitoring: KSK Approach for Hepatitis Patient Monitoring, 2025 7th International Conference on Intelligent Sustainable Systems (ICISS), India, 2025, pp. 256-263, doi: 10.1109/ICISS63372.2025.11076213.
- [45]. S. B. Khadake, K. Galani, K. B. Patil, A. Dhavale and S. D. Sarik, (2025a). AI-Powered-IoT (AIIoT) based Bridge Health Monitoring using Sensor Data for Smart City Management- A KSK Approach, 2025 7th International Conference on Intelligent Sustainable Systems (ICISS), India, 2025, pp. 296-305, doi: 10.1109/ICISS63372.2025.11076329.
- [46]. S. B. Khadake, B. R. Ingale, D. D. D., S. S. Sudake and M. M. Awatade, (2025b). Kidney Diseases Patient Healthcare Monitoring using AI-Driven-IoT(AIIoT) An KSK1 Approach, 2025 7th International Conference on Intelligent Sustainable Systems (ICISS), India, 2025, pp. 264-272, doi: 10.1109/ICISS63372.2025.11076397.
- [47]. Sayyad. (2025a). AI-Powered-IoT (AIIoT)-Based Decision-Making System for BP Patient's Healthcare Monitoring: KSK Approach for BP Patient Healthcare Monitoring. In S. Aouadni & I. Aouadni (Eds.), Recent Theories and Applications for Multi-Criteria Decision-Making (pp. 205-238). IGI Global. https://doi.org/10.4018/979-8-3693-6502-1.ch008
- [48]. Sayyad (2025b). AI-Powered IoT (AI IoT) for Decision-Making in Smart Agriculture: KSK Approach for Smart Agriculture. In S. Hai-Jew (Ed.), *Enhancing Automated Decision-Making Through AI* (pp. 67-96). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6230-3.ch003

Copyright to IJARSCT www.ijarsct.co.in

International Journal of Advanced Research in Science, Communication and Technology

Impact Factor: 7.67

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

- [49]. Sayyad (2025c). KK Approach to Increase Resilience in Internet of Things: A T-Cell Security Concept. In D. Darwish & K. Charan (Eds.), Analyzing Privacy and Security Difficulties in Social Media: New Challenges and Solutions (pp. 87-120). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9491-5.ch005
- [50]. Sayyad, (2025). KK Approach for IoT Security: T-Cell Concept. In Rajeev Kumar, Sheng-Lung Peng, & Ahmed Elngar (Eds.), Deep Learning Innovations for Securing Critical Infrastructures. IGI Global Scientific Publishing. DOI: 10.4018/979-8-3373-0563-9.ch022
- [51]. Sayyad (2025d). Healthcare Monitoring System Driven by Machine Learning and Internet of Medical Things (MLIoMT). In V. Kumar, P. Katina, & J. Zhao (Eds.), Convergence of Internet of Medical Things (IoMT) and Generative AI (pp. 385-416). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6180-1.ch016
- [52]. Shinde, S. S., Nerkar, P. M., SLiyakat, S. S., & SLiyakat, V. S. (2025). Machine Learning for Brand Protection: A Review of a Proactive Defense Mechanism. In M. Khan & M. Amin Ul Haq (Eds.), Avoiding Ad Fraud and Supporting Brand Safety: Programmatic Advertising Solutions (pp. 175-220). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-7041-4.ch007
- [53]. SilpaRaj M, Senthil Kumar R, Jayakumar K, Gopila M, Senthil kumar S. (2025). Scalable Internet of Things Enabled Intelligent Solutions for Proactive Energy Engagement in Smart Grids Predictive Load Balancing and Sustainable Power Distribution, In S. Kannadhasan et al. (eds.), Proceedings of the International Conference on Sustainability Innovation in Computing and Engineering (ICSICE 24), Advances in Computer Science Research 120, https://doi.org/10.2991/978-94-6463-718-2 85
- [54]. SLiyakat, K. (2024a). AI-Driven IoT (AIIoT) in Healthcare Monitoring. In T. Nguyen & N. Vo (Eds.), Using Traditional Design Methods to Enhance AI-Driven Decision Making (pp. 77-101). IGI Global. https://doi.org/10.4018/979-8-3693-0639-0.ch003 available at: https://www.igi-global.com/chapter/ai-driveniot-aiiot-in-healthcare-monitoring/336693
- [55]. SLiyakat, K. (2024b). Modelling and Simulation of Electric Vehicle for Performance Analysis: BEV and HEV Electrical Vehicle Implementation Using Simulink for E-Mobility Ecosystems. In L. D., N. Nagpal, N. Kassarwani, V. Varthanan G., & P. Siano (Eds.), E-Mobility in Electrical Energy Systems for Sustainability (pp. 295-320). IGI Global. https://doi.org/10.4018/979-8-3693-2611-4.ch014 Available at: https://www.igi-global.com/gateway/chapter/full-text-pdf/341172
- [56]. SLiyakat, S. (2024c). Machine Learning-Based Pomegranate Disease Detection and Treatment. In M. Zia Ul Haq & I. Ali (Eds.), Revolutionizing Pest Management for Sustainable Agriculture (pp. 469-498). IGI Global. https://doi.org/10.4018/979-8-3693-3061-6.ch019
- [57]. SLiyakat, S. (2024d). Computer-Aided Diagnosis in Ophthalmology: A Technical Review of Deep Learning Applications. In M. Garcia & R. de Almeida (Eds.), Transformative Approaches to Patient Literacy and Healthcare Innovation (pp. 112-135). IGI Global. https://doi.org/10.4018/979-8-3693-3661-8.ch006 Available at: https://www.igi-global.com/chapter/computer-aided-diagnosis-in-ophthalmology/342823
- [58]. SLiyakat, S. (2024e). IoT Driven by Machine Learning (MLIoT) for the Retail Apparel Sector. In T. Tarnanidis, E. Papachristou, M. Karypidis, & V. Ismyrlis (Eds.), Driving Green Marketing in Fashion and Retail (pp. 63-81). IGI Global. https://doi.org/10.4018/979-8-3693-3049-4.ch004
- [59]. SLiyakat, S. (2024f). Artificial Intelligence (AI)-Driven IoT (AIIoT)-Based Agriculture Automation. In S. Satapathy & K. Muduli (Eds.), Advanced Computational Methods for Agri-Business Sustainability (pp. 72-94). IGI Global. https://doi.org/10.4018/979-8-3693-3583-3.ch005
- [60]. SLiyakat, K. (2025). Machine Learning-Powered IoT (MLIoT) for Retail Apparel Industry. In T. Tarnanidis, E. Papachristou, M. Karypidis, & V. Manda (Eds.), Sustainable Practices in the Fashion and Retail Industry (pp. 345-372). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9959-0.ch015
- [61]. SLiyakat, K. S. (2025a). Braille-Lippi Numbers and Characters Detection and Announcement System for Blind Children Using KSK Approach: AI-Driven Decision-Making Approach. In T. Murugan, K. P., & A. Abirami

International Journal of Advanced Research in Science, Communication and Technology

ISO 9001:2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

Impact Factor: 7.67

- (Eds.), Driving Quality Education Through AI and Data Science (pp. 531-556). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8292-9.ch023
- [62]. SLiyakat, K. S. (2025b). AI-Driven IoT (AIIoT)-Based Decision-Making System for High BP Patient Healthcare Monitoring: KSK1 Approach for BP Patient Healthcare Monitoring. In T. Mzili, A. Arya, D. Pamucar, & M. Shaheen (Eds.), Optimization, Machine Learning, and Fuzzy Logic: Theory, Algorithms, and Applications (pp. 71-102). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-7352-1.ch003
- [63]. SLiyakat, K. S. (2025c). Advancing Towards Sustainable Energy With Hydrogen Solutions: Adaptation and Challenges. In F. Özsungur, M. Chaychi Semsari, & H. Küçük Bayraktar (Eds.), Geopolitical Landscapes of Renewable Energy and Urban Growth (pp. 357-394). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8814-3.ch013
- [64]. SLiyakat, K. S. (2025d). AI-Driven-IoT (AIIoT) Decision-Making System for Hepatitis Disease Patient Healthcare Monitoring: KSK1 Approach for Hepatitis Patient Monitoring. In S. Agarwal, D. Lakshmi, & L. Singh (Eds.), *Navigating Innovations and Challenges in Travel Medicine and Digital Health* (pp. 431-450). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8774-0.ch022
- [65]. SLiyakat, K. S. (2025e). AI-Driven-IoT (AIIoT)-Based Jawar Leaf Disease Detection: KSK Approach for Jawar Disease Detection. In U. Bhatti, M. Aamir, Y. Gulzar, & S. Ullah Bazai (Eds.), Modern Intelligent Techniques for Image Processing (pp. 439-472). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9045-0.ch019
- [66]. SLiyakat, K. S. (2025f). AI-Powered-IoT (AIIoT)-Based Decision-Making System for BP-Patient Healthcare Monitoring: BP-Patient Health Monitoring Using KSK Approach. *In M. Lytras & S. Alajlan (Eds.), Transforming Pharmaceutical Research With Artificial Intelligence* (pp. 189-218). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6270-9.ch007
- [67]. SLiyakat, K. S. (2025g). A Study on AI-Driven Internet of Battlefield Things (IoBT)-Based Decision Making: KSK Approach in IoBT. In M. Tariq (Ed.), *Merging Artificial Intelligence With the Internet of Things* (pp. 203-238). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8547-0.ch007
- [68]. SLiyakat, K. S. (2025h). KK Approach to Increase Resilience in Internet of Things: A T-Cell Security Concept. In M. Almaiah & S. Salloum (Eds.), Cryptography, Biometrics, and Anonymity in Cybersecurity Management (pp. 199-228). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8014-7.ch010
- [69]. SLiyakat, K. S. (2025i). KK Approach for IoT Security: T-Cell Concept. In R. Kumar, S. Peng, P. Jain, & A. Elngar (Eds.), *Deep Learning Innovations for Securing Critical Infrastructures* (pp. 369-390). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3373-0563-9.ch022
- [70]. SLiyakat, K. S. (2025j). Hydrogen Energy: Adaptation and Challenges. In J. Mabrouki (Ed.), *Obstacles Facing Hydrogen Green Systems and Green Energy* (pp. 205-236). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-8980-5.ch013
- [71]. SLiyakat, K. S. (2025k). Roll of Carbon-Based Supercapacitors in Regenerative Breaking for Electrical Vehicles. In M. Mhadhbi (Ed.), *Innovations in Next-Generation Energy Storage Solutions* (pp. 523-572). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-9316-1.ch017
- [72]. SLiyakat, S. (2025). AI-Driven-IoT (AIIoT)-Based Decision Making in Drones for Climate Change: KSK Approach. In S. Aouadni & I. Aouadni (Eds.), Recent Theories and Applications for Multi-Criteria Decision-Making (pp. 311-340). IGI Global. https://doi.org/10.4018/979-8-3693-6502-1.ch011
- [73]. SLiyakat, S. (2025m). Machine Learning-Driven Internet of Medical Things (ML-IoMT)-Based Healthcare Monitoring System. In B. Soufiene & C. Chakraborty (Eds.), Responsible AI for Digital Health and Medical Analytics (pp. 49-86). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6294-5.ch003
- [74]. SLiyakat, S. (2025n). Transformation of Agriculture Effectuated by Artificial Intelligence-Driven Internet of Things (AIIoT). In J. Garwi, M. Dzingirai, & R. Masengu (Eds.), *Integrating Agriculture, Green Marketing*

RSCT 回报以 in 写解。

International Journal of Advanced Research in Science, Communication and Technology

ISO POUT 2015

International Open-Access, Double-Blind, Peer-Reviewed, Refereed, Multidisciplinary Online Journal

Volume 5, Issue 1, October 2025

Impact Factor: 7.67

- Strategies, and Artificial Intelligence (pp. 449-484). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-6468-0.ch015
- [75]. Kuyda, E. (2022). The Future of Friendship: How AI Companions are Changing Our Emotional Landscape. (Relevant to Replika's role in emotional AI).
- [76]. J.M.Patil "Multi Font And Size Optical Character Recognition Using Template Matching" in "International Journal of Emerging Technology and Advanced Engineering", ISSN 2250-2459, Vol-3 Issue-1 January 2013.
- [77]. J.M.Patil "Android Based Appliances Control System" in "International Journal of Emerging Technology and Advanced Engineering", ISSN 2250-2459, Vol-3 Issue-12 December 2013.
- [78]. J.M.Patil "Development of Total Security System for Residential and Commercial Buildings" in "International Journal of Emerging Technology and Advanced Engineering", ISSN 2250-2459, Vol-5 Issue-1 January 2015.
- [79]. J. M. Patil "Detection of diseases and grading in pomegranate fruit using digital image processing" in the conference "Science, Technology & Management (ICSTM-2017) on 12th November 2017.
- [80]. J. M. Patil "The Intersection of Nanotechnology and IoT: New Era Of Connectivity", ISSN:2455-8524, Vol-11 Issue-1 January-June 2025.
- [81]. Gupta, S. (2020). Virtual Assistants in Enterprises. International Journal of AI Research, 8(2), 110-125.
- [82]. Bailenson, J. N. (2018). Experience on Demand: What Virtual Reality Is, How It Works, and What It Can Do. W. W. Norton & Company.
- [83]. Biocca, F. (1997). The Cyborg's Dilemma: Progressive Embodiment in Virtual Environments. Journal of Computer-Mediated Communication, 3(2).
- [84]. Zhao, L., et al. (2022). Cognitive Automation in Corporate Settings. AI & Society, 37(1), 88–101.
- [85]. Lee, H., & Chen, M. (2019). Barriers to AI Integration. Journal of Information Systems, 25(4), 223-237
- [86]. World Health Organization (WHO). (2025). Suicide worldwide in 2021: global health estimates. (Cited for global statistics on suicide and mental health crisis)

